STRUCTURE AND SYNTHESIS OF
 MENISPORPHINE, A NEW TYPE OF ISOQUINOLINE ALKALOID

ALKALOIDS OF MENISPERMUM DAURICUM DC. (9) ${ }^{1}$

J. Kunitomo* and M. Satoh
Faculty of Pharmaceutical Sciences, Mukogawa Women's University, 4-16 Edagawa-cho, Nishinomiya 663, Japan
and
T. Shingl
School of Pharmacy, Kobe-gakuin University, Arise Ikawadani-cho, Tarumi-ku, Kobe 673, Japan

(Received in Japan 11 December 1982)

Abstract

The structure of an unknown yellow base from Menispermum douricum DC. (Menispermaceae) was determined to be $5,6,9$-trimethoxy- 7 H -dibenzo[de, h]quinoiin- 7 -one from various spectral data and synthesis, and was named menisporphine. This is a new isoquinoline-type alkaloid having a 7 H -dibenzo[de, h]quinolin- 7 -one skeleton for which the general term "oxoisoaporphine" is proposed.

The previous paper reported the isolation of six unknown yeilow alkaloids together with three known isoquinoline alkaloids (cheilanthifoline, stepholidine and stepharine) from the rhizome of Menispermum dauricum DC. (Menispermaceae) collected in Kyoto, Japan. ${ }^{1}$ This paper describes the characterization, structural establishment and synthesis of the tentatively named Base II reported in the previous paper. This yellow alkaloid was named menisporphine.

Menisporphine forms yellow needles from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.$\mathrm{Me}_{2} \mathrm{CO}$, m.p. 199.5-200.5 ${ }^{\circ}$, and elemental analyses and MS established the formula as $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{NO}_{4}$. Its IR spectrum (KBr) showed a conjugated CO band at $1660 \mathrm{~cm}^{-1}$. The UV spectrum (Table) indicated a highly conjugated system similar to that of oxoaporphine-type alkaloids. ${ }^{2,3}$ The MS data also supported this alkaloid type. ${ }^{3}$ The ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$ showed the presence of characteristic ortho-coupling protons at C_{4} H and $\mathrm{C}_{3} \mathrm{H}[\delta 7.55(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}), 8.65(1 \mathrm{H}, \mathrm{d}$, $J=5.5 \mathrm{~Hz}$)] of isoquinoline skeleton and four aromatic protons with three OMe groups. Based on these data, the structure of 1,2,9- or 1,2,10-trimethoxyoxoaporphine (1 or 2$)^{4}$ was predicted, but neither seemed to be correct as can be seen from the Table. The possible structure for menisporphine according to several pieces of spectral data was assumed to be that of trimethoxy-7 H -dibenzo[de, h]quinolin-7-one which is related to the isomer of trimethoxyoxoaporphine-type alkaloids. In order to determine the position of the three OMe groups, the NOE and internuclear double resonance (INDOR) were used. In the JNDOR experiments of this alkaloid, the signal of the aromatic proton at $\delta 7.40$ was observed as a singlet upon irradiation at the frequency of aromatic proton at $\mathrm{C}_{4}-\mathrm{H}(\delta 7.55)$ of the isoquinoline skeleton. Furthermore, the NOE effect was also detected, i.e. irradiation at the frequency of $\mathrm{C}_{3}-\mathrm{H}(\delta 7.55)$ in menisporphine enhanced by ca 10% the peak area of the $\mathrm{C}_{4}-\mathrm{H}$ signal ($\delta 7.40$). Consequently, the signal of the aromatic proton as a singlet at $\delta 7.40$ was assigned to the $\mathrm{C}_{4}-\mathrm{H}$ of the 7 H -dibenzo $[d e, h] q u i n o l i n-7$-one skeleton, and the
positions of two of the three OMe groups were determined to be at C-5 and C-6 of this skeleton. The third OMe group was found to be at C-9 or C-10 according to the AMX type splitting and the coupling constant of the signals of the residual three aromatic protons in the ${ }^{1} \mathrm{H}$ NMR spectrum. The proton at $\mathrm{C}_{11}-\mathrm{H}$ in this type of skeleton is found appreciably downfield due to ring current effect of aromatized isoquinoline ring similarly as $\mathrm{C}_{11}-\mathrm{H}$ in benzanthrone derivatives ${ }^{5}$ or oxoaporphinetype alkaloids. The signals of ortho-aromatic protons at δ 7.33 and $\delta 8.79$ were assigned to $\mathrm{C}_{10}-\mathrm{H}$ and $\mathrm{C}_{11}-\mathrm{H}$, respectively. The position of the remaining OMe group must be C-9. These results suggested that menisporphine would be 5,6,9-trimethoxy-7H-dibenzo[de, h]quinolin-7one (3).
Final evidence for this structure came from its synthesis. Many compounds having the 7 H -dibenzo[de, h]quinolin-7-one skeleton are used as dyes and can be synthesized by various methods, but the positions of the substituent groups are still uncertain. ${ }^{6}$ The desired compound (3) was synthesized as shown in Chart 1. The starting material, $\mathrm{N}\left(3^{\prime}, 4^{\prime}, \beta\right.$-trimethoxyphenethyl)-2-bromo-4-methoxybenzamide (6a), was obtained by the Schotten-Baumann reaction of $3,4, \beta$ trimethoxyphenethylamine and 2-bromo-4-methoxybenzoyl chloride (5a). The Bischler-Napieralski reaction of this benzamide derivative (6a) with phosphorus oxychloride afforded 1-(2'-bromo-4'-methoxyphenyl)-6,7dimethoxyisoquinoline (7a). This compound (7a) on reaction with cuprous cyanide gave the corresponding cyano-derivative (8a) in high yield. The cyano compound (8a) was hydrolyzed to afford the corresponding carboxylic acid (9 a), which is soluble in water. Confirmation of 9 a was carried out by the formation of its methyl ester. The second ring cyclization of the 9a with polyphosphoric acid afforded 6-hydroxy-5,9-dimethoxy-7Hdibenzo[de, h]quinolin-7-one (10a) which demethylated the OMe group at C-6. Treatment of this compound (10a) with methyl iodide in the presence of silver oxide produced the desired compound (3) as ycllow needles,

