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Synthesis and Reactions of Mixed N,P Ligands
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The gold complexes [RN=C(R')CH(R)PPh,(AuCl)] (6a, R’ =
tBu; 6b, R’ = Ad; R = SiMejs) were synthesised from the keti-
mines RN=C(R')CH(R)PPh, (2a, R’ = tBu; 2b, R" = Ad; R =
SiMes) and Me,SAuCL The hydrolysis of the complexes to
[H,NC(R")=CHPPh,(AuCl)] (8a, R’ = tBu; 8b, R’ = Ad) in pro-
tic solvents was studied and the reaction intermediate [H(R)
NC(tBu)=CHPPh,(AuCl)] (7a) was isolated. The ketimines
were further reacted with PhPCI, to the cyclic phosphonium

salts [Ph,PP(Ph)N(H)C(R')=CH]X (3a, R’ = tBu, X = CI; 3¢, R’
= Ad, X =CJ; 3d, R" = Ad, X = BPhy) and in the case of 3a
oxidised with sulfur to give the ring-opened B-keto thiophos-
phane oxide Ph,P(S)CH,C(O)tBu (9). All compounds were
fully characterised by NMR spectroscopy and in the case of
6b, 8a and 9 by X-ray crystallography.

(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim,
Germany, 2005)

Introduction

While the use of l-azaallyllithium complexes as ligand
transfer agents has received considerable attention,!' the
development of their utility in the context of phosphorus
chemistry is in its infancy. In two recent papers,>? it was
shown that treatment of the ketimine Me;SiN=C(/Bu)-
CH(SiMe3)PPh, (2a) with R"""PCl, or PCl; gave the cyclic
phosphonium salts [Ph,PP(R""")N(H)C(:Bu)=CH]CI 3 (3a,
R’"" = Ph; 3b, R""" = Et) and [Ph,PP(CI)N(R)C(Bu)=CH]-
Cl (R = SiMes) 4, respectively (Scheme 1). Conversely,
treatment of the related ketimine Me;SiN=C(7Bu)-
CH(SiMe;), (2¢) with PCl; generated the rrans-1,3,2,4-di-
azadiphosphetidine 5 in moderate yield (Scheme 1). The
key ketimines 2a and 2¢ were formed by the reactions of
the 1-azaallyl RNC(Bu)C(Li)HR (1a) with Ph,PCl or
CF5SO5R (R = SiMe;), respectively.l’! The successful prep-
aration of compounds such as 1 is dependent on the avail-
ability of suitable 1-azaallyl precursors which react prefer-
entially as C-centred rather than N-centred nucleophiles.*!
For an ambidentate N,C-monoanionic ligand, C- over N-
centred nucleophilicity is often favoured by utilising sol-
vent-free 1-azaallyllithium precursors.! The presence of
donor solvents such as tetramethylethylenediamine signifi-
cantly enhances N-nucleophilicity. In preliminary studies,
the solvent-free 1-azaallyl, RNC(Ad)C(Li)HR (Ad = ada-
mantyl) (1b), was prepared by the reaction of LICHR, and
AdCN in pentane under ambient conditions.!! Conse-
quently, it was envisaged that 1b could be utilised as a C-
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centred nucleophile to prepare adamantyl derivatives of 3.
This present study was stimulated by the emergence of
interest in lipophilic cations as a new class of antitumour
drugs with the potential to selectively target mitochondria
in tumour cells.l! Several structurally diverse lipophilic cat-
ions have demonstrated strong activity by concentrating in
mitochondria, for example, thodamine 123, dequalin-
ium,”! pyronine Y,®! ditercalinium,”? AA-11% and MKT-
077,111 the latter having been advanced to phase I clinical
trials. Several classes of lipophilic cations have demon-
strated that antitumour selectivity is increased as the lipo-
philic-hydrophilic balance is varied (e.g. bisquaternary am-
monium heterocycles,'?! [Au(P-P),]*, where P-P is a bis-
phosphanel> 3! and triarylalkylphosphonium salts!!4l). Con-
sequently, herein the preparation of lipophilic cations is re-
ported, that is, the cyclic phosphonium salts derived from
1 and chlorophosphane precursors. The chemistry of for-
mation and stability of these compounds is presented with
a view of evaluating their potential as a new class of antitu-
mour agent.

Results and Discussion

Synthesis

In the present study, the solvent-free 1-azaallyllithium,
RNC(Ad)C(Li))HR (1b) was prepared in high yield by the
reaction of LICHR, (R = SiMe;) and AdCN (Ad = ada-
mantyl) in hexane at low temperature. This type of reaction
has previously been rationalised by insertion of the alkyl-
lithium reagent into the CN bond of the organonitrile to
form a lithioaldimine, followed by a 1,3-Me;Si shift to give
the 1-azaallyl. Compound 1b, behaving as a C-centred nu-
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Scheme 1. Reactions of ketimines with phosphorus halides.

