A SPIROSTANOL GLYCOSIDE FROM AERIAL PARTS OF DIOSCOREA TENUIPES* SHIU KIYOSAWA, KATSUMI GOTO, KENJI SAKAMOTO and TOSHIO KAWASAKI†‡ Kyoto College of Pharmacy, Nakauchi-cho Misasagi Yamashina-ku, 607 Kyoto, Japan; †Faculty of Pharmaceutical Sciences, Kyushu University, Maedashi 3-1-1, Higashi-ku, 812 Fukuoka, Japan (Received 9 February 1982) Key Word Index—Dioscorea tenuipes; Dioscoreaceae; structure determination; ¹H NMR; spirostan-tetrol glycoside; 1β-hydroxydiotigenin 1-O-arabinoside. Abstract—A new spirostanol glycoside isolated from aerial parts of Dioscorea tenuipes was characterized as 5β ,25-L-spirostan- 1β ,2 β ,3 α ,4 β -tetrol (1β -hydroxydiotigenin or 4β -hydroxyneotokorogenin) 1-O- α -L-arabinopyranoside on the basis of chemical and 1 H NMR spectral data. ## INTRODUCTION From the fresh aerial parts of Dioscorea tenuipes Franch et Sav. collected during September and October at the Ozeki-path in the suburbs of Otsu City, 17 new steroid compounds have so far been isolated together with several known substances such as diotigenin (1), neotokorogenin (2), tenuipegenin \S taraxerol and phytosterols [2]. Sixteen of the new compounds were characterized as, for example, a glycoside of 2, acylates of 1, and the corresponding furostanol-, 20,22-secofurostanol- and pregnane-glycosides [2-10]. This paper describes the structure determination of the seventeenth compound, compound S_2 (3)[2]. ### RESULTS AND DISCUSSION The IR spectrum of compound S_2 (3) showed the characteristic absorptions of the 25-L-spirostane nucleus[11–13] whilst the ¹H NMR spectrum of peracetate (4) exhibited six acetoxy signals and a one-proton doublet assignable to an anomeric sugar proton. Compound 3 was hydrolysed with acid to give L-arabinose and an aglycone $C_{27}H_{44}O_6$ (5). Therefore, 3 was a monoarabinoside of 5 which was different from its congener tenuipegenin, a 25-L-spirostantetrol[1, 2], in mp and $[\alpha]_D$, and was regarded as its isomer. Permethylation of 3 followed by methanolysis of the resulting hexamethylate (6) provided methyl 2,3,4tri - O - methyl - L - arabinopyranoside and a trimethyl ether (7) of 5. Compound 7 gave a monoacetate (8) and a monoketone (9) on acetylation and oxidation, respectively. The 'H NMR spectral data of 7-9 were compared with those [14] of the trimethyl ether (10) and 2,3-dimethyl ether (11) of tokorogenin (12), the 1-acetate (13) and 1-dehydro compound (14) of 11, and the trimethyl ether (15) of 1 (Table 1). A three-proton singlet ascribable to H₃-19 of 7 was shifted upfield by δ 0.15 from that of 10 and showed the same chemical shift as that of 11. Furthermore, the δ -value of H₃-19 of 8 was practically identical with those of 13 and 15. These data indicated the presence of a 1β (axial)-hydroxy group and cis juncture of the A/B rings in the spirostane nucleus of 7[15]. The proton geminal to the 1β hydroxy and 1β -acetoxy groups, respectively, in 7 and 8 appeared as a doublet (J = 2 Hz) as in the cases of 11 and 13, and the one-proton doublet (J = 10 Hz)at δ 3.99 in 9 had the same δ and J values as the H-2 of 14. Therefore, 9 had an α (axial)-H, which was coupled with the 3β (axial)-H, and hence the β (equatorial)-methoxy group at C-2. Two double doublets, both showing J = 9 and 10 Hz, at δ 3.14 and 3.76 and a multiplet at δ 1.39 in the spectrum of 9 were assigned to the protons geminal to the methoxy groups at C-3 and 4 and the angular proton at C-5. By means of the double resonance technique, they were proved, respectively, to be due to 3β (axial)-, 4α (axial)- and 5β (axial)-protons. Thus, 9 was defined as $2\beta,3\alpha,4\beta$ - trimethoxy - $5\beta,25$ - L - spirostan - 1 - one, 7 as the corresponding 1β -hydroxy compound, and 6 was considered to have a 2,3,4 - tri - O - methyl - arabinopyranose moiety combined with the 1-hydroxy group of 7. The J values of anomeric proton signals on the ^{1}H NMR spectra of 4 and 6 were in good agreement with those of tokoronin peracetate [14] and permethylate [14], ^{*}Part 6 in the series "Constituents of Aerial Parts of Dioscorea tenuipes". For Part 5 see ref. [8]. [‡] To whom correspondence should be addressed. [§]This compound was isolated from the aerial parts of D. tenuipes complex in the Rokko population. It is believed to be a 25 - L - spirostan - tetrol, but the structure has not been established [1]. I $R_1=R_3=H$, $R_2=OH$ 2 R₁=OH, R₂=R₃=H 3 $$R_1 = 0$$ OH $R_2 = 0$ $R_3 = H$ MeO $$\frac{R_1}{4}$$ $\frac{S}{4}$ respectively, indicating α -linkage of the L-arabinopyranose. Consequently, 3 is 5β ,25-L-spirostan- 1β ,2 β ,3 α ,4 β -tetrol 1-O- α -L-arabinopyranoside. Compound 3 is a new natural product and the aglycone 5 might be called 4β -hydroxyneotokorogenin or 1β -hydroxydiotigenin, an isomer of compound T_1 (24α -hydroxyisodiotigenin)[10] and also probably of tenuipegenin[1]. It is noted that 1 occurred in the free state and as its acylates but not glycoside, while 2 and 5, both bearing a 1β -hydroxy group, were present as 1-O-arabinosides and not acylates. #### EXPERIMENTAL All mps were uncorr. Optical rotations: 20-28° using a 1 dm cell; ¹H NMR: 60 and 100 MHz, CDCl₃, TMS as int. standard. Compound S_2 (3). Collected by repeating the procedure shown in Chart 1-B of Part 1[2] of this series. Colourless needles (MeOH), mp 248–249° (dec.), $[\alpha]_D$ – 12.7° (MeOH; c 0.75). IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3360 (OH), 987, 915 > 895, 852 (25-L-spirostane). (Found: C, 62.24; H, 9.08. $C_{32}H_{52}O_{10} \cdot H_2O$ requires: C, 62.52; H, 8.85%.) Hexa-acetate (4) of 3. Prepared by acetylation of 3 (110 mg) with Ac₂O-pyridine at room temp. overnight. Colourless plates (129 mg) (MeOH), mp 146-148°, $[\alpha]_D$ – 1.3° (CHCl₃; c 0.4). IR $\nu_{\rm max}^{\rm KBr}$ cm o OH, 