

Mendeleev Communications

Synthesis of spiro-annelated pyroglutamides by the Ugi reaction

Vasiliy Yu. Stolyarenko*, Anatoliy A. Evdokimov and Vladimir I. Shishkin

Moscow State University of Radioelectronics, Engineering and Automation, 119454 Moscow, Russian Federation. Fax: +7 495 433 4688; e-mail: vstolyarenko@gmail.com

DOI: 10.1016/j.mencom.2013.07.020

Yield (%)

67

70

73

72

83

68

71

69

72

82

82

92

87

68

82

78

67

59

73

69

78

89

75

 \mathbb{R}^2

But

Bu^t

But

But

Bu^t

 Bu^t

But

But

Bu^t

Bu^t

But

2,6-Me₂C₆H₃

Me₂CH(CH₂)₂

4-FC₆H₄CH₂

4-FC₆H₄CH₂

2,6-Me₂C₆H₃

Me₂CH(CH₂)₂

3-MeC₆H₄CH₂

2,6-Me₂C₆H₃

2,6-Me₂C₆H₃

2,6-Me₂C₆H₃

4-ClC₆H₄

4-ClC₆H₄

Three component Ugi reaction between 1-(2-oxoethyl)cycloalkanecarboxylic acids, amines and isocyanides affords spirocyclic N-substituted 5-carbamoyl-2-pyrrolidones.

Compound

21a

21b

21c

21d

21e

22a

22h

22c

22d

22e

23a

23b

23c

24a

24b

24c

24d

25a

25b

25c

25d

25e

25f

Table 1 Yields of products 21-25.

MeO(CH₂)₂

MeO(CH₂)₂

cyclopropylmethyl

3,4-Me₂C₆H₃CH₂

3,4-Me₂C₆H₃CH₂

4-MeSC₆H₄CH₂

4-Cl-3-FC₆H₃CH₂

cyclopropylmethyl

(3-pyridyl)methyl

(3-pyridyl)methyl

4-Cl-3-MeC₆H₃

(benzo[d][1,3]dioxol-5-yl)methyl

 \mathbb{R}^1

Pri

Buⁱ

Buⁱ

3-ClC₆H₄

3,4-F₂C₆H₄

3,4-F₂C₆H₄

4-MeOC₆H₄

MeO(CH₂)₂

MeO(CH₂)₂

Spirocyclic fragment is not uncommon among low-molecular biologically active compounds. For example, minalrestat is used for the treatment of diabetes,¹ RS-86 is a neurological drug,² tiaspirone is an anti-migraine drug,³ buspirone is a drug for attention deficit – hyperactivity disorder treatment.⁴ γ -Lactam cycle is the fundamental structural moiety within a wide class of drugs called 'racetams' which exhibit neurophysiological activity. N-Substituted γ -lactams are known as nootropic drugs (piracetam,⁵ aniracetam⁶). Compounds of the same class with various substituents in the pyrrolidone cycle possess anticonvulsant and anti-epileptic properties (seletracetam⁷). Therefore, compounds based on spirocyclic N-substituted γ -lactams can be of a great interest in the sight of their potential biological activity.

The Ugi reaction⁸ of oxo acids with amines and isocyanides results in a lactam formation thus affording various classes of aromatic,^{9,10} heteroaromatic^{11–13} and aliphatic^{10,14–16} compounds.

However, application of oxo acids in the Ugi reaction, leading to spirocyclic products, have not been explored. Herein, we synthesized new γ -oxo acids **16–20** of 1-(2-oxoethyl)cycloalkanecarboxylic type and used them as bifunctional reactants in the Ugi reaction (Scheme 1). Reaction of these compounds under the Ugi conditions gave 5-carboxamide-substituted spirocyclic γ -lactams **21–25** which can be regarded as spiro-annelated pyroglutamic acid derivatives.

Scheme 1 Reagents and conditions: i, LDA, allyl bromide, THF, -60 °C; ii, NaIO₄, OsO₄ (cat.), 2,6-lutidine, dioxane, water, room temperature; iii, LiOH·H₂O, THF, water; iv, R¹NH₂, R²N⁺≡C⁻, EtOH, 60 °C.

-		-	

Ph

Ph

Synthesis of compounds **6–10** and **11–15** was described earlier.¹⁷ Ethyl esters **11–15** were hydrolyzed under mild conditions, using LiOH·H₂O in aqueous THF media. Due to their instability, oxo acids **16–20** were immediately introduced into the Ugi reaction with primary amines and isocyanides (12–20 h, TLC control).[†] Yields of the target products **21–25** were 59–92% (Table 1).