cleophile, was reacted with the phosphanyl chloride,
Ph,PCl, to give the novel ketimine RN=C(Ad)CH(R)PPh,
(2b) (i, Scheme 2) in a yield comparable to the analogous
reaction involving RNC(zBu)C(Li)HR and chlorodiphenyl-
phosphane.?! The purification of 2b by distillation was not
attempted owing to reports that the corresponding /Bu de-
rivative, RN=C(¢rBu)CH(R)PPh, (2a) isomerised to give the
(Z)-enamine upon heating under reduced pressure, while
subsequent irradiation of the (Z)-enamine using a medium-
pressure mercury lamp afforded an equilibrium mixture of
the Z and E isomers [Equation (1)].2) Owing to the stability
that a number of transition metals can afford to phos-
phanes, by o-donation of the ligand and backbonding from
the metal to the vacant d-orbitals of the phosphane, the Au!
complex of 2b was prepared (ii, Scheme 2). The expected
stability and linear two-coordinate geometry of the complex
was observed (6b), allowing unambiguous assignment of 2b
as a coordinated adduct by NMR and X-ray crystallo-
graphic analysis. Similarly, [Me;SiN=C(Bu)CH(SiMejy)-
PPh,(AuCl)] (6a) was prepared in high yield from the reac-
tion of Me;SiN=C(sBu)CH(SiMe;)PPh, (2a) and
ClAuSMe, in THE. In both cases, the 1:1 complex was
formed irrespective of stoichiometry, and an excess of li-
gand was typically used to ensure complete complexation.
While enhanced thermal stabilities of the ketimines were
achieved by coordination of P to Au' it was found that the
SiMe; group attached to N was readily hydrolysed in the
presence of moisture (treatment of 6 with methanol) to give

1956 © 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

the complexes [H,NC(R'")=C(H)PPh,(AuCl)] (Scheme 2;
8a, R’ = rBu; 8b, R’ = Ad) in high yields. The structure of
the 7Bu derivative was confirmed by crystallographic analy-
sis. The process presumably involves cleavage of the ter-
minal trimethylsilyl group (Scheme 2, iii), followed by a 1,3
trimethylsilyl shift from C to N (Scheme 2, iv) and isomeri-
sation of the ketimine (the sequence of rearrangement iv
and isomerisation v may well be reversed or a simultaneous
process) to the thermodynamically favoured enamine
(Scheme 2, v). The latter intermediate [H(SiMes)-
NC(R")=CHPPh,(AuCl)] was NMR spectroscopically
identified for R’ = 7Bu (7a) as the major product (with 6a
and 8a as side products) when 6a was treated with a
mixture of diethyl ether and hexane. Hydrolysis of the re-
maining trimethylsilyl group (Scheme 2, vi) completed a
template-assisted synthesis of novel bidentate ligands.
For  comparison the non-hydrolysable  ketimine
Ph,PCH,C(Ph)=N(C¢H;Me,-2,6)!'*! was reacted with Me,-
SAuCl to synthesise a N-aryl analogue of 6. The gold com-
plex was isolated in good yield (66%) and found to exist
in solution as a mixture of four isomers (two tautomers
analogous to the ones shown for equilibrium v in Scheme 2
and their respective Z/E isomers). No decomposition or
change in the isomer ratio was observed in acetone solution
over a period of two weeks. The described synthesis of 8
represents a new route to mixed P, N donor ligands with
C-C backbone. Typically, ligands of this sort are generated
by the AIBN-assisted free radical-catalysed!'®! (or base-cat-
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Scheme 2. Synthesis of gold phosphane complexes.

alysed!!”l) addition of P-H bonds to vinylamides [e.g.
CH,=C(O)NH,] or possibly the reaction of N-nucleophiles
to m-chloroalkylphosphanes. The procedure reported here,
beginning with C-centred nucleophilic attack of a 1-azaallyl
on a phosphanyl chloride, followed by template-assisted hy-
drolysis, not only provides a route to mixed P, N donor
ligands, but allows for further alkyl substitution at a single
carbon atom.

RN=C(/Bu)CH(R)PPh, —O0—

AT
2a, R = SiMe,
RN /FPhy hv RN M
=C _— =
tBu/ c tBu/ =
H PPh, )

Since the reaction of Me;SiN=C(:Bu)CH(SiMe;)PPh,
(2a) with R"""PCl, proceeded to give the cyclic phospho-
nium salts [Ph,PP(R""")N(H)C(tBu)=CH]Cl (Scheme 1,
R’’’ = Ph, 3a or Et, 3b),”! the Ad-substituted analogue,
[Ph,PP(Ph)N(H)C(Ad)=CH]CI (3¢) was prepared by a sim-
ilar reaction involving Me;SiN=C(Ad)CH(SiMe;)PPh, (2b)
and PhPCl,, albeit in lower yield. In a process that was used
to rationalise the formation of the rBu-substituted cyclic
phosphonium salts,”! the formation of [Ph,PP(Ph)N(H)-
C(Ad)=CH]CI (3¢) from Me;SiN=C(Ad)CH(SiMe;)PPh,
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i)
8a, R' = tBu (X-ray)
8b,R'=Ad

(2b) is likely to involve, firstly, N-centred nucleophilic attack
of MesSiN=C(Ad)CH(SiMe;)PPh, at the P atom of
PhPCl,, yielding the ketimidophosphorous(i) chloride
PhP(CI)N=C(Ad)CH(R)PPh, with concomitant Me;SiCl
elimination. Secondly, cyclisation is invoked by a rearrange-
ment (1,3-SiMe; shift from C to N) of PhP(CI)N=C(Ad)-
CH(R)PPh, into the isomeric enamidophosphorus(iir) chlo-
ride PhP(CI)N(R)C(Ad)=C(R)PPh, followed by intramo-
lecular nucleophilic displacement of the chloride to give the
cyclic phosphonium salt I. Hydrolysis completes the con-
version to [Ph,PP(Ph)N(H)C(Ad)=CH]CI (3c). Alterna-
tively, the transformation could proceed through cyclisation
of the ketimidophosphorus(iir) chloride PhP(Cl)N=C(Ad)-
CH(R)PPh,, to give the cycloketimidophosphonylphos-
phonium salt [Ph,PP(Ph)N=C(Ad)CHR]CI II, which sub-
sequently undergoes rearrangement to I and hydrolysis to
complete the process.