Table 1. The data of menisporphine and trimethoxyoxoaporphine

		 menisporphine (3)	 (1)	a) (2)
mp (${ }^{\circ} \mathrm{C}$)		199.5-200.5	201-203	200-201
Anal b)		$\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{VO}_{4}$		
$\begin{gathered} \text { UV } \lambda_{\max }^{\mathrm{EtOH}} \\ (\log \varepsilon) \end{gathered}$		$\begin{aligned} & 254,288 \mathrm{sh}, 310 \mathrm{sh}, \\ & 319,334 \mathrm{sh}, 368,420 \\ & (4.72,4.13,3.96, \\ & 3.97,3.94,3.91, \\ & 3.97) \end{aligned}$	$\begin{aligned} & 244,271,292 \mathrm{sh}, \\ & 377,444(4.46,4.44, \\ & 4.16,3.68,3.62) \end{aligned}$	$\begin{aligned} & 242,272,284 \mathrm{sh}, \\ & 312,351,387(4.45, \\ & 4.44,4.19,3.84, \\ & 4.07,4.00) \end{aligned}$
$I R \nu_{\max }^{\mathrm{KBr}}$		$1660 \mathrm{~cm}^{-1}$	$1680 \mathrm{~cm}^{-1}$	$1665 \mathrm{~cm}^{-1}$
	OCH_{3}	3.98, 4.08, 4.15	3.98, 3.98, 4.03	3.96, 3.99, 4.03
	$\begin{aligned} & \text { ェ } \\ & \text { E. } \\ & \underset{\text { E }}{2} \end{aligned}$	$\begin{aligned} & 7.33(\mathrm{~d} . \mathrm{d}, J=2.5,9.0), \\ & 7.40(\mathrm{~s}), \\ & 7.55(\mathrm{~d}, J=5.5), \\ & 7.86(\mathrm{~d}, J=2.5), \\ & 8.65(\mathrm{~d}, J=5.5), \\ & 8.79(\mathrm{~d}, J=9.0) \end{aligned}$	$\begin{aligned} & 7.19\left(\mathrm{~s}, \mathrm{C}_{3}-\mathrm{H}\right), \\ & 7.28(\mathrm{~d} . \mathrm{d}, J=3.0,9.0, \\ & \left.\mathrm{C}_{10}-\mathrm{H}\right), \\ & 7.72\left(\mathrm{~d}, J=6.0, \mathrm{C}_{4}-\mathrm{H}\right), \\ & 8.01\left(\mathrm{~d}, J=3.0, \mathrm{C}_{8}-\mathrm{H}\right), \\ & 8.81\left(\mathrm{~d}, J=6.0, \mathrm{C}_{5}-\mathrm{H}\right), \\ & 8.99\left(\mathrm{~d}, J=9.0, \mathrm{C}_{11}-\mathrm{H}\right) \end{aligned}$	$\begin{aligned} & 7.03(\mathrm{~d}, \mathrm{~d}, J=3.0,9.0, \\ & \left.\mathrm{C}_{9}-\mathrm{H}\right), \\ & 7.08\left(\mathrm{~s}, \mathrm{C}_{3}-\mathrm{H}\right), \\ & 7.62\left(\mathrm{~d}, J=6.0, \mathrm{C}_{4}-\mathrm{H}\right), \\ & 8.48\left(\mathrm{~d}, J=9.0, \mathrm{C}_{8}-\mathrm{H}\right), \\ & 8.63\left(\mathrm{~d}, J=3.0, \mathrm{C}_{11^{-}}\right. \\ & \mathrm{H}) \\ & 8.77\left(\mathrm{~d}, J=6.0, \mathrm{C}_{5}-\mathrm{H}\right) \end{aligned}$
MS (m / z)		$\begin{aligned} & 321\left(\mathrm{M}^{+}, \text {base peak }\right), \\ & 306,293,278,261 \end{aligned}$	$\begin{aligned} & 321\left(\mathrm{M}^{+}\right), 320(\text { base } \\ & \text { peak }), 306,305,278 \end{aligned}$	$\begin{aligned} & 327\left(\mathrm{M}^{+}\right. \text {, base peak), } \\ & 306,278,263 \end{aligned}$

a) These data cited from reference 4.
b) Menisporphine (3): Anal. Calcd: C, 71.02; H, 4.71: N, 4.36.

Found: C, 71.10; H, 4.63; N, 4.44
m.p. $199-200^{\circ}$. It was identified by direct comparison of its spectra, (UV, IR, ${ }^{1} \mathrm{H}$ NMR and MS) and TLC with those of natural product, menisporphine. From the reaction product of 0 -methylation, the corresponding enol ether (11), which is related to the isomer of compound 3 was also obtained in low yield.
This isoquinoline-type alkaloid has an entirely new skeleton (7 H -dibenzo[de, h]quinolin- 7 -one) and we propose to name it "oxoisoaporphine" because of its relationship to the isomer oxoaporphine. Biogenesis for oxoisoaporphine-type alkaloids in plants probably is as Chart 2.
The precursor seemed to be a papaverinol derivative. The biogenetic route may involve the formation of isoquinoline derivative containing a cyclobutane ring from the precursor by intramolecular oxidative coupling, followed by a dienone enol rearrangement with fission of the cyclobutane ring. Finally, electrophilic substitution to the aromatic ring of the aldehyde leads to this new skeleton ring.

