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Figure 1. A view of the molecular structure of [Cu(dien)(C,Hio)]+, 
showing the atomic numbering scheme. 

[Cu(dien)(C7Hlo)]+. A perturbation or polarization of the 
C-H bond by an electrophilic metal atom, like Cu+, should be 
considered the earliest stage of a metal induced C-H activa- 
tion.I6 This norbornene bonding mode, when applied to nor- 
bornadiene-copper(1) interaction, would help in describing 
the specific copper(1)-norbornadiene bonding which predis- 
poses this olefin toward photoassisted valence isomerization 
processes.6 

Both the results by Gagnt et al.' and those here reported 
seem to suggest that the five coordination may play an unex- 
pected role in molecular activation processes promoted by 
copper(1) complexes. 
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Bromine Adsorbed on a Molecular Sieve: 
A Reagent for Selective Bromination 
Sir:  

In  this communication we report a novel type of molecular 
sieve effect in which 5A zeolite crystals, saturated with bro- 
mine, are used as a reagent for the selective bromination of a 
terminal double bond. Although the novel adsorptive properties 
of molecular sieve zeolites have found widespread application 
in shape selective catalysis' and in separation processes,* 
previous applications in synthetic organic chemistry are limited 
to uses in esterification, ketalization, and other similar reac- 
tions as a means of selectively adsorbing the water which is 
formed during the reactions, in order to promote a favorable 
shift in the equilibrium.3 Molecular sieves have also been used 
as carriers for KMn04 but in this application the sieve func- 
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tions merely as a high area (nonselective) solid support. The 
possibility of using the shape selective feature of a molecular 
sieve adsorbent in order to influence directly the course of a 
noncatalytic reaction does not appear to have been previously 
examined. 

The surface of a zeolite crystal contains small pore openings 
giving access to somewhat larger cavities within the crystal. 
Structural details have been summarized by Breck.2 Such a 
structure may be employed in two ways to modify the course 
of a chemical reaction. One possibility is to use the sieve to 
protect a functional group, thus allowing the reaction to occur 
selectively at another point in the molecule. This requires that 
the functional side chain be sufficiently strongly adsorbed so 
that the equilibrium concentration in the ambient fluid is very 
small, to minimize the competing homogeneous reaction. 

Alternatively, the sieve may be used as a container for the 
reagent so that the desired reaction can occur only when the 
functional group of the reacting molecule can penetrate the 
sieve pore opening. Thus, in a complex molecule which contains 
functional groups such as a double bonds, located both in a 
linear side chain which can penetrate the sieve and in a ring 
structure which cannot penetrate the sieve, a sterically selective 
reaction is in principle possible. This type of selectivity should 
apply equally to the case of a mixture of two compounds con- 
taining accessible and inaccessible centres. To achieve a high 
selectivity in such a process requires strong selective adsorption 
of the reagent (to minimize any homogeneous reaction) and 
relatively weak adsorption of the product (otherwise the re- 
action may be inhibited by formation of a strongly adsorbed 
monolayer of product). 

The SA-type molecular sieve is probably the most promising 
structure since the pore openings (-4.2 A) are sufficiently 
large to admit straight hydrocarbon side chains, but cyclic 
structures, branched chain hydrocarbons, and carboxylic acid 
groups are too large to enter. Of the other commonly available 
synthetic zeolites, types 3A and 4A are not useful because the 
pore opening is too small while the apertures of the X and Y 
zeolites are too large to provide the required shape selectivity, 
except possibly for very large molecules (see below). 

In addition, the substrate must meet the necessary steric 
requirements and the constiaints imposed by sorption equi- 
librium requirements for both reactant and substrate must also 
be fulfilled. We have selected, for initial investigation, the se- 
lective bromination of a side-chain double bond by bromine 
pre-adsorbed on 5A zeolite. Bromine, like the other halogens, 
is strongly adsorbed on molecular  sieve^,^ the course and 
mechanism of bromination reactions in homogeneous solution 
is well known, and the reaction is relatively rapid with easily 
identifiable products. Here we show that a 5A sieve, saturated 
with bromine, may be used as a selective brominating agent 
capable of differentiating between a double bond located in 
a sterically unhindered linear side chain and in an inaccessible 
position within an alicyclic ring. 

(i) As a simple model system we used a mixture of cyclo- 
hexene and styrene (approximately 67% cyclohexene, 33% 
styrene on a molar basis). In  homogeneous solution these 
compounds are both brominated rapidly so that a mixture of 
a,@-dibromostyrene and dibromocyclohexene is obtained with 
95% conversion of both reactants. However, when the cyclo- 
hexene-styrene mixture was treated with a 5A sieve, previously 
saturated with bromine, we obtained only a$-dibromostyrene 
(in 95% yield) with no trace of dibromocyclohexene. (The total 

quantity of adsorbed bromine present in this experiment was 
more than sufficient to brominate all the cyclohexene and 
styrene.) This result is exactly what is expected from steric 

considerations since the side chain of the styrene molecule can 
penetrate through the window of the sieve whereas the double 
bond in cyclohexene is not accessible. 

(ii) In the homogeneous liquid phase bromination of styrene 
in the presence of acetic acid it has been shown that a mixture 
of products A and B is obtained.6 This is because the inter- 

mediate bromonium ion is accessible to attack by both the 
bromide and acetate anions. When styrene (in solution in 
carbon tetrachloride with a small amount of acetic acid) was 
added to a solution of bromine, also in carbon tetrachloride, 
the reaction product contained 80% dibromostyrene (A) and 
20% bromoacetate (B), a result similar to that obtained by 
Rolston and Yates.6 When the styrene-acetic acid mixture, 
in the same proportion as in the previous experiment, was 
treated with the 5A molecular sieve, previously saturated with 
bromine, only a,@-dibromostyrene (A) was obtained with no 
trace of product B, indicating that the bromination reaction 
must take place inside the cavity of the sieve where the acetate 
ion cannot penetrate. 