1740 (OAc), 987, 916 > 896, 852 (25-L-spirostane); ¹H NMR: δ 0.74 (3H, s, H-18), 0.97 (3H, d, J=6 Hz, H-27), 1.18 (3H, s, H-19), 1.20 (3H, d, J=6 Hz, H-21), 1.95-2.18 (18H, OAc ×6), 4.57 (1H, d, J=6 Hz, H-1 of ara). (Found: C, 62.21; H, 7.60. C₄₄H₆₄O₁₆ requires: C, 62.24; H, 7.60%.) Hydrolysis of 3 with acid. Compound 3 (350 mg) in 2 N HCl-50% MeOH (15 ml) was refluxed for 3 hr. The reaction mixture was extracted with n-BuOH. The organic layer was evaporated, the residue (120 mg) was passed through a Si gel column (eluent, CHCl₃-MeOH-H₂O, 9:1:0.1) and crystallized from MeOH to yield an aglycone (5) as colourless needles (87 mg), mp 308-310°, $[\alpha]_D - 28.0^\circ$ (MeOH; c 0.5). IR $\nu_{\rm max}^{\rm KBr}$ cm⁻¹: 3380 (OH), 985, 923 > 897, 850 (25-L-spirostane). (Found: C, 69.57; H, 9.84. C₂₉H₄₄O₆ requires: C, 69.80; H, 9.55%.) The aq. layer was evaporated in vacuo to give a syrup, $[\alpha]_D + 106.5^\circ$ (H₂O; c 1.2), R_f on Si gel TLC (solvent, CHCl₃-MeOH-H₂O, 8:2:0.2): 0.13 ($[\alpha]_D$ and R_f identical with those of L-arabinose). Permethylation of 3. Compound 3 (370 mg) was methylated by the Hakomori method[16] and the product was Table 1. ¹H NMR data for compounds 7-11 and 13-15 | | | | | • | | | | | |----|--------------------|-------------------------|--|--|--|---------|----------------------|------| | | H ₃ -19 | H-1 | H-2 | H-3 | H-4 | H-5 | OMe | OAc | | 7 | 1.14 | 3.88(d) ($J = 2 Hz$) | | 3.39(dd)
($J = 10.5, 9 \text{ Hz}$) | | 10000 | 3.45
3.54 | | | 8 | 0.96 | 5.43(d) $(J = 2 Hz)$ | _ | _ | _ | _ | 3.61
3.37
3.59 | 2.08 | | 9 | 1.16 | _ | 3.99(d) ($J = 10 Hz$) | 3.14(dd)
($J = 9, 10 \text{ Hz}$) | 3.76(dd)
($J = 9, 10 \text{ Hz}$) | 1.39(m) | 3.61
3.48
3.64 | | | 10 | 1.29 | | | _ | | | 3.64 | | | 1 | 1.14 | 3.91(d) $(J = 2 Hz)$ | 3.22(q)
($J = 2.5, 9 \text{ Hz}$) | | | | 3.44 | | | 13 | 0.95 | 5.45(d) $(J = 1 Hz)$ | (J = 2J, 7112)
— | | | | 3.44 | 2.08 | | 14 | 1.14 | | 4.00(d) $(J = 10 Hz)$ | | | _ | 3.44 | _ | | 15 | 0.97 | | 3.10(m) | 3.37(t) $(J = 10 Hz)$ | _ | - | 3.47
3.42
3.58 | | | | | | | | | | 3.63 | | chromatographed on a Si gel column (eluent, *n*-hexane-EtOAc, 1:1) to provide 6 as a glassy mass (403 mg). IR $\nu_{\rm max}^{\rm KBr}$ cm⁻¹: no OH, 986, 919 > 892, 850 (25-L-spirostane); ¹H NMR: δ 0.77 (3H, s, H-18), 0.99 (3H, d, J=6 Hz, H-27), 1.14 (3H, s, H-19), 1.20 (3H, d, J=6 Hz, H-21), 3.42-3.62 (18H, MeO ×6), 4.88 (1H, d, J=2 Hz, H-1 of ara). Methanolysis of 6. Compound 6 (260 mg) was refluxed with 8% HCl in MeOH for 7 hr. The MeOH was removed in vacuo, H_2O added and the mixture was extracted with Et₂O. The extract was evaporated to dryness and the residue (235 mg) was chromatographed on Si gel (eluent, n-hexane-EtOAc, 1:1) to give a syrup, which was identified as methyl 2,3,4 - tri - O - methyl - α - L - arabinopyranoside (GC run in parallel with an authentic sample), and the methylated aglycone (7) as a white powder (MeOH) (140 mg). ¹H NMR: Table 1. Acetate (8) of 7. Compound 7 (90 mg) was acetylated and the product was crystallized from *n*-hexane to give 8 as colourless needles (61 mg), mp 192–194°, $[\alpha]_D - 20.9^\circ$ (CHCl₃; c 0.79). IR $\nu_{\rm max}^{\rm KBr}$ cm⁻¹: 1748 (OAc), 987, 918 > 892, 850 (25-L-spirostane). ¹H NMR: Table 1. (Found: C, 70.34; H, 9.79. C₃₂H₅₂O₇ requires: C, 70.04; H, 9.55%.) Dehydro-compound (9) of 7. Compound 7 (150 mg) in Me₂CO (10 ml) was treated with Jones' reagent (1 ml) at room temp. for 5 min. The mixture was diluted with H₂O and extracted with Et₂O. The extract was evaporated to dryness and the residue was crystallized from MeOH to give 9 as colourless prisms (128 mg), mp 204–206°, $[\alpha]_D$ – 33.6° (CHCl₃; c 0.61). IR $\nu_{\rm max}^{\rm KBr}$ cm⁻¹: 1713 (carbonyl), 983, 923 > 900, 850 (25-L-spirostane). ¹H NMR: Table 1. (Found: C, 71.27; H, 9.63. C₃₀H₄₈O₆ requires: C, 71.39; H, 9.59%.) Trimethyl ether (15) of 1. Compound 1[2] (112 mg) was methylated by the Hakomori method. Usual work-up and crystallization from MeOH of the product afforded 15 as colourless needles (75 mg), mp 183–185°, $[\alpha]_D = 17.6^\circ$ (CHCl₃; c 1.28). ¹H NMR: Table 1. Acknowledgements—We thank Mr. Y. Fujiwara, Kyoto College of Pharmacy; Mr. S. Tanaka, Faculty of Pharmaceutical Sciences, Kyushu University, for the ¹H NMR data; and the members of the Central Analytical Department, Kyoto University, for elemental analyses. #### REFERENCES - Akahori, A., Yasuda, F. and Okanishi, T. (1968) Chem. Pharm. Bull. 16, 498. - Kiyosawa, S. and Kawasaki, T. (1975) Yakugaku Zasshi 95, 94. - Kiyosawa, S., Hutoh, S., Nohara, T., Miyahara, K. and Kawasaki, T. (1971) 91st Ann. Meet. Pharm. Soc. Jpn, Fukuoka, Abstracts of Papers, p. 762. - Kiyosawa, S. and Kawasaki, T. (1975) Yakugaku Zasshi 95, 102. - Kiyosawa, S., Hutoh, S., Nohara, T., Miyahara, K. and Kawasaki, T. (1974) 94th Ann. Meet. Pharm. Soc. Jpn, Sendai, Abstracts of Papers, Part II, p. 170. - Kiyosawa, S. and Kawasaki, T. (1975) Yakugaku Zasshi 95, 424. - Kiyosawa, S. and Kawasaki, T. (1977) Chem. Pharm. Bull. 25, 163. - Kiyosawa, S. and Kawasaki, T. (1977) Tetrahedron Letters 4599. - Kiyosawa, S., Owashi, R., Goto, K. and Kawasaki, T. (1977) 97th Ann. Meet. Pharm. Soc. Jpn, Tokyo, Abstracts of Papers, Part II, p. 216. - Kiyosawa, S., Goto, K. and Kawasaki, T. (1979) 99th Ann. Meet. Pharm. Soc. Jpn, Sapporo, Abstracts of Papers, p. 178. - Wall, M. E., Eddy, C. R., McClennan, M. L. and Klumpp, M. E. (1952) Analyt. Chem. 24, 1337. - Rothman, E. S., Wall, M. E. and Eddy, C. R. (1952) J. Am. Chem. Soc. 74, 4013. - Eddy, C. R., Wall, M. E. and Scott, M. K. (1953) Analyt. Chem. 25, 266. - Miyahara, K. and Kawasaki, T. (1969) Chem. Pharm. Bull. 17, 1369. - Tori, K. and Aono, K. (1964) Annu. Rep. Shionogi Res. Lab. 14, 136. - 16. Hakomori, S. (1964) J. Biochem. 55, 205.