5,6,10-Trimethoxy-7H-dibenzo[de, h]quinolin-7-one (4), which is an isomer of menisporphine (3), was also synthesized by the same method and the desired 4 was obtained as pale yellow needles, m.p. 195-196 . In the ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) of 4, the signal of aromatic proton at $\mathrm{C}_{11}-\mathrm{H}(\delta 8.35)$ is present somewhat upfield than that at $\mathrm{C}_{8}-\mathrm{H}(\delta 8.37)$. Oppositely, the signal of aromatic proton at $\mathrm{C}_{11}-\mathrm{H}(\delta 8.79)$ of menisporphine (3) shifts appreciably downfield in the comparison with that at $\mathrm{C}_{8}-\mathrm{H}(\delta 7.86)$. The reason for this fact seems to be duc to the positional difference of the OMe substituents ($\mathrm{C}_{9}-$ or C_{10}-position) of both 3 and 4, as a similar relationship between the signals of the aromatic protons of $\mathrm{C}_{8}-\mathrm{H}$ and $\mathrm{C}_{11}-\mathrm{H}$ in the trimethoxyoxoaporphines 1 and 2 was observed.

EXPERIMENTAL

All m.ps are uncorrected. 'H NMR spectra were recorded on a JNM-FX 200 spectrometer in CDCl_{3} with TMS as an internal standard. MS spectra were recorded on a direct inlet system at 70 eV using a Hitachi RMU-6 spectrometer. All organic solutions were dried over MgSO_{4}.

(5a) $\mathrm{R}_{1}=\mathrm{OCH}_{3}, \mathrm{R}_{2}=\mathrm{H}$
(6a) $\mathrm{R}_{1}=\mathrm{OCH}_{3}, \mathrm{R}_{2}=\mathrm{H}$
(7a) $\mathrm{R}_{1}=\mathrm{OCH}_{3}, \mathrm{R}_{2}=\mathrm{H}$
(5b) $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{OCH}_{3}$
(6b) $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{OCH}_{3}$
(7b) $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{OCH}_{3}$

(8a) $\mathrm{R}_{1}=0 \mathrm{CH}_{3}, \mathrm{R}_{2}=\mathrm{H}$
(9a) $\mathrm{R}_{1}=O C H_{3}, \mathrm{R}_{2}=\mathrm{H}$ (10a) $\mathrm{R}_{1}=\mathrm{OCH}_{3}, \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H}$
(8b) $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2} * \mathrm{OCH}_{3}$
(9b) $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{OCH}_{3}$ (10b) $\mathrm{R}_{1}=\mathrm{R}_{3}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{OCH}_{3}$
(3) $\mathrm{R}_{1}=\mathrm{OCH}_{3}, \mathrm{R}_{2}=\mathrm{H}, \mathrm{R}_{3}=\mathrm{CH}_{3}$
(4) $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{OCH}_{3}, \mathrm{R}_{3}=\mathrm{CH}_{3}$

(11)

Chart 1.

Chart 2. The biogenetic route of oxoisoaporphine-type alkaloid.
(a) Synthesis of 5,6,9-trimethoxy-7H-dibenzo[de, h]quinolin-7one (3)

N-(3', 4', β-Trimethoxyphenethyl)-2-bromo-4-methoxybenzamide (6a). To a soln of $3,4, \beta$-trimethoxyphenethylamine $(14.21 \mathrm{~g})$ in 300 ml Et 2 O and 480 ml of $10 \% \mathrm{NaOHaq}$, 5 a was added dropwise with stirring at $0-5^{\circ}$ in anhyd. $\mathrm{Et}_{2} \mathrm{O}$. Compound 5 a was formed from 2-bromo-4-methoxybenzoic acid ${ }^{7}$ (15.5 g) and excess SOCl_{2} in the usual way. Stirring was continued for 1 hr . The ppt was filtered off and dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ layer was washed with $10 \% \mathrm{HClaq}$ and water, and dried. Removal of the solvent by evaporation and recrystallization from $\mathrm{Et}_{2} \mathrm{O} \cdot \mathrm{MeOH}$ gave $6 \mathrm{a}(25.92 \mathrm{~g}, 91.2 \%$) as colorless needles, m.p. $114-116^{\circ}$. UV $\lambda_{\text {max }}^{\mathrm{EtOH}} \mathrm{nm}(\log \epsilon): 232$ (4.23), 279 (3.64), 289 (3.53). IR $\nu_{\text {max }}^{\mathrm{CHCl}_{3}} \mathrm{~cm}^{-1}: 1655,3450 .{ }^{1} \mathrm{H}$ NMR $\delta: 3.28,3.83,3.89,3.90$ $\left(3 \mathrm{H} \times 4\right.$, each $\left.\mathrm{s}, \mathrm{OCH}_{3} \times 4\right), 3.38,3.90\left(2 \mathrm{H}, \mathrm{C}_{\alpha}-\mathrm{H} \times 2\right), 4.34(1 \mathrm{H}$, d.d, $\left.J=4.0,9.0 \mathrm{~Hz}, \mathrm{C}_{8}-\mathrm{H}\right), 6.52(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 6.86(1 \mathrm{H}, \mathrm{d} . \mathrm{d}$, $\left.J=2.5,8.5 \mathrm{~Hz}, \mathrm{C}_{5}-\mathrm{H}\right), 6.89\left(3 \mathrm{H}, \mathrm{C}_{2}-\mathrm{H}, \mathrm{C}_{5}-\mathrm{H}\right.$ and $\left.\mathrm{C}_{6}-\mathrm{H}\right), 7.12$ $\left(1 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz}, \mathrm{C}_{3}-\mathrm{H}\right), 7.56\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{C}_{6}-\mathrm{H}\right) . \mathrm{MS} \mathrm{m} / 2$ (\%): 425 (1.6), $423\left(\mathrm{M}^{+}, 1.6\right), 215(3.1), 213\left(\mathrm{CH}_{3} \mathrm{O} \cdot \mathrm{BrC}_{6} \mathrm{H}_{3} \mathrm{CO}^{+}\right.$, 3.1), $195\left(\left(\mathrm{CH}_{3} \mathrm{O}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}\left(\mathrm{OCH}_{3}\right) \mathrm{CH}_{2}^{+}, 4.7\right), 194$ (38.8), 182 (13.4), $181\left(\left(\mathrm{CH}_{3} \mathrm{O}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CHOCH}_{3}{ }^{+}\right.$, base peak), $166\left(181-\mathrm{CH}_{3}\right.$, 6.5). (Found; C, 53.62; H, 5.26; N, 3.07. Calc for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{BrNO}_{3}$: C, $53.82 ; \mathrm{H}, 5.23 ; \mathrm{N}, 3.30 \%$).

