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SYNTHESIS OF

IMIDAZOYLTHIOCARBONYL

INTERMEDIATES FOR THE RADICAL

DEOXYGENATION OF HINDERED

SECONDARY ALCOHOLS

Daniel Oves, Mónica Dı́az, Susana Fernández,

Miguel Ferrero, and Vicente Gotor*

Departamento de Quı́mica Orgánica e Inorgánica, Facultad de
Quı́mica, Universidad de Oviedo, 33071 – Oviedo, Spain

ABSTRACT

A practical and efficient synthesis of imidazoylthiocarbonyl
derivatives of highly hindered alcohols was achieved using
1,10-thiocarbonyldiimidazole in very concentrated mixtures
of reagents. More diluted conditions give longer reaction
times and the recovery of unreacted starting alcohol.

Radical deoxygenation of alcohols is an important process in organic
synthesis.1 Barton and McCombie2 have shown that secondary alcohols can
be deoxygenated by a radical chain reduction of suitable thiocarbonyl deri-
vatives using tributyltin hydride and 2,20-azobis(2-methylpropionitrile)
(AIBN) as initiator. Under typical deoxygenation conditions S-methyldithio-
carbonyl,3 thiobenzoyl,4 imidazole-1-thiocarbonyl,5 phenoxythiocarbonyl6

or S-phenyldithiocarbonyl7 derivatives, among others, afford the deoxy
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compound in high yield. The choice of the thiocarbonyl compound is deter-
mined more by structural features present in the alcohol than by the actual
reductive step.

Quinic acid, shikimic acid, and their derivatives are useful precursors in
the synthesis of important natural compounds. The chiral centres present in
their structures and the possible introduction of a variety of new functions
from the selective manipulation of the functional groups on the cyclohexane
ring makes these starting materials very attractive from the point of view of
organic synthesis.

In our ongoing research into the synthesis of A-ring precursors of
vitamin D3 analogues

8 it was necessary to obtain the corresponding thio-
imidazolide derivative of various intermediates.9 Conventional procedures
reported in the literature5,10 involve the reaction of an alcohol with an excess
of 1,10-thiocarbonyldiimidazole (TCDI) in methylene chloride, 1,2-dichloro-
ethane or tetrahydrofuran at room temperature or under reflux. However,
low isolated yields of thioimidazolide compounds were obtained when these
conditions were employed in sterically hindered substrates, in which the
reactive hydroxyl function is surrounded by two O-tert-butyldimethylsilyl
groups. This bulky protecting group is very commonly used to regioselec-
tively protect one hydroxyl group among others and to ensure the stability
of the silyl ether, which is linked to the steric bulk of the substituents on the
silicon atom, for the successive transformations on the molecule.

In view of our unsuccessful experiments, we were encouraged to
investigate the appropriate conditions to perform the synthesis of thio-
midazolides efficiently.

DeLuca and co-workers have reported10a the synthesis of compound 2

with 91% yield by reaction of 3,5-disilylprotected quinate 1 with 1.6 equi-
valents of TCDI inmethylene chloride at room temperature in 60h (Scheme 1).

When the same conditions were applied by us, GC analysis showed
thiomidazolide 2 as the minor compound after 96 h at room temperature,

Scheme 1.
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together with large amounts of starting material (entry 1, Table 1). With
the aim of increasing the degree of conversion, a larger excess of
TCDI (2 equiv.) was used (entry 2, Table 1). Thus, after five days, 98%
of conversion was achieved, although unfortunately a mixture of 4-TCI
derivative 2 and the corresponding 1,4-dithiocarbonyl compound, were
obtained in a ratio 4.5:1. To avoid the formation of the latter, we
added 1.6 equiv. at the beginning of the process, and an additional
equiv. of TCDI after 3 days (the point at which the reaction did
not evolve further), stirring being maintained for another two days (entry
3, Table 1). In these conditions, compound 2 was isolated with 83%
yield after purification by flash chromatography column, and only traces of
the 1,4-dithiocarbonyl derivative were obtained. The limitations, neverthe-
less, were the large excess of TCDI and the long reaction time needed.