?iMe3
N
Ad 2N Ph
Ad NN _ph ~c” ~p~
C P \ +/
\\ _+/h _ _CH-PPh, 1
I(-:I PPh, (1 Me,Si
1 I

Fulfilment of the requirement of stability is necessary be-
fore proceeding with biological evaluations. While isolation
and characterisation of the cyclic phosphonium salts were
possible under inert gas conditions, instability of the five-
membered ring (a solution of 3¢ in CDCl; decomposed
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within 24 h completely into two major products on expo-
sure to moist air) necessitated strategies to attempt to in-
duce stability. Consequently, metathesis reactions involving
replacement of the chloride with bulkier anions were under-
taken. The reaction of [Ph,PP(Ph)N(H)C(Ad)=CH]CI (3c)
with NaBPh, proceeded almost quantitatively to give
[Ph,PP(Ph)N(H)C(Ad)=CH]BPh, (3d), while the synthesis
of related compounds with NO5~, CH;CO, , BF; or ClO4
as counterion from 3¢ and the corresponding silver salts
was unsuccessful. 3'P NMR analysis of 3d, however, re-
vealed that the instability under atmospheric conditions was
persistent, with decomposition of the five-membered ring
being particularly rapid in foetal calf serum (fcs) containing
cell-culture medium. Subsequently, in an attempt to acquire
an insight into the factors which were responsible for this
decomposition, a reaction was undertaken with [Ph,PP-
(Ph)N(H)C(zBu)=CH]CI (3a) and one equivalent of sulfur
in dichloromethane, since thiol-containing compounds are
constituents of fcs and the interaction with sulfur is a rea-
sonable comparison for the observed oxygen- and moisture-
facilitated decomposition pathways. Removal of the solvent
in vacuo, and recrystallisation of the crude product from
propan-1-ol, gave colourless crystals in good yield. Crystal-
lographic analysis of the product revealed that a rare exam-
ple of a B-keto thiophosphane, i.e. Ph,P(S)CH,C(O)7Bu (9)
was obtained. It is plausible that the formation of the B-
keto thiophosphane oxide involved initial sulfuration of the
quarternary P and concomitant P-P bond scission of the
cyclic phosphonium salt [Ph,PP(Ph)N(H)C(¢Bu)=CH]CI to
give an intermediary chlorophosphane Ph,P(S)CH=C-
(tBu)N(H)P(Ph)Cl (Scheme 3, i). Facile elimination of
CIPPhOPr or a related species (Scheme 3, ii), followed by
nucleophilic attack of water on the tBu-substituted carbon
in a Michael-type addition reaction (the related P com-
pounds 8 in Scheme 2 are in contrast unreactive) produces
a zwitterionic intermediate (Scheme 3, iii) whose negative
charge is stabilised by the P=S double bond. Ethene bond

reformation is accompanied by the elimination of ammonia
(Scheme 3, iv), with enol-keto tautomerism (Scheme 3, v)
completing the envisaged reaction pathway involving the
formation of Ph,P(S)CH,C(O)tBu (9) from [Ph,PP(Ph)-
N(H)C(rBu)=CH]CI. Reaction of 3¢ with oxygen-free water
in CH,Cl, resulted in a solid that showed two major signals
at 6 = 22.5 and 23.3 ppm in the 3'P NMR spectrum that
were within 1 ppm identical to those found in the above-
mentioned decomposition study of 3¢ in CDCl;. This impli-
cates the reaction with water as a major reason for the in-
stability of the phosphonium salts. Attempts to isolate the
products were unsuccessful and a mass spectrum of the pro-
duct mixture was inconclusive. The further reaction of 3¢
with dry oxygen yielded after removal of the solvent a solid
that consisted of a mixture of numerous compounds with
unreacted starting material being one of the major compo-
nents. The mass spectrum of the mixture showed m/z values
consistent with 3¢ and an oxygen analogue [Ph,P(O)-
CH,C(O)Ad] of 9. The persistent instability of the phos-
phonium salts under atmospheric conditions precluded fur-
ther biological testing and further development as potential
antitumour drugs is at this stage doubtful.

Solid-State Structures of Compounds 6b, 8a and 9

The molecular structures of [RN=C(Ad)CH(R)-
PPh,(AuCl)] (6b) (R = SiMe;) and [H,NC(zBu)=C(H)-
PPh,(AuCl)] (8a) with the atom numbering scheme are
shown in Figure 1 and Figure 2, while selected bond lengths
are compared in Table 1. Complex 6b crystallises as a dis-
crete monomer with the Au atom adopting a linear geome-
try [P-Au-Cl 178.74(9)°]. The Au-P and Au-Cl distances
of 2.245(2) and 2.296(2) A are unexceptional and compare
well to those found in related two-coordinate phosphane
complexes such as  iBusPAuCL!'®  Et;PAuCL!
Ph;PAuCLPY (2-Pyr);PAuCI?Y or iPr;PAuCL? The short

H —
| /c1 I*|I
N Ph N
su—c” p7 AN nProH - H2
- /\ Bu—C PPhCI 1Bu (i\ nPrOPPhCI
C—PPh 0) (ii) —_
g 2 ) C—PPh, C—PPh,
H || H
3a S S
0
2 OH 0
NH N <
Bu—C 7 o Bu — C\ N Bu— C\
o Ho|| E “ H, |
S
9

Scheme 3. Possible reaction mechanism for the formation of 9.
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C2-N [1.266(6) A] and long C1-C2 [1.558(6) A] distances
are consistent with the alkyl substituent at P being an imi-
noalkyl. There is considerable steric repulsion between the
bulky adamantyl and trimethylsilyl groups attached to the
two sp? hybridised atoms C2 and N, respectively, as is evi-
dent from the deviation of the angles C3—-C2-N [123.9(4)°]
and C2-N-Si3 [151.9(4)°] from the idealised geometry of
120°.