1-(2'-Bromo-4'-methoxyphenyl)-6,7-dimethoxyisoquinoline (7a). Compound 6a (2.12 g) was heated with $\mathrm{POCl}_{3}(9 \mathrm{ml})$ and anhyd toluene $(15 \mathrm{ml})$ at 120° for 2.5 hr . The solvent and the excess reagent were removed by evaporation in vacuo, and residual reagent was decomposed by adding MeOH and $5 \% \mathrm{HClaq}$. The acidic soln was washed once with $\mathrm{Et}_{2} \mathrm{O}$, make alkaline with 10% $\mathrm{NH}_{4} \mathrm{OHaq}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with $\mathrm{H}_{2} \mathrm{O}$, dried and the solvent was evaporated. The residue was purified by column chromatography on silica gel (eluted by $\mathrm{Et}_{2} \mathrm{O}$). Recrystallization from MeOH gave $1.21 \mathrm{~g}(64.7 \%)$ of 7 a as colorless plates, m.p. 123-124 ; UV $\lambda_{\max }^{\mathrm{EtOH}} \mathrm{nm}(\log \epsilon): 243$ (4.69), 281 (sh, 3.77), 287 (sh, 3.70), 316 (sh, 3.49), 329.5 (3.61). ${ }^{1} \mathrm{H}$ NMR $\delta: 3.83,3.89,4.05\left(3 \mathrm{H} \times 3\right.$, each $\left.\mathrm{s}, \mathrm{OCH}_{3} \times 3\right), 6.87(1 \mathrm{H}, \mathrm{s}, \mathrm{C} 5-\mathrm{H})$, $7.01(1 \mathrm{H}, \mathrm{d} . \mathrm{d}, J=2.5,8.5 \mathrm{~Hz}, \mathrm{C} 5-\mathrm{H}), 7.13\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}_{8}-\mathrm{H}\right), 7.27(1 \mathrm{H}$, $\left.\mathrm{d}, J=2.5 \mathrm{~Hz}, \mathrm{C}_{3}-\mathrm{H}\right), 7.38\left(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{C}_{6}-\mathrm{H}\right), 7.55(1 \mathrm{H}, \mathrm{d}$, $\left.J=5.5 \mathrm{~Hz}, \mathrm{C}_{4}-\mathrm{H}\right), 8.48\left(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}, \mathrm{C}_{3}-\mathrm{H}\right) . \mathrm{MS} \mathrm{m/z}(\%):$ 375 (79.5), $373\left(\mathrm{M}^{+}, 79.5\right), 360\left(375-\mathrm{CH}_{3}, 20.5\right), 358\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right.$, 21.4), 294 ($\mathrm{M}^{+}-\mathrm{Br}$, base peak), $279\left(294-\mathrm{CH}_{3}, 18.8\right.$), 278 (16.1), 250 (278-CO, 20.5), $236\left(250-\mathrm{CH}_{2}, 20.5\right)$. (Found: C, $57.86 ; \mathrm{H}, 4.30$; Calc for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{BrNO}_{3}: \mathrm{C}, 57.77 ; \mathrm{H}, 4.31 ; \mathrm{N}, 3.74 \%$).