After carrying out several experiments, we realized that both TCDI
batch and concentration could play a role in this process. We decided to
perform the experiments using different batches (mp and 1H-NMR spectra
of all of them are identical; see footnote a in Table 1) of TCDI, and the
minimum amount of solvent needed to dissolve the reagents. Moreover, we
carried out the reactions with only a slight excess of TCDI (1.2 equiv.) in
order not to waste this reagent. The importance of the concentration in the
course of the reaction was observed from entries 1 and 4 in Table 1. Even with
the smaller amount of TCDI, a 52% conversion was obtained in only two
days when just a few drops were used to dissolve the reagents, whilst in more

Table 1. Reaction Conditions to Prepare Thioimidazolide Derivative 2 from 1

Entry 1 (mmol)
TCDIa

(equiv.)
CH2Cl2
(ml) t (h)

conv (%)
[2, yieldb (%)]

1 0.23 1.6 (A) 1.3 96 16c

2 0.23 2.0 (C) 1.3 120 >98c [55]
3 4.60 1.6þ 1d (C) 20.0 120 >99c [83]

4 0.23 1.2 (A) dropse 48 52c

5 0.23 1.2 (B) dropse 32 78c

6 0.23 1.2 (C) dropse 24 83f

7 0.23 1.2 (D) dropse 24 100f [76]
8 5.70 1.2 (C) 6.0 8 100f [89]

aDifferent batches: A and B were approximately five months old, C had been open

approx, three weeks, and D opened just before starting the reactions. bThe numbers
in square brackets represents isolated yields of 2 for processes that are close to 100%
conversion. cCalculated by GC. dAfter 3 days, an extra equivalent was added.
eMinimum amount of solvent required to dissolve the reagents. fCalculated by NMR.

D
ow

nl
oa

de
d 

by
 [

N
ew

 Y
or

k 
U

ni
ve

rs
ity

] 
at

 0
2:

10
 2

3 
M

ay
 2

01
5 



ORDER                        REPRINTS

2338 OVES ET AL.

dilute conditions four days were necessary to obtain a 16% of conversion.
If different batches of TCDI were used, shorter reaction times were needed to
achieve compound 2 with the newer reagent (entries 4–7, Table 1). Thus, old
batches of TCDI which were usually rejected because reactions did not evolve
more than 15% in standard conditions, in concentrated conditions, now gave
the desired product although in longer reaction times.

In order to scale-up the process, the reaction was carried out with
5.70mmol of starting material and 1.2 equiv. of TCDI in 6ml of methylene
chloride (entry 8, Table 1). Thus, derivative 2 was obtained in 8 h with 89%
isolated yield after purification by silica gel column.

Similar results were obtained when the above conditions were applied
to synthon 3 (Scheme 2).

Thus, entries 1 vs. 2 and 3 vs. 4 in Table 2 show the concentration
dependence in the formation of the corresponding imidazoylthiocarbonyl 4.
In highly concentrated conditions (entries 2 and 4, Table 2) total conver-
sions were obtained in short periods of time (11 and 6 h respectively) in
contrast to entries 1 and 3. The isolated yields were excellent (90–98%).

Scheme 2.

Table 2. Reaction Conditions to Prepare Thioimidazolide Derivative 4 from 3

Entry 3 (mmol)
TCDIa

(equiv.)
CH2Cl2
(ml) t (h)

convb (%)
[4, yieldc (%)]

1 0.24 1.2 (C) 1.3 80 80
2 0.24 1.2 (C) dropsd 11 >98 [90]
3 0.24 1.2 (D) 1.3 52 90

4 0.24 1.2 (D) dropsd 6 100 [98]

aDifferent batches: C had been open approx. three weeks, and D opened just before
starting the reactions. bConversion percentage of 3 calculated by NMR. cThe num-

bers in square brackets represents isolated yields of 4 for processes close to 100%
conversion. dMinimum amount of solvent required to dissolve the reagents.
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These concentrated conditions were essential in the case of the strongly
sterically hindered substrate 5 (Scheme 3), which shows an inversion in the
5’-OTBDMS group with respect to compound 3. This characteristic means
that the substituents in positions 3, 4, and 5 are very close together in space,
and consequently the steric effects are increased substantially. Thus, the reac-
tion of 5 with TCDI in presence of N,N-dimethylaminopyridine as
catalyst and methylene chloride as solvent takes place with less than 10%
conversion after several days at room temperature followed by solvent reflux
(entry 1, Table 3). The change from methylene chloride to THF did not
improve the amount of 6 obtained.

On the other hand, when the smallest amount of solvent necessary
to dissolve the reagents and substrate 5 was used (entry 3, Table 3), the
thioimidazolide derivative 6 was obtained 86% yield in just 6 h at room
temperature.

In this paper, the concentration dependence of the preparation of
thiomidazolide derivatives from highly sterically hindered alcohols has
been demonstrated. The use of very concentrated solutions allows mild
reaction conditions and short reaction times, in addition to saving reagents

Table 3. Reaction Conditions to Prepare Thioimidazolide Derivative 6 from 5

Entry 5 (mmol)

TCDIa

(equiv.)