Figure 1. Molecular structure of CIAuPPh,CH(SiMe;)C(Ad)-
NSiMe; (6b). Thermal ellipsoids are drawn at the 50% probability
level. H atoms have been omitted for clarity.

Ccé

Figure 2. Molecular structure of CIAuPPh,CHC(:Bu)NH, (8a).
Thermal ellipsoids are drawn at the 50% probability level. H atoms
(except at N, C1) have been omitted for clarity.

Compound 8a crystallises as a centrosymmetric dimer
(Figure 3) as a consequence of conventional hydrogen
bonding between the Cl and NH, groups of adjacent mole-
cules hereby forming a 14-membered heterocycle R3(14).
The Cl--N contacts [3.345(7) A] are close to the mean value
of 3.299(6) A reported in the literature.?3! The dimers are
further weakly hydrogen-bonded by short C—H---Cl interac-
tions (C4-H4-Cl: 2.76 A, 172°) between the Cl atom and
one of the methyl groups of the zBu substituent in the back-
bone of an adjacent dimer (Figure 3, Table 2). The existence
of C-H-+Cl (H--*A) interactions has been discussed in se-

Eur. J. Inorg. Chem. 2005, 1955-1963 www.eurjic.org

Table 1. Selected bond lengths [A] and angles [°] for compound 6b,
8a and 9.

Bond length/angle 6b 8a 9
Au/S-P 2.245(2) 2.243(2) 1.9563(9)
Au-Cl 2.296(2) 2.295(2) -

P-Cl1 1.825(6) 1.777(7) 1.822(2)
pP-Chal 1.838(5) 1.837(7) 1.820(2)
P-ClbI 1.830(6) 1.819(6) 1.821(2)
N/O-C2 1.266(6) 1.369(9) 1.209(3)
Cl-C2 1.558(6) 1.361(9) 1.523(3)
P-Au-Cl 178.74(6) 177.24(6) -

[a] C = carbon C19 (6b); carbon C7 (8a, 9). [b] C = carbon C25
(6b); carbon C13 (8a, 9).

veral recent papers?¥ and a C-H--Cl distance of close to
3 A has been suggested as reasonable.l>*3] The closest con-
tact in compound 6b (C9-H9B--Cl: 2.94 A, 148°) is in com-
parison considerably longer. In this context it is noteworthy
that the distance between the methyl group (C4) involved
in non-classical H-bonding and the central carbon atom of
the /Bu group (C3) in 8a [1.54(1) A] is longer than those to
the non-hydrogen-bonded methyl [1.52(1),
1.50(1) Al.

groups

Figure 3. H bonding and intermolecular contacts in compound 8a.
(For symmetry codes see Table 2).

The bond lengths and geometry of the Au atom [Au-
P: 2.243(2) A, Au—Cl: 2.295(2) A, P-Au—Cl 177.24(6)°] in
complex 8a are similar to those in complex 6b. The short
CN single bond [CI1-N 1.369(9) A] and comparatively long
CC double bond [C1-C2 1.361(9) A] in the phosphane sub-
stituent indicate considerable delocalisation within the en-
amine backbone (Z isomer) of the ligand that may extend
to some degree to the phosphorus atom (c.f. short P-C1 as
compared to long P-Ph distances).

Aurophilic Au-+Au contacts/?! that have been found to
influence the solid-state structures of gold phosphane com-

© 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 1959
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Table 2. Intermolecular contact distances [A] and angles [°] for
compounds 8a and 9.

D-H--A D-H H--A DA D-H--A
Compound 8a

N-H2B--Cllal 0.86 2.57 3.345(7) 151
C4-H4---CIM! 0.96 2.76 3.717(13) 172
Compound 9

C1-H1A--S! 0.99 2.80 3.755(2) 163
C15-H15--0 0.95 242 3.241(3) 145

[a] Symmetry codes: —x + 1, =y + 1, —z. [b] x, 1 + y, z. [c] x, ),
=12+ z [d] 12+ x, =112 + y, =

% C14

Figure 4. Molecular structure of Ph,P(S)CH,C(O)/Bu (9). Thermal
ellipsoids are drawn at the 50% probability level. H atoms (except
at C1) have been omitted for clarity.

Figure 5. Intermolecular contacts in compound 9. (For symmetry
codes see Table 2).

1960 © 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

plexes?®! in the case of less bulky phosphanes are not ob-
served in compound 6b or 8a.

The molecular structure of compound 9 and the atom
numbering scheme is illustrated in Figure 4. The bond
lengths and angles (Table 1) are unexceptional and compare
well to the related dimethyl and diphenylphosphane sulfides
Me,P(S)C(Me)OHC(O)Me, 2 Me,P(S)C(Ph)OHC(O)-
PhP?l and Ph,P(S)CHC(O)(CH,),.*8! The PS and CO
groups are not coplanar as indicated by an angle of 71.5(2)°
between the two planes formed by the atoms S, P, Cl
and Cl1, C2, O. This facilitates weak intermolecular
C-H(Ph)-*O and C-H(CH,)--:S interactions (Table 2) be-
tween adjacent molecules of 9 (Figure 5). There is also a
close contact between C5 and O (C5++0: 3.130 A).