1-(2'-Cyano-4'-methoxyphenyl)-6,7-dimethoxyisoquinoline (8a). Compound 7a (2.17 g) was heated with cuprous cyanide (772 mg) in 25 ml DMF at 180° for 5 hr . The mixture was poured into 50 ml ice water, made alkaline with $10 \% \mathrm{NH}_{4} \mathrm{OHaq}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was thoroughly washed with $\mathrm{H}_{2} \mathrm{O}$ and dried. Recrystallization from $\mathrm{Me}_{2} \mathrm{CO}$ gave 1.53 g (82.4%) of 8 a as colorless needle, m.p. 158-158.5 ${ }^{\circ}$. UV λ Max $\mathrm{Emm}(\log \epsilon)$: 241 (4.73), 332 (3.85). IR $\nu_{\text {max }}^{\mathrm{CHCl}_{3}}: 2250 \mathrm{~cm}^{-1}(\mathrm{CN}) .{ }^{1} \mathrm{H}$ NMR $8: 3.86,3.93,4.05$ $\left(3 \mathrm{H} \times 3\right.$, each $\left.\mathrm{s}, \mathrm{OCH}_{3} \times 3\right), 6.99,7.15(1 \mathrm{H} \times 2$, each $\mathrm{s}, \mathrm{C} 5-\mathrm{H}$ and $\left.\mathrm{C}_{8}-\mathrm{H}\right), 7.26\left(1 \mathrm{H}\right.$, d.d, $\left.J=3.0,9.0 \mathrm{~Hz}, \mathrm{C}_{5}-\mathrm{H}\right), 7.35(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $\left.3.0 \mathrm{~Hz}, \mathrm{C}_{3}-\mathrm{H}\right), 7.57\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.5 \mathrm{~Hz}, \mathrm{C}_{4}-\mathrm{H}\right), 7.60(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $\left.9.0 \mathrm{~Hz}, \mathrm{C}_{6}-\mathrm{H}\right), 8.51\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.5 \mathrm{~Hz}, \mathrm{C}_{3}-\mathrm{H}\right) . \mathrm{MS} \mathrm{m} / \mathrm{z}(\%): 321$ $\left(\mathrm{M}^{+}+1,24.3\right), 320\left(\mathrm{M}^{+}\right.$, base peak), $319\left(\mathrm{M}^{+}-1,20.9\right), 305\left(\mathrm{M}^{+}-\right.$ $\mathrm{CH}_{3}, 25.2$), $290\left(305-\mathrm{CH}_{3}, 34.8\right), 262$ (290-CO, 12.2). (Found: C, 71.37 ; H, 4.93; N, 8.80. Calc. for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}: \mathrm{C}, 71.24 ; \mathrm{H}, 5.03$; N, 8.75\%).

1-(2'-Carboxy -4'- methoxyphenyl)-6,7-dimethoxyisoquinoline (9 a). The above 8a (2.55 g) was heated under reflux with 40% $\mathrm{KOHaq}(60 \mathrm{ml})$ and diethylene glycol (40 ml) until the evolution of NH_{3} gas ceased (24 hr). The mixture was poured into water, and washed with $\mathrm{Et}_{2} \mathrm{O}$. The alkaline soln was neutralized to pH 7 with AcOH , extracted three times with BuOH , and the solvent was evaporated in vacuo. The residual crude product was recrystallized from MeOH to give $1.10 \mathrm{~g}(40.7 \%)$ of 9 a as colorless needles, m.p. 253-254 ${ }^{\circ}$ UV $\lambda_{\text {max }}^{\text {EIOH }} \mathrm{nm}(\log \epsilon): 242(4.81), 318$ (sh, 3.92), 330 (3.97). IR $\nu_{\max }^{\mathrm{KBr}_{2}} \mathrm{~cm}^{-1}: 3400(\mathrm{OH}), 1600\left(\mathrm{COO}^{-}\right){ }^{1} \mathrm{H}$ NMR $\delta: 3.72,3.77,3.84\left(3 \mathrm{H} \times 3\right.$, each s, $\left.\mathrm{OCH}_{3} \times 3\right), 7.29(1 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}_{5}-\mathrm{H}\right), 7.31\left(1 \mathrm{H}\right.$, d.d, $\left.J=3.0,9.0 \mathrm{~Hz}, \mathrm{C}_{5}-\mathrm{H}\right), 7.50\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}_{8}-\mathrm{H}\right)$, $7.66(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}, \mathrm{C}-\mathrm{H}), 7.77\left(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}, \mathrm{C}_{6}-\mathrm{H}\right)$, $8.05\left(1 \mathrm{H}, \mathrm{d}, J=3.0 \mathrm{~Hz}, \mathrm{C}_{3}-\mathrm{H}\right), 8.71\left(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}, \mathrm{C}_{3}-\mathrm{H}\right)$. MS m/z (\%) : $339\left(\mathrm{M}^{+}, 52\right), 322\left(\mathrm{M}^{+}-\mathrm{OH}, 56.5\right), 295(79.3), 294$
(322-CO, 55.9), $280\left(295-\mathrm{CH}_{3}\right.$, base peak). (Found: $\mathrm{C}, 66.79 ; \mathrm{H}$, 5.31; N, 3.85. Calc for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{5} .1 / 4 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 66.37$; $\mathrm{H}, 5.13: \mathrm{N}$, 4.07%).