Solvent

(ml) t (h)

convb (%)

[6, yieldc (%)]

1 0.10 2.0 CH2Cl2 (3.0) 96d <10

2 0.12 2.5 THF (5.0) 96d <5
3 1.00 2.0 CH2Cl2 (1.0) 6 100 [86]

aBatch D (opened just before starting the reactions) was used with 0.5 equiv. DMAP

as catalyst. bConversion percentage of 5 calculated by GC. cThe numbers in square
brackets represent isolated yields of 6 for processes close to 100% conversion. dThe
reaction was carried out at rt for 3 d and 1 d under reflux.

Scheme 3.
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and solvent, and thus making the reaction more environmentally friendly.
Moreover, old batches of TCDI can be used with these reaction conditions.
This is an improvement for the radical deoxygenation through thio-
midazolide intermediates of highly hindered alcohols that possess sensitive
functional groups, to the conditions used to introduce more reactive
thiocarbonyl compounds. These alcohols are present not only in derivatives
described in this paper, but in structures en route to other complex molecules
which possess very congested hydroxyl groups.

EXPERIMENTAL

General

Melting points were taken on samples in open capillary tubes using a
Gallenkamp apparatus and are uncorrected. IR spectra were recorded on a
Mattson 3000 Infrared Fourier Transform spectrophotometer using NaCl
plates. Flash chromatography was performed using Merck silica gel 60
(230–400mesh). 1H-, 13C-NMR, and DEPT were obtained using a Bruker
AC-200 (1H, 200.13MHzand 13C, 50.3MHz) spectrometer for routine experi-
ments. Bruker AMX-400 spectrometer operating at 400.13 and 100.61MHz
for 1H and 13C, respectively was used for the acquisition of 1H-1H homo-
nuclear and 1H-13C heteronuclear correlation experiments. The chemical
shifts are given in delta (d) values and the coupling constants (J) in Hertz
(Hz). Mass spectra (HRMS or MS) were recorded on a Finnigan MAT 95
spectrometer set at 70 eV EI (electron impact). The solvents were dried by
standard methods described in the literature. Gas chromatography was
carried out with flame ionization detection (FID) and a 25m HP-1 capillary
column coated with methylsilicone gum using nitrogen as carrier gas. The
method used was: injector and detector temperatures set at 300�C, column
initial temperature 250�C (3min), rate 18�C/min, column final temperature
280�C (10min). With this method, compound 1 appeared at 4.8min; 2 at
12.0min; 5 at 5.7min; and 6 at 12.6min. Hydroxyquinate 1 was synthesised
as has been reported previously.10a Shikimate 3 was first reported by
Desmaele and Tanier.11 3,5-Disilyl protected compound 5 was obtained
from selective bis-protection of (�)-methyl 5-epi-shikimate.8c

General Procedure

1,10-Thiocarbonyldiimidazole was added to a solution of the alcohol in
methylene chloride or THF under nitrogen atmosphere (see details in Tables
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1, 2, and 3). The reaction mixture was stirred and monitored by GC. When
the reaction did not evolve further, the solvent was evaporated under
reduced pressure and the crude was purified by flash chromatography
using as eluent 40% EtOAc/hexane for compound 2, 15% EtOAc/hexane
for 4, and 10% EtOAc/hexane for 6. Yields are indicated in the tables.

Methyl (1sn,3R,4sn,5R)-3,5-di[(tert-Butyldimethylsilyl)oxy]-1-hydroxy-
4-[(imidazoylthioncarbonyl)oxy]cyclohexanecarboxylate (2). This compound
was previously reported.10a IR (NaCl): v 3250, 2953, 2923, 2887, 2857, 1742,
and 1532 cm�1; 1H NMR (CDCl3, 200MHz): d �0.12 (s, 3H, MeSi), 0.00
(s, 3H, MeSi), 0.06 (s, 3H, MeSi), 0.08 (s, 3H, MeSi), 0.76 (s, 9H, Me3Csi),
0.89 (s, 9H, Me3CSi), 1.99 (dd, 1H, 2JHH 13.3, 3JHH 10.1Hz, H-6a), 2.07
(ddd, 1H, 2JHH 14.5, 3JHH 4.3, 4JHH 2.7Hz, H-2e), 2.27 (dd, 1H, 2JHH
14.6, 3JHH 2.7Hz, H-2a), 3.31 (ddd, 1H, 2JHH 13.5, 3JHH 5.0, 4JHH
2.7Hz, H-6e), 3.79 (s, 3H, OMe), 4.56 (ddd, 1H, 3JHH 10.1, 9.0, 4.9Hz,
H-5), 4.64 (ddd, 1H, 3JHH 4.4, 2.8, 2.8Hz, H-3), 5.50 (dd, 1H, 3JHH 9.0,
2.7Hz, H-4), 7.05 (m, 1H, H-im), 7.62 (m, 1H, H-im), and 8.37 (m, 1H,
H-im); 13C NMR (CDCl3, 50.3MHz): d �6.0 (MeSi), �5.3 (MeSi), �5.1
(MeSi), �4.5 (MeSi), 17.3 (Me3CSi), 17.4 (Me3CSi), 25.1 (Me3CSi), 25.3
(Me3CSi), 37.6, 42.6 (C-2 and C-6), 52.4 (OMe), 65.1, 68.0 (C-3 and C-5),
74.8 (C-1), 87.5 (C-4), 117.4 (im), 130.5 (im), 136.8 (im), 173.1 (C¼O), and
183.5 (C¼ S); MS (70 eV, m/z): 487 (Mþ-tBu, 10%), 427 (9), 359 (21), 267
(47), 227 (40), 185 (54), and 73 (100); HRMS: Calcd for C20H35N2O6SSi2:
487.1754. Found: 487.1754.