Experimental Section

All manipulations were carried out under argon, using standard
Schlenk techniques. Solvents were distilled from drying agents and
degassed. The NMR spectra were recorded in CDCls, [Dglacetone
and [Dg]DMSO at ambient probe temperature by using the follow-
ing Bruker instruments: DRX 400 ('H 400.13; 3'P 161.9; 3C
100.6 MHz), Avance 300 ('H 300.13; '3C 75.5 MHz) or AC200 ('H
200.13 MHz) and referenced internally to residual solvent reso-
nances (chemical shift data in ). '3C and 3'P NMR spectra were
all proton-decoupled. Elemental analyses were determined by the
Institute for Soil, Climate and Water, Pretoria, South Africa. The
following abbreviations are used throughout the experimental sec-
tion: s = singlet, br. s = broad singlet, d = doublet, dd = doublet
of doublet, m = multiplet, mm = multiple multiplets. Coupling con-
stants (J) are given in Hz.

Synthesis of Me3;SiNC(Ad)CH(SiMe3z)PPh, (2b): Ph,PCl (0.38 g,
1.71 mmol) in hexane (15 ¢cm?) was added dropwise to a magneti-
cally stirred solution (80 °C) of the 1-azaallyllithium complex 1b
(0.56 g, 1.71 mmol) in hexane (30 cm?). After stirring for 12 hours,
the solution was filtered and the solvent removed in vacuo to give
2b as a yellow oil (0.73 g, 80%). '"H NMR (CDCls): § = —0.04 (s,
9 H, CSiMes), 0.28 (s, 9 H, NSiMes), 1.25-1.83 (mm, 15 H, Ad),
3.95[d, 2Jyp = 6.1 Hz, 1 H, CH] and 7.19-7.74 (mm, 10 H, Ph)
ppm. *'P NMR (CDCl5): § = 2.1 ppm. 3*C NMR (CDCls): § =
0.4 (s, CSiMe;), 0.5 (s, NSiMej3), 28.6 (s, CH-Ad), 36.5 (s, CH»-
Ad), 31.6 (s, ipso-C-Ad), 38.9 [d, Jep = 27.3 Hz, CH], 39.5 (s,
CHy-Ad), 127.7 [d, 3Jcp = 7.1 Hz, m-Ph ], 128.2 [d, 3Jcp = 7.7 Hz,
m-Ph ], 128.5 (s, p-Ph), 129.0 (s, p-Ph), 134.3 [d, 2Jcp = 21.8 Hz,
0-Ph], 134.6 [d, 2Jcp = 19.1 Hz, 0-Ph], 138.7 [d, 'Jcp = 16.3 Hz,
ipso-C], 140.3 [d, Jep = 28.5 Hz, ipso-C] and 183.1 [d, 2Jcp =
2.2 Hz, CN] ppm.

Synthesis of Ph,P*P(Ph)N(H)C(Ad)CH CI- (3c): PhPCl, (0.57 g,
3.16 mmol) was added to Me;SiN=C(Ad)CH(SiMes)PPh, (2b)
(1.60 g, 3.16 mmol). After complete addition, the mixture was
heated at 50 °C for 30 min. It liquefied as the CISiMe; was given
off. The mixture was then dried in vacuo to give a yellow solid
(1.43 g, 90%). C57H;3,CINP,: caled. C 69.30, H 6.85, N 2.99; found
C 68.52, H 6.87, N 2.47 (the compound incorporates varying
amounts of toluene). Pale yellow crystals were obtained from hot
toluene (0.40 g, 25%). '"H NMR (CDCl;): 6 = 1.71-1.84 (mm, 15
H, Ad), 4.63 [d, 2Jizp = 15.6 Hz, 1 H, NH], 6.90-7.20 (mm, 5 H,
Ph), 7.38-7.87 (mm, 10 H, Ph) and 9.99 [dd, 2/ p = 32.0, *Jyyp =
21.2Hz, 1 H, CH] ppm. 3P NMR (CDCl,): 6 = 13.5 [d, Jpp =
239.2 Hz, °P], 41.9 [d, "Jpp = 239.2 Hz, 2*P*] ppm. *C NMR
(CDCly): 6 = 28.3 (s, CH-Ad), 36.2 (s, CH,-Ad), 40.4 [d, 3Jcp =
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11.3 Hz, ipso-C-Ad], 41.0 (s, CHy-Ad), 64.1 [d, Jep = 72.9 Hz,
CHJ, 118.1, [d, 'Jep = 82.5 Hz, ipso-C |, 124.2 [dd, 2Jc.p = 75.0,
3Jcp = 18.8 Hz, ipso-C], 125.2 (s, ipso-C), 128.7 (mm of aromatic
C atoms) and 186.8 [overlapping dd, 2Jcp = 27.9, 3Jcp = 14.4 Hz,
CN] ppm.