Methyl ester of 9a. Compound 9a (0.5 g) in $\mathrm{MeOH}(10 \mathrm{ml})$ was treated with excess ethereal $\mathrm{CH}_{2} \mathrm{~N}_{2}$ and kept at room temp overnight. After treatment in the usual way, the desired product was recrystallized from EtOAc and petroleum ether to give colorless needles, m.p. 122-123. UV $\lambda_{\max }^{\mathrm{FtOH}} \mathrm{nm}(\log \epsilon): 240$ (4.69), 330 (3.52). IR $\nu_{\max }^{\mathrm{chCl}_{3}}: 1720 \mathrm{~cm}{ }^{1}\left(\mathrm{COOCH}_{3}\right) .{ }^{1} \mathrm{H}$ NMR 8: 3.41, $3.80,3.94,4.04\left(3 \mathrm{H} \times 4\right.$, each $\left.\mathrm{s}, \mathrm{OCH}_{3} \times 4\right), 6.91\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5}-\mathrm{H}\right)$, $7.12(1 \mathrm{H}, \mathrm{s}, \mathrm{C}-\mathrm{H}) .7 .19(1 \mathrm{H}, \mathrm{d} . \mathrm{d}, \mathrm{J}=3.0,8.5 \mathrm{~Hz}, \mathrm{C} 5-\mathrm{H}), 7.48(1 \mathrm{H}$, $\left.\mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{C}_{6}-\mathrm{H}\right), 7.50\left(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}, \mathrm{C}_{4}-\mathrm{H}\right), 7.57(1 \mathrm{H}, \mathrm{d}$, $\left.J=3.0 \mathrm{H} \angle, \mathrm{C}_{3}-\mathrm{H}\right), 8.43\left(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}, \mathrm{C}_{3}-\mathrm{H}\right) . \mathrm{MS} \mathrm{m} / z(\%):$ $354\left(\mathrm{M}^{+}+1,23.0\right), 353\left(\mathrm{M}^{+}, 93.2\right), 322\left(\mathrm{M}^{+}-\mathrm{OCH}_{3}\right.$, base peak), 294 (322-CO, 9.2). (Found: C, 67.39; H, 5.39; N, 3.78. Calc for $\left.\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{5}:, \mathrm{C}, 67.98 ; \mathrm{H}, 5.42 ; \mathrm{N}, 3.96 \%\right)$.