General procedure. Oxo ester 11-15 (10 mmol) was dissolved in THF (50 ml). Solution of LiOH·H₂O (15 mmol) in 20 ml of water was added dropwise at 5-10 °C. After stirring at room temperature (3-8 h, TLC control) the mixture was concentrated to approximately quarter of volume, diluted with 50 ml of water and washed with Et₂O (3×30 ml). The water layer was acidified with 5% H2SO4 to pH 5, the product was extracted with Et₂O (3×30 ml), dried over Na₂SO₄ and concentrated in vacuo. The crude oxo acids were unstable and were immediately processed further. Primary amine (0.55 mmol) and oxo acid (0.50 mmol) were dissolved in EtOH (3.0 ml). Isocyanide (0.55 mmol) was added and the reaction mixture was stirred at 60-65 °C for 12 h, then evaporated in vacuo. The residue was dissolved in EtOAc (3 ml) and treated with 5 ml of saturated aqueous NaHCO₃, the organic layer was separated, the aqueous one was extracted with EtOAc (2×2 ml). The combined organic extracts were washed with water (2×5 ml), dried over Na2SO4 and concentrated in vacuo. The residue was treated with 10% EtOAc in Et₂O (to cause crystallization of the product), or purified by chromatography (silica gel, EtOAc-hexane, $1: 20 \rightarrow 1: 10$). For characteristics of the products, see Online Supplementary Materials.

Figure 1 General view of the molecules 21e, 23b and 25c.

After crystallization of compounds **21e**, **23b** and **25c**^{\ddagger} from acetonitrile, the crystals of a suitable shape were obtained. The results of X-ray diffraction analysis proving the supposed structures of the target products are presented in Figure 1.[§]

^{*} N-(4-Chlorophenyl)-6-isobutyl-5-oxo-6-azaspiro[3.4]octane-7-carboxamide **21e**. Yield 83%, beige solid, mp 183–185 °C. ¹H NMR (400 MHz, CDCl₃) δ: 8.04 (s, 1H), 7.54 (d, 2H, J 8.8 Hz), 7.30 (d, 2H, J 8.8 Hz), 4.12 (dd, 1H, J 4.0 and 8.0 Hz), 3.62 (dd, 1H, J 13.6 and 8.8 Hz), 2.76 (dd, 1H, J 13.6 and 5.6 Hz), 2.57 (dd, 1H, J 13.6 and 8.8 Hz), 2.49 (m, 2H), 2.32 (dd, 1H, J 13.6 and 6.8 Hz), 2.00 (m, 5H), 0.92 (d, 3H, J 6.8 Hz), 0.83 (d, 3H, J 6.8 Hz). MS (ESI), *m/z*: 335.8 [M+H]⁺.

N-(tert-*Butyl*)-2-(*3*,*4*-*difluorophenyl*)-*1*-*oxo*-2-*azaspiro*[*4*.5]*decane*-*3*-*carboxamide* **23b**. Yield 92%, white solid, mp > 200 °C. ¹H NMR (400 MHz, CDCl₃) δ : 7.64 (m, 1H), 7.15 (m, 2H), 5.35 (s, 1H), 4.39 (dd, 1H, *J* 8.8 and 6.4 Hz), 2.52 (dd, 1H, *J* 13.6 and 8.8 Hz), 2.01 (dd, 1H, *J* 13.6 and 6.4 Hz), 1.70 (m, 6H), 1.49 (m, 1H), 1.36 (m, 3H), 1.22 (s, 9H). MS (ESI), *m/z*: 365.6 [M+H]⁺.

tert-*Butyl* 3-(N-tert-*butylcarbamoyl*)-*1-oxo-2-phenyl*-2,8-*diazaspiro*-[4.5]*decane-8-carboxylate* **25c**. Yield 62%, beige solid, mp > 200 °C. ¹H NMR (400 MHz, CDCl₃) δ: 7.50 (d, 2H, *J* 8.0 Hz), 7.40 (t, 2H, *J* 8.4 Hz), 7.22 (t, 1H, *J* 7.2 Hz), 5.38 (s, 1H), 4.53 (m, 1H), 4.04 (m, 2H), 3.03 (m, 2H), 2.52 (m, 1H), 2.13 (m, 1H), 2.04 (m, 1H), 1.89 (m, 1H), 1.65 (m, 2H), 1.58 (m, 1H), 1.48 (s, 9 H), 1.16 (s, 1H). MS (ESI), *m/z*: 430.8 [M+H]⁺. [§] All measurements were performed on a Bruker SMART APEX2 CCD diffractometer [λ (MoK α) = 0.71073 Å]. All calculations were performed using SHELXTL 5.1.¹⁸

Crystal data for **21e**. Crystals ($C_{18}H_{23}ClN_2O_2$, M = 334.83) are monoclinic, space group $P2_1/c$, at 100(2) K: a = 14.0887(9), b = 11.3599(7) and c = 10.9088(7) Å, $\beta = 101.4250(10)^\circ$, V = 1711.32(19) Å³, Z = 4, $d_{calc} = 1.300$ g cm⁻³, μ (MoK α) = 0.235 cm⁻¹, F(000) = 712. 14336 reflections were measured ($2\theta < 58^\circ$), from which 4558 are independent ($R_{int} = 0.0286$), $wR_2 = 0.1820$ and GOF = 1.056 for all independent reflections [$R_1 = 0.0642$ for observed reflections with $I > 2\sigma(I)$].