Synthesis of Ph,P*P(Ph)N(H)C(Ad)CH BPh,~ (3d): NaBPh,
(0.37 g, 1.08 mmol) was added to a magnetically stirred solution of
CH,Cl, (20 cm®) and Ph,P*P(Ph)N(H)C(Ad)CH CI- (3¢) (0.54 g,
1.07 mmol) at —30 °C. The reaction mixture was stirred for 12 hours
and warmed to room temperature giving an off-white solution. It
was filtered and the solvent removed in vacuo to give a yellow solid.
Various recrystallisation attempts led to the decomposition of the
compound. 3d (crude: 0.76 g, 92%). '"H NMR (CDCls): § = 1.57—
1.89 (mm, 15 H, Ad), 4.64 [d, 1 H, 2J p = 15.3 Hz, NH], 6.00 [dd,
2Jup = 22.0, 3Jyp = 8.0 Hz, 1 H, CH], 6.84-7.10 (mm, 5 H, Ph)
and 7.36-7.64 (mm, 10 H, Ph) ppm. *'P NMR (CDCls): § = 10.8
[d, WJpp = 241.4 Hz, A3P), 43.8 [d, Jpp = 241.4 Hz, A*P*] ppm. 13C
NMR (CDCly): 6 = 28.0 (s, CH-Ad), 36.0 (s, CH»-Ad), 39.8 (s,
ipso-C-Ad), 41.0 (s, CH,-Ad), 66.4 [d, 'Jcp = 71.4 Hz, CH], 117.3
[d, YJep = 81.0Hz, ipso-C], 121.7 (s, BPh), 1224 [d, Jcp =
32.5 Hz, ipso-C], 125.5 (s, BPh), 129.2 [d, Jcp = 5.6 Hz, Ph], 129.5
[d, Jcp = 19.0 Hz, Ph], 130.3 [d, Jcp = 12.6 Hz, Ph], 132.8 [d, Jcp
= 10.4 Hz, Ph], 136.3 (s, BPh), 164.2 [q, 'Jcp = 49.3 Hz, ipso-C]
and 184.8 [d, 2Jcp = 13.0 Hz, CN] ppm.

Synthesis of ClAuPPh,CH(SiMe3)C(tBu)NSiMe; (6a):
ClAuSMe,?1 (0.24 g, 0.82 mmol) was added to a solution of
Ph,PCH(SiMe;)C(rBu)NSiMe; (2a) (0.30 g, 0.85 mmol) in THF
(10 cm?) at 0 °C. The solution was stirred at 0 °C for 10 minutes,
warmed to room temperature and stirred for further 15 minutes.
The solvent was removed in vacuo to yield a sticky yellow com-
pound (6a, 0.45g, 83%). 'H NMR (CDCls): 6 = 0.17 (s, 9 H,
CSiMejs), 0.33 (s, 9 H, NSiMe3), 0.88 (s, 9 H, /Bu), 4.46 [d, 2Jpp
= 158 Hz, 1 H, CH] and 7.44 -7.81 (mm, 10 H, Ph) ppm. 3'P
NMR (CDCly): § = 40.7 ppm. 3C NMR (CDCl;): 6 = 0.8 [d, 3Jcp
= 4.3 Hz, CSiMes), 3.1 (s, NSiMes), 29.0 (s, CMes), 38.8 [d, 'Jcp
= 30.4 Hz, CH], 43.6 (s, CMe3), 128.5 [d, 2Jcp = 11.6 Hz, 0-Ph],
131.0 [d, 3Jcp = 9.9 Hz, m-Ph], 131.8 [d, *Jcp = 2.4 Hz, , p-Ph],
132.8 [d, 'Jcp = 79.0 Hz, ipso-C] and 179.4 [d, 2Jcp = 6.0 Hz, CN]
ppm.

Synthesis of CIAuPPh,CH(SiMe;)C(Ad)NSiMe; (6b):
ClAuSMe,*! (0.30 g, 1.02 mmol) was added to a solution of
Ph,PCH(SiMe3)C(Ad)NSiMe; (2b) (0.78 g, 1.54 mmol) in THF
(20 cm?) at 0 °C. The solution was stirred for 15 minutes and the
solvent was removed in vacuo to yield a yellow solid. Colourless
crystals of 6b (0.25 g, 33%) were obtained from CH,Cl, at —60 °C.
'H NMR (CDCly): 6 = 0.07 (s, 9 H, CSiMes), 0.25 (s, 9 H,
NSiMes), 1.26-1.86 (mm, 15 H, adamantyl), 437 (d, 2Jgp =
159 Hz, 1 H, CH), 7.41-7.43 (mm, 6 H, Ph), 7.71-7.74 (mm, 2 H,
Ph) and 7.92-7.98 (mm, 2 H, Ph) ppm. 3'P NMR (CDCls): 6 =
40.9 ppm. 3C NMR (CDCls): 6 = 1.0 [d, 3Jcp = 4.0 Hz, CSiMes),
3.7 (s, NSiMe3), 28.5 (s, CH-Ad), 36.2 (s, CH,-Ad), 37.6 [d, "Jcp
= 30.2 Hz, CH], 39.6 (s, CH,-Ad), ipso-C-Ad not observed, 128.5
[d, 3Jcp = 11.7 Hz, m-Ph], 131.3 [d, *Jcp = 2.8 Hz, p-Ph], 132.3
[d, YJep = 79.9 Hz, ipso-C], 134.3 [d, 2Jcp = 14.2 Hz, 0-Ph] and
179.5 (s, CN) ppm.