6-Hydroxy - 5.9-dimethoxy-7H-dibenzo[de, h]quinolin-7-one (10a) the above 9 a $(1.0 \mathrm{~g})$ was heated with polyphosphoric acid $(25 \mathrm{ml})$ at 100° for 1 hr with stirring. The mixture was poured into ice water, made alkaline with $10 \% \mathrm{NH}_{4} \mathrm{OHaq}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ layer was washed with $\mathrm{H}_{2} \mathrm{O}$ and dried. Recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave $0.63 \mathrm{~g}(69.5 \%)$ of a product as yellow needles, m.p. 248-249 . UV $\lambda_{\text {max }}^{\mathrm{EROH}} \mathrm{nm}(\log$ e) 238 (sh, 4.38), 254 (4.62), 292 (sh, 3.76), 307 (3.53), 319 (3.44), 358 (sh, 3.77), 366 (3.79), 406 (sh, 3.51), 430 (3.83), 455 (3.84). This spectrum shifts to bathochromic by addition of $10 \% \mathrm{NaOH}$ soln or $10 \% \mathrm{HCl}$ soln. ${ }^{1} \mathrm{H}$ NMR $\delta: 4.02,4.10\left(3 \mathrm{H} \times 2\right.$, each $\mathrm{s}, \mathrm{OCH}_{3} \times$ 2), $5.94(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 7.29\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}_{4}-\mathrm{H}\right), 7.45(1 \mathrm{H}, \mathrm{d} . \mathrm{d}, \mathrm{J}=3.0$, $\left.9.0 \mathrm{~Hz}, \mathrm{C}_{10}-\mathrm{H}\right), 7.58\left(1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}, \mathrm{C}_{3}-\mathrm{H}\right), 7.92(\mathrm{lH}, \mathrm{d}, J=$ $\left.3.0 \mathrm{~Hz}, \mathrm{C}_{8}-\mathrm{H}\right), 8.74\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.0 \mathrm{~Hz}, \mathrm{C}_{2}-\mathrm{H}\right), 8.95(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $\left.9.0 \mathrm{~Hz}, \mathrm{C}_{11}-\mathrm{H}\right) . \mathrm{MS} \mathrm{m/z}(\%): 308\left(\mathrm{M}^{+}+1,33.3\right), 307\left(\mathrm{M}^{+}\right.$, base peak), $278\left(\mathrm{M}^{+}-\mathrm{CO}, 32.3\right)$. (Found: C, $70.14 ; \mathrm{H}, 4.15 ; \mathrm{N}, 4.49$. Calc for $\left.\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{NO}_{4}: \mathrm{C}, 70.35 ; \mathrm{H}, 4.26 ; \mathrm{N}, 4.56 \%\right)$.
O-Methylation of phenolic base 10a with methyl iodide in the presence of siluer oxide. The base $10 \mathrm{a}(246 \mathrm{mg})$ in $\mathrm{MeOH}(6.0 \mathrm{ml})$ and $\mathrm{CHCl}_{3}(8.0 \mathrm{ml})$ were heated under reflux with $\mathrm{Ag}_{2} \mathrm{O}(1.3 \mathrm{~g})$ and MeI $(12.0 \mathrm{ml})$ at 60° for 6 hr with stirring. The mixture was filtered, and the ppt was thoroughly washed with CHCl_{3}. The CHCl_{3} layer was washed with $\mathrm{H}_{2} \mathrm{O}$ and dried. The residue was purified by column chromatography on silica gel (eluted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ containing $1 \% \mathrm{Me}_{2} \mathrm{CO}$) to give crystallised 3 and 11 . $5.6,9$-Trimethoxy-7H-dibenzo[de, h]quinolin-7-one (3) as yellow needles, m.p. $199-200^{\circ}\left(41.5 \%\right.$ yield). UV $\lambda_{\max }^{\mathrm{ErOH}} \mathrm{nm}(\log \epsilon): 254$ (4.45), $290(\mathrm{sh}, 4.44), \quad 320$ (3.75), 368 (3.68), 420 (3.78). $\lambda_{\text {max }}^{1004 \mathrm{HCl}-\mathrm{ELOH} \mathrm{nm}}(\log \epsilon): 270(4.43), 300(\mathrm{sh}, 3.81), 320(\mathrm{sh}, 3.69)$, 332 (3.69), 428 (3.70). IR $\nu_{\max }^{\mathrm{KBr}}: 1660 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\delta: 3.99,4.08$, $4.17\left(3 \mathrm{H} \times 3\right.$, each $\left.\mathrm{s}, \mathrm{OCH}_{3} \times 3\right), 7.34(1 \mathrm{H}, \mathrm{d} . \mathrm{d}, J=2.5,9.0 \mathrm{~Hz}$, $\left.\mathrm{C}_{10}-\mathrm{H}\right), 7.38\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}_{4}-\mathrm{H}\right), 7.55\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.5 \mathrm{~Hz}, \mathrm{C}_{3}-\mathrm{H}\right), 7.89$ $\left(1 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz}, \mathrm{C}_{8}-\mathrm{H}\right), 8.66\left(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}, \mathrm{C}_{2}-\mathrm{H}\right), 8.80$ $\left(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}, \mathrm{C}_{11}-\mathrm{H}\right) . \mathrm{MS} m / z(\%): 321$ (M^{+}, base peak), 306 $\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 30.0\right), 292\left(\mathrm{M}^{+}-1-\mathrm{CO}, 64.0\right), 278\left(\mathrm{M}^{+}-\mathrm{CO}_{-} \mathrm{CH}_{3}, 17.7\right)$, 261 (12.5). (Found: C, 71.00; H. 4.64; N. 4.15. Calc for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{NO}_{4}: \mathrm{C}, 71.02 ; \mathrm{H}, 4.71 ; \mathrm{N}, 4.36 \%$). This compound was identified by direct comparison (UV, IR, 'H NMR, MS, TL.C and mixed m.p.) with natural menisporphine. 5,7,9-Trimethoxy-6Hdibenzo[de, h]quinolin-f-one (11), yellow needles, m.p. 173-175 ${ }^{\circ}$ (20.3\% yield). UV $\lambda_{\max }^{\text {EtOH }} \mathrm{nm}(\log \epsilon): 241$ (4.60), $281(\mathrm{sh}, 4.12), 287$ (4.13), 362 (3.93), 398 (sh, 3.88), 448 (sh, 3.65). $\lambda_{\text {max }}^{1074 \mathrm{Cl} \text { FroH } \mathrm{nm}}$ (log є): 245 (4.54), 289 (sh, 4.08), 299 (4.10), 317 (sh, 3.97), 374 (sh, 3.94), 392 (3.97), $430(3.83), 450$ (3.83). IR $\nu_{\max }^{\mathrm{CHCl}_{3}} 1645 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\delta: 4.00,4.03,4.23\left(3 \mathrm{H} \times 3\right.$, each $\left.\mathrm{s}, \mathrm{OCH}_{3} \times 3\right), 6.80(1 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}_{4}-\mathrm{H}\right), 7.47\left(1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}, \mathrm{C}_{3}-\mathrm{H}\right), 7.52(1 \mathrm{H}, \mathrm{d} . \mathrm{d}, J=2.5$, $\left.9.0 \mathrm{~Hz}, \mathrm{C}_{10}-\mathrm{H}\right), 7.89\left(1 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz}, \mathrm{C}_{8}-\mathrm{H}\right), 8.90(1 \mathrm{H}, \mathrm{d}, J=$ $\left.5.0 \mathrm{~Hz}, \mathrm{C}_{2}-\mathrm{H}\right), 9.22\left(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}, \mathrm{C}_{11}-\mathrm{H}\right) . \mathrm{MS} \mathrm{m/z}(\% / \%): 321$ $\left(\mathrm{M}^{+}\right.$, base peak), $306\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 42.7\right), 292\left(\mathrm{M}^{+}-1-\mathrm{CO}, 32.2\right) .277$ (18.2). 261 (16.9), 235 (10.6). (Found: C, 66.95 ; H, 4.62; N, 3.81. Calc for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{NO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 67.25 ; \mathrm{H}, 5.05 ; \mathrm{N}, 4.13 \%$).
(b) Synthesis of 5,6,10-trimethoxy-7H-dibenzo[de, h]quinolin-7one (4)

N -($3^{\prime}, 4^{\prime}, \beta$-Trimethoxyphenethyl)-2-bromo-5-methoxybenzamide (6b), recrystallization from $\mathrm{Et}_{2} \mathrm{O} . \mathrm{MeOH}$ as colorless plates, m.p. 93-94 ${ }^{\circ}$ (81.9% yield). UV $\lambda_{\text {max }}^{\text {RiOH }} \mathrm{nm}(\log \epsilon): 210.5$ (4.56), 231.5 (4.33), 284 (3.69). IR $\nu_{\text {max }}^{K B r} \mathrm{~cm}^{1}: 3325(\mathrm{NH}), 1665(\mathrm{NHC}=0) .{ }^{1} \mathrm{H}$