Crystal data for **23b.** Crystals ($C_{20}H_{26}F_2N_2O_2$, M = 364.43) are monoclinic, space group P_{21} , at 100(2) K: a = 9.4469(6), b = 17.1418(10) and c = 11.7537(7) Å, $\beta = 92.0030(10)^\circ$, V = 1902.2(2) Å³, Z = 4, $d_{calc} = 1.273$ g cm⁻³, μ (MoK α) = 0.095 cm⁻¹, F(000) = 776. 15009 reflections were measured ($2\theta < 52^\circ$), from which 3852 are independent ($R_{int} = 0.0365$), $wR_2 = 0.2233$ and GOF = 1.003 for all independent reflections [$R_1 = 0.0755$ for observed reflections with $I > 2\sigma(I)$].

Crystal data for **25c.** Crystals ($C_{24}H_{35}N_3O_4$, M = 429.55) are monoclinic, space group $P2_1/c$, at 100(2) K: a = 19.8264(11), b = 11.4163(7) and c = 10.5796(6) Å, $\beta = 97.9730(10)^\circ$, V = 2371.5(2) Å³, Z = 4, $d_{calc} = 1.203$ g cm⁻³, μ (MoK α) = 0.082 cm⁻¹, F(000) = 928. 19023 reflections were measured ($2\theta < 58^\circ$), from which 6288 are independent ($R_{int} = 0.0281$), $wR_2 = 0.1101$ and GOF = 1.015 for all independent reflections [$R_1 = 0.0408$ for observed reflections with $I > 2\sigma(I)$].

CCDC 918243–918245 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data_request/cif. For details, see 'Notice to Authors', *Mendeleev Commun.*, Issue 1, 2013.

Thus, three component Ugi reaction employing the γ -oxoacids, amines and isocyanides led to a series of previously undescribed spirocyclic N-substituted γ -lactams **21–25** in good yields.

Online Supplementary Materials

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.mencom.2013.07.020.

References

- 1 M. S. Malamas and T. C. Hohman, Drugs Fut., 1994, 19, 442.
- 2 Y. Ishihara, H. Yukimasa, H. Miyamoto and G. Goto, *Chem. Pharm. Bull.*, 1992, **40**, 1177.
- 3 M. S. Eison, D. P. Taylor, J. S. New and J. L. Minielli, *Drugs Fut.*, 1985, 10, 731.
- 4 Y.-H. Wu, J. W. Rayburn, L. E. Allen, H. C. Ferguson and J. W. Kissel, J. Med. Chem., 1972, 15, 477.
- 5 S. J. Dimond and E. M. Brouwers, Psychopharmacology, 1976, 49, 307.
- 6 I. Ito, S. Tanabe, A. Kohda and H. Sugiyama, J. Physiol., 1990, 424, 533.
- 7 G. Martella, P. Bonsi, G. Sciamanna, P. Platania, G. Madeo, A. Tassone, D. Cuomo and A. Pisani, *Epilepsia*, 2009, **50**, 702.
- 8 A. V. Ivachtchenko, Ya. A. Ivanenkov, V. M. Kisyl, M. Yu. Krasavin and A. P. Ilyin, *Russ. Chem. Rev.*, 2010, **79**, 787 (*Usp. Khim.*, 2010, **79**, 861).
- 9 C. Hanusch-Kompa and I. Ugi, Tetrahedron Lett., 1998, 39, 2725.
- 10 Z. Xu, M. Ayaz, A. A. Capelli and C. Hulme, ACS Comb. Sci., 2012, 14, 460.
- A. P. Ilyn, J. A. Kuzovkova, V. V. Potapov, A. M. Shkirando, D. I. Kovrigin, S. E. Tkachenko and A. V. Ivachtchenko, *Tetrahedron Lett.*, 2006, 46, 881.
- 12 M. Ghandi, N. Zarezadeh and A. Taheri, *Tetrahedron Lett.*, 2012, 53, 3353.
- 13 M. Krasavin and M. M. Nikulnikov, Mendeleev Commun., 2012, 22, 41.
- 14 S. Marcaccini, D. Miguel, T. Torroba and M. García-Valverde, J. Org. Chem., 2003, 68, 3315.
- 15 A. P. Ilyin, A. S. Trifilenkov, I. D. Kurashvili, M. Y. Krasavin and A. V. Ivachtchenko, J. Comb. Chem., 2005, 7, 360.
- 16 M. Krasavin, V. Parchinsky, A. Shumsky, I. Konstantinov and A. Vantskul, *Tetrahedron Lett.*, 2010, **51**, 1367.
- 17 V. Yu. Stolyarenko, A. A. Evdokimov and V. I. Shishkin, *Mendeleev Commun.*, 2013, 23, 108.
- 18 G. M. Sheldrick, Acta Crystallogr., Sect. A, 2008, A64, 112.

Received: 7th March 2013; Com. 13/4081