Synthesis of CIAuPPh,CHC(rBu)N(H)SiMe; (7a): CIAuPPh,CH-
(SiMe;)C(rBu)NSiMe; (6a) was dissolved in a mixture of ether/
hexane. A yellow powder of 7a (0.37 g, 66%) was obtained at
60 °C. 'TH NMR (CDCls): 6 = 0.14 (s, 9 H, SiMe3), 1.23 (s, 9 H,
{Bu), 4.33[d, 2Jy p = 5.6 Hz, 1 H, CH], 4.81 [br. s, 1 H, NH], 7.42—
7.69 (mm, 10 H, Ph) ppm. 3'P NMR (CDCls): § = 10.6 ppm. '3C
NMR (CDCly): 6 = 2.5 (s, SiMe3), 29.8 (s, CMe;), 38.3 [d, 3Jcp =
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8.5Hz, CMes], 86.4 [d, 'Jep = 72.3 Hz, CHJ, 129.1 [d, 3Jcp =
11.7 Hz, m-Ph], 131.2 [d, Jep = 84.5 Hz, ipso-C], 131.4 [d, “Jcp
= 2.6 Hz, p-Ph], 133.2[d, 2Jc.p = 13.6 Hz, 0-Ph] and 173.3 (s, CN)

Synthesis of CIAuPPh,C(H)C(Bu)NH, (8a): CIAuPPh,CHC(zBu)-
N(H)SiMe; (7a) was dissolved in hot methanol. Colourless crys-
tals of 8a (0.06 g, 14%) were obtained after slow cooling of the
solution at room temperature. C;gH,,AuCINP: calcd. C 41.92, H
4.30, N 2.72; found C 41.20, H 4.33, N 2.70. '"H NMR (CDCl;): &
=1.23 (s, 9 H, 1Bu), 4.32 [d, 2Jy_p = 8.8 Hz, 1 H, CH], 4.82 (br. s,
2 H, NH,), 7.44 (6 H, Ph) and 7.57-7.63 (mm, 4 H, Ph) ppm. 3!P
NMR (CDCls): § = 7.1 ppm. '3C NMR (CDCls): § = 29.1 (s,
CMe3), 37.2 [d. 3Jcp = 9.8 Hz, CMes), 72.8 [d, "Jep = 71.9 Hz,
CH], 129.0 [d, 3Jcp = 11.7 Hz, m-Ph], 131.2 [d, *Jcp = 2.3 Hz, p-
Ph], 131.9 [s, ipso-C], 132.9 [d, 2Jcp = 13.5 Hz], 0-Phand 168.9 (s,
CN) ppm.

Crude 6a (0.45 g, 0.68 mmol) was dissolved in methanol (20 cm?)
and after a period of 5 minutes a white precipitate started to form.
After stirring the reaction mixture for 30 minutes at room tempera-
ture the solvent was carefully decanted and the residue dried in
vacuo to give 0.31 g (88%) of 8a.

Synthesis of CIAuPPh,C(H)C(Ad)NH, (8b): CIAuPPh,CH(SiMes)
C(Ad)NSiMes (6b) was dissolved in hot methanol. It was cooled
slowly and yielded 8b (0.13 g, 65%) as a pale yellow powder.
C,4H3 AuCINP: caled. C 48.50, H 4.75, N 2.36; found C 48.33, H
4.85, N 2.27. '"H NMR (CDCl;): § = 1.67-1.83 (mm, 15 H, ada-
mantyl), 4.28 [d, 2Jy p = 9.1 Hz, 1 H, CH], 4.81 (br. s, 2 H, NH,),
7.42-7.44 (mm, 6 H, Ph) and 7.56-7.64 (mm, 4 H, Ph) ppm. 3'P
NMR (CDCl5): 6 = 7.1 ppm. *C NMR (CDCl,): § = 28.4 (s, CH-
Ad), 36.5 (s, CH»-Ad), 38.9 [d, 3Jcp = 9.5 Hz, ipso-C, Ad), 40.9 (s,
CH,-Ad), 72.5 [d, 'Jcp = 72.0 Hz, CH], 129.0 [d, 3Jcp = 11.8 Hz,
m-Ph], 131.2 [d, #Jcp = 2.5 Hz, p-Ph], 132.1 (s, ipso-C), 132.9 [d,
2Jcp = 13.4 Hz, 0-Ph] and 169.1 (s, CN) ppm.

Synthesis of ClAuPPh,CH,C(Ph)N(CsH3Me,-2,6):
CIAuPPh,CH,C(Ph)N(C4H3Me,-2,6) was  obtained  from
PPh,CH,C(Ph)N(C¢HsMe,-2,6)1  (0.18 g,  0.44 mmol) and

ClAu(SMe,) (0.11 g, 0.38 mmol) following the same procedure as
described for compound 6. The solvent was removed and the resi-
due recrystallised by layering a toluene solution of the title com-
pound  with  hexane  (approx. ratio 1:4)  yielding
ClAuPPh,CH,C(Ph)N(C4¢H;3Me»-2,6) as a colourless powder
(0.16 g, 66%). In solution the compound was found to exist as a
mixture of two tautomers and their respective Z/E isomers (the
ratio is given in bracket):

CIAuPPh,CH,C(Ph)=N(C¢H3Me,-2,6). Major Isomer (4): 'H
NMR (CDCls): 6 = 1.73 (s, 6 H, Me), 3.86 (d, 2Jy_p = 13.5Hz, 2
H, CH) ppm. 3'P NMR (CDCl5): § = 23.8 ppm. '3C NMR ([Dg]
acetone) (only CH, and CN are assigned): d = 39.9 [d, 'Jcp =
44 Hz, CH], 165.5 (s, CN) ppm. Minor Isomer (3): 'H NMR
(CDCl3): 6 = 1.88 (s, 6 H, Me), 4.24 (d, 2/ p = 9.9 Hz, 2 H, CH)
ppm. 3'P NMR (CDCl;): 6 = 25.8 ppm. '*C NMR ([DgJacetone):
not observed.