Methyl (3R,4S,5R)-3,5-di[(tert-Butyldimethylsilyl)oxy]-4-[(imidazoyl-

thiocarbonyl)oxy]cyclohex-1-enecarboxylate (4). IR (NaCl): v 3135, 2940,
1722, 1656, 1531, and 1470 cm�1; 1H NMR (CDCl3, 200MHz): d �0.01
(s, 3H, MeSi), 0.08 (s, 3H, MeSi), 0.10 (s, 6H, MeSi), 0.81 (s, 9H,
Me3CSi), 0.83 (s, 9H, Me3CSi), 2.29–2.68 (m, 2H, H-6), 3.76 (s, 3H, OMe),
4.44 (m, 1H, H-5), 4.30 (br s, 1H, H-3), 5.62 (m, 1H, H-4), 6.77 (m, 1H,
H-2), 6.99 (br s, 1H, H-im), 7.54 (br s, 1H, H-im), and 8.36 (br s, 1H,
H-im); 13C-NMR (CDCl3, 50.3MHz): d �5.2 (MeSi), �5.0 (MeSi), �4.94
(MeSi), �4.89 (MeSi), 17.6 (Me3CSi), 17.7 (Me3CSi), 25.40 (Me3CSi), 25.43
(Me3CSi), 31.1 (C-6), 51.9 (OMe), 64.8, 65.0 (C-3 and C-5), 81.3 (C-4), 117.8
(im), 128.3 (C-1), 130.7 (im), 136.7 (im), 137.4 (C-2), 166.4 (C¼O), and 183.9
(C¼ S); MS (70 eV, m/z): 526 (Mþ, 5%), 469 (100), 409 (41), 341 (51), 267
(42), 235 (31), and 185 (68); HRMS: Calcd for C24H42N2O5SSi2: 526.2353.
Found: 526.2342.

Methyl (3R,4S,5S)-3,5-di[(tert-Butyldimethylsilyl)oxy]-4-[(imidazoyl-

thiocarbonyl)oxy]cyclohex-1-enecarboxylate (6). IR (NaCl): v 3134, 2949,
2897, 1722, 1656, 1531, and 1464 cm�1; 1

H NMR (CDCl3, 200MHz): d
0.07 (s, 3H, MeSi), 0.09 (s, 3H, MeSi), 0.10 (s, 3H, MeSi), 0.11 (s, 3H,
MeSi), 0.77 (s, 9H, Me3CSi), 0.84 (s, 9H, Me3CSi), 2.39 (m, 1H, H-6),
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2.70 (dd, 1H, 2JHH 17.5, 3JHH 6.4Hz, H-6), 3.80 (s, 3H, OMe), 4.09 (m, 1H,
H-5), 4.62 (m, 1H, H-3), 6.13 (m, 1H, H-4), 6.61 (m, 1H, H-2), 6.99 (s, 1H,
H-im), 7.54 (s, 1H, H-im), and 8.22 (s, 1H, H-im); 13C NMR (CDCl3,
50.3MHz): d �5.1 (MeSi), �5.05 (MeSi), �5.02 (MeSi), �4.9 (MeSi), 17.8
(Me3CSi), 17.9 (Me3CSi), 25.4 (Me3CSi), 25.5 (Me3CSi), 30.3 (C-6), 52.1
(OMe), 67.5 (C-5), 68.2 (C-3), 82.1 (C-4), 118.0 (im), 128.7 (C-1), 130.5 (im),
136.7 (im), 138.2 (C-2), 166.2 (C¼O), and 184.8 (C¼ S); MS (70 eV, m/z):
526 (Mþ, <1%), 469 (35), 341 (21), 267 (79), 227 (46), 185 (90), and 73
(100); HRMS: Calcd for C24H42N2O5SSi2: 526.2353. Found: 526.2351.
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