These experiments show clearly the possibility of using 
bromine pre-adsorbed on 5A zeolite as a specific reagent for 
the bromination of terminal double bonds or double bonds in 
an aliphatic side chain where the stereochemistry permits 
penetration of the sieve window. In both reactions it was ob- 
served that the reaction rate using the brominated zeolite as 
reagent is very slow compared with the homogeneous liquid 
phase bromination reaction. This is to be expected since only 
the outside surface of the crystals is involved and each pore 
mouth can accommodate only one styrene molecule at a time. 
In any application of this method it is therefore desirable to use 
very small crystals to maximize the external surface. 

The key role of the sieve window dimension was demon- 
strated by blank experiments carried out with 3A, 4A, and 13X 
zeolites. The 3A and 4A sieves showed no adsorption of bro- 
mine from the solution, and their presence had no noticeable 
effect on the bromination of the cyclohexene-styrene mixture. 
(A mixture of a,@-dibromostyrene and 1,2-dibromocyclo- 
hexane was obtained in 95% yield). The 13X sieve adsorbed 
bromine from the carbon tetrachloride solution, but the re- 
sulting reagent showed no selectivity in the bromination re- 
action. 

A typical reagent was prepared as follows: 300 g of 5A 
molecular sieve powder (-0.7-~m crystals) was dehydrated 
at 400 OC in a current of helium and transferred to a 2.0-L 
round-bottom flask; 1 L of carbon tetrachloride, dried over 
P205, was then added to the mixture and the resultant sus- 
pension was stirred for 3 h; 3.0 g of liquid bromine was then 
added and the mixture was stirred for a further 24 h when the 
Br2 color had disappeared. 

A typical experimental procedure is as follows. The required 
amount of reagent was prepared as described above and 
reactants were added (e.g., 180 g of reagent in carbon tetra- 
chloride, 0.3 g of styrene, and 0.5 g of cyclohexene). The re- 
action mixture was stirred for 3 days and then filtered. The 
residual sieves were washed with excess of dry CCld and the 
filtrate was carefully evaporated to dryness under reduced 
pressure at room temperature. Products were separated by the 
chromatography of the residue on silica gel column. (E.g., in 
this case a,@-dibromostyrene was obtained in 95% yield. NO 
trace of dibromocyclohexene was found in the product.) 
Structures of the products were confirmed by NMR, IR, mass 
spectrum, and melting point. 
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Molecular Tweezers: 
A Simple Model of Bifunctional Intercalation 

Sir: 
We have synthesized several bifunctional derivatives of 

caffeine’-’ and wish to report here that they appear to show 
the expected exponential increase in association constants 
anticipated for formation of “sandwich” P-system hydrophobic 
complexes (eq 1) .  We refer to these molecules as “molecular 

tweezers”. These molecules, 1-3, possess two of the three 
characteristics expected to enhance complexation of aromatic 
molecules in aqueous solution. (1) The rigid diyne unit prevents 
self-associations of the two caffeine moieties. (2) The caf- 
feine-caffeine distance in the syn conformation, -7 A, is 
proper for insertion of a P system between the rings. The third 
structural feature, a rigid syn conformation, is not met. 

l , n = m = l  
2 , n = l ; m = 2  
3 , n = m = 2  

Association constants were determined by phase parti- 
tioning9 of the tweezer M) between ethylene dichloride 
(EDC) and aqueous pH 7 potassium phosphate buffer con- 
taining varying concentrations of 2,6-dihydroxybenzoate 
(DHBA) or 1,3-dihydro~y-2-naphthoate~~ (DHNA).  From 
EDC-buffer partition coefficients of the tweezers and the above 
experiment one may calculate an “apparent” association 
constant 

KIPP = [bound tweezer] / [acid] [free tweezer] 

One may then relate Kip* algebraically to various possible 
binding schemes as a function of the concentration of the 
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Figure 1. Calculated and experimental KiPP vs. [DHNA]  plot for 3 and 
potassium I ,3-dihydroxy-2-naphthoate in pH 7 phosphate buffer: 0 ,  ex- 
perimental points; A, calculated using K1 = 296 M-’, K2 = 16.7 M - ’ ,  
K3 = 0; 0, calculated using K I  = 296 M-I, K2 = 47.5 .M-l. K3 = IO 400 
2.1-l (see Table 11) .  

DHBA or DHNA salt and the various association constants. 
From the behavior of theophylline derivatives 4 and 5 one may 
calculate a best fit association constant (K3 below) for the 
formation of a stacking complexes. We use the necessity of 
invocation of a large K3 as evidence pro or con for the hy- 
pothesis. 

Complexation of the simple theophylline derivative 4 and 
5 with DHNA follows eq 2 closely (correlation coefficient 
>0.99): 

KXP = K I  + K,K2[DHNA] 
K 

(2)  5 + D H N A  & 5 - D N H A  

5 DNHA + DNHA 3 5 .  (DHNA)2 

Values of Kl and Kz for 4 and 5 complexing with several acids 
are in Table I and are consistent with literature  value^.^ For 
tweezers 1-3 one may relate Kipp to K I ,  Kz, K3, and [DHNA] 
by the equation 

Kip’ = 2K1 + (2KiK2 + Kl)’[C] + 2Kl2Kz[Cl2 
+ Ki2Kz2[CI3 + K3(1 + K2[C])’ (3) 

Here Kl and K2 are as defined above and represent single and 

4, R = CH,C=CH 
5 ,  R = CH,CH,C=CH 

6 , n = 8  
7 .  n = 1 0  
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