CIAuPPh,CH=C(Ph)N(H)(C4H3Me,-2,6). Major Isomer (8): 'H
NMR (CDCLy): 6 = 2.33 (s, 6 H, Me), 4.33 (d, /sy p = 5.3 Hz, 1 H,
CH), 5.64 (d, “Jy4 p = 3.3 Hz, 1 H, NH) ppm. 3'P NMR (CDCLy): 6
= 17.9 ppm. 3C NMR ([DgJacetone) (only CH and CN are as-
signed): 0 = 78.9 [d, ep = 87 Hz, CHJ, 163.3 (d, 2Jcp = 21 Hz,
CN) ppm. Minor Isomer (1.2): '"H NMR (CDCl;): 6 = 2.11 (s, 6 H,
Me), 4.74 (d, 2Jy_p = 9.9 Hz, 1 H, CH), 6.55 (br. s, 1 H, NH) ppm.
3P NMR (CDCl;): 6 = 8.8 ppm. *C NMR ([D¢Jacetone): not ob-
served. FAB-Mass spectrum: m/z (%) = 1243 (21) [(M™*), — C1], 639
(20) [M*], 604 (92) [M* — CI].
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Table 3. Crystal data and refinement for compounds 6b, 8a and 9.

Compound 6b 8a 9
Empirical formula C30H44AUC1NPSi2 ClgszAuCINP ClgHleps
M 738.23 515.75 316.38

T [K] 293(2) 293(2) 173(2) K
Wavelength [A] 0.71073 0.71073 0.71073
Crystal system monoclinic triclinic monoclinic
Space group P21/n P-1 Cc

a[A] 13.630(3) 8.841(6) 16.2497(19)
b [A] 16.154(3) 10.228(7) 9.8721(11)
c[A] 14.574(3) 11.224(7) 10.9257(12)
a[°] 90 68.113(11) 90

A1 93.783(4) 89.650(12) 98.304(2)

7 [°] 90 86.744(12) 90

VA3 3201.9(11) 940.1(11) 1734.3(3)
Z 4 2 4

D(caled.) [Mg/m?] 1.531 1.822 1.212

u [mm] 4.822 8.047 0.276
F(000) 1480 496 672
Crystal size [mm?] 0.36x0.09 x0.06 0.26x0.22x0.04 0.56x0.10%0.09
Reflections collected 18516 6345 5906

Independent reflections

Data/restraints/parameters

Goodness-of-fit on F2

Final R indices [I > 20(1)]

R indices (all data)

6273 [R(int.) = 0.074]
6273/0/332

0.932

R, = 0.037, wR, = 0.075

R, = 0.072, wR, = 0.084

4426 [R(int.) = 0.062]
4426/0/202

3054 [R(int.) = 0.024]
3054/2/193

Extinction coefficient

Largest diff. peak and hole [e*A 3] 1.25 and —0.80

1.032 0.971

R, = 0.040, wR, = 0.099 R, = 0.030, wR, =
0.064

R, = 0.052, wR, = 0.105 R, = 0.039, wR, =
0.067

- 0.04(6)

2.34 and ~1.24 0.26 and —0.16

Synthesis of Ph,P(S)CH,C(O)7Bu (9): Sulfur (0.026 g, 0.81 mmol)
was added to a magnetically stirred solution of Ph,P*P(Ph)N(H)
C(rBu)CH CI" (3a) (0.33 g, 0.77mmol) in CH,Cl, (15cm?) at
—30 °C. The colourless solution was stirred for 12 hours at room
temperature; the solvent was then removed in vacuo to yield a white
compound. Colourless crystals of 9 (0.15 g, 61%) were obtained
from propanol at —60 °C. Melting point: 210-212 °C. Mass spec-
trum: m/z = 316 (85) [M*], 259 (15) [M*™ — ¢Bu], 231 (65)
[Ph,PSCH,]. '"H NMR (DMSO): 6 = 1.07 (s, 9 H, /Bu), 4.32 [d,
2Jup = 13.1 Hz, 2 H, CH,], 7.47-7.52 (mm, 6 H, Ph) and 7.88-
7.95 (mm, 4 H, Ph) ppm. 3'P NMR (DMSO): 6 = 38.9 ppm. 3C
NMR (DMSO): 6 = 25.3 (s, CMes), 26.1 [d, 'Jcp = 76.1 Hz, CH,],
44.4 (s, CMe;), 128.1 [d, 2Jcp = 12.4 Hz, 0-Ph], 130.7 [d, 3Jcp =
10.6 Hz, m-Ph], 131.0 [d, “Jcp = 2.7 Hz, p-Ph], 133.3 [d, Jcp =
82.9 Hz, ipso-C] and 207.1 [d, 2Jcp = 6.7 Hz, C=0] ppm.

X-ray Crystallography: Intensity data were collected with a Bruker
SMART 1K CCD area detector diffractometer with graphite-mo-
nochromated Mo-K, radiation (50 kV, 30 mA). The collection
method involved w-scans of width 0.3°. Data reduction was carried
out using the program SAINT+,13% with face-indexed absorption
corrections (compounds 6b and 8a) and semi-empirical absorption
corrections (compound 9) carried out using the program
XPREPPY and SADABS, respectively. The crystal structures
were solved by direct methods using SHELXTL.?! Non-hydrogen
atoms were first refined isotropically followed by anisotropic refine-
ment by full-matrix least-squares calculation based on F? using
SHELXTL. Hydrogen atoms were positioned geometrically and al-
lowed to ride on their respective parent atoms. Further crystallo-
graphic data are summarised in Table 3. Diagrams and publication
material were generated using SHELXTL,?! PLATONE2 and
ORTEP3.533!

CCDC-244675 to -244677 contain the supplementary crystallo-
graphic data for this paper. These data can be obtained free of

1962 © 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

charge from The Cambridge Crystallographic Data Centre via
www.ccde.cam.ac.uk/data_request/cif.
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