NMR $\delta: 2.06(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 3.30,3.79,3,90(3 \mathrm{H} \times 4$, each s , $\left.\mathrm{OCH}_{3} \times 4\right), 3.42\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 4.40(1 \mathrm{H}, \mathrm{q}, \beta-\mathrm{H}), 6.81(1 \mathrm{H}$, d.d, $\left.J=3.0,9.0 \mathrm{~Hz}, \mathrm{C}_{4}-\mathrm{H}\right) .6 .93\left(3 \mathrm{H}\right.$, each s, $\mathrm{C}_{2}-\mathrm{H}, \mathrm{C}_{5}-\mathrm{H}$ and $\left.\mathrm{C}_{6}-\mathrm{H}\right)$, $7.08\left(1 \mathrm{H}, \mathrm{d}, J=3.0 \mathrm{~Hz}, \mathrm{C}_{6}-\mathrm{H}\right), 7.47\left(\mathrm{lH}, \mathrm{d}, J=9.0 \mathrm{~Hz}, \mathrm{C}_{3}-\mathrm{H}\right)$. MS m/z (\%): 425 (5.5), $423\left(\mathrm{M}^{+}, 5.7\right), 215$ (2.4), 213 $\left(\mathrm{CH}_{3} \mathrm{O} \cdot \mathrm{BrC}_{6} \mathrm{H}_{3} \mathrm{CO}^{+}, 2.6\right), \quad 195 \quad\left(\left(\mathrm{CH}_{3} \mathrm{O}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}\left(\mathrm{OCH}_{3}\right) \mathrm{CH}_{2}{ }^{+}\right.$. 8.6), 194 (67.5), $182(30.0), 181\left(\left(\mathrm{CH}_{3} \mathrm{O}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CHOCH}_{3}{ }^{\circ}\right.$, base peak), 179 (1.0). (Found: C, $52.64 ; \mathrm{H}, 5.50 ; \mathrm{N}, 2.96$. Calc for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{BrNO} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 52.67 ; \mathrm{H}, 5.35 ; \mathrm{N}, 3.23 \%$).

1-(2'-Bromo-5'-methoxyphenyl)-6,7-dimethoxyisoquinoline (7b), pale yellow oily compound (54.2% yield) which showed a single spot on ILC when it was purtied by column chromatography on silica gel (eluted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvent). UV $\lambda_{\text {max }}^{\mathrm{EtOH}} \mathrm{nm}(\log \epsilon): 242$ (4.75), 287 (3.74), 317.5 (3.60), 330.5 (3.62). ${ }^{1} \mathrm{H}$ NMR $\delta: 3.82,3.83$, $4.03\left(3 \mathrm{H} \times 3\right.$, each s. $\left.\mathrm{OCH}_{3} \times 3\right), 6.83(1 \mathrm{H}, \mathrm{d} . \mathrm{d}, J=1.0,3.0 \mathrm{~Hz}$, $\left.\mathrm{C}_{6}-\mathrm{H}\right), 6.95\left(1 \mathrm{H}\right.$, d.d, $\left.J=3.0,9.0 \mathrm{~Hz}, \mathrm{C}_{4}-\mathrm{H}\right), 7.02\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5}-\mathrm{H}\right)$, $7.13\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}_{8}-\mathrm{H}\right), 7.56\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.5 \mathrm{~Hz}, \mathrm{C}_{4}-\mathrm{H}\right), 7.59(1 \mathrm{H}, \mathrm{d} . \mathrm{d}$, $\left.J=1.0,9.0 \mathrm{~Hz}, \mathrm{C}_{3}-\mathrm{H}\right), 8.50\left(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}, \mathrm{C}_{3}-\mathrm{H}\right) . \mathrm{MS} \mathrm{m} / \mathrm{z}$ $(\%): 375(73.5), 373\left(\mathrm{M}^{+} .73 .9\right), 295$ (32.5). $294\left(\mathrm{M}^{+}-\mathrm{Br}\right.$, base peak).

1-(2'-Cyano-5'-methoxyphenyl)-6,7-dimethoxyisoquinoline (8b), colorless plates (70.9% yield), m.p. $147-149^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$). UV $\lambda_{\text {max }}^{\mathrm{EtOH}} \mathrm{nm}(\log \epsilon): 210(4.28), 243$ (4.66), 319 (sh, 3.55), 332 (3.61). IR $\nu_{\max }^{\mathrm{KBr}}: 2230 \mathrm{~cm}^{-1}(\mathrm{CN}){ }^{1} \mathrm{H}$ NMR $\delta: 3.86,3.88,4.01(3 \mathrm{H} \times 3$, each $\left.\mathrm{s}, \mathrm{OCH}_{3} \times 3\right), 7.02,7.16\left(1 \mathrm{H} \times 2\right.$, each $\mathrm{s}, \mathrm{C} 5-\mathrm{H}$ and $\left.\mathrm{C}_{8}-\mathrm{H}\right)$, $7.06\left(1 \mathrm{H}, \mathrm{d} . \mathrm{d}, J=3.0,9.0 \mathrm{~Hz}, \mathrm{C}_{4}-\mathrm{H}\right), 7.18(1 \mathrm{H}, \mathrm{d}, J=3.0 \mathrm{~Hz}$, $\left.\mathrm{C}_{6}-\mathrm{H}\right), 7.57\left(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}, \mathrm{C}_{4}-\mathrm{H}\right), 7.78(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}$. $\left.\mathrm{C}_{3}-\mathrm{H}\right), 8.52\left(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}, \mathrm{C}_{3}-\mathrm{H}\right) . \mathrm{MS} \mathrm{m} / \mathrm{z}(\%): 321(46.9)$, $320\left(\mathrm{M}^{+}\right.$, base peak), 319 (29.3), $305\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 40.6\right), 290$ (14.3), 289 (22.3). (Found: C. 71.04: H, 4.92; N, 8.46. Calc for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$: C. 71.24: H. 5.03 ; N. 8.75%).

1-(2'-Carboxy-5'-methoxyphenyl)-6,7-dimethoxyisoquinoline (9b), colorless needles (41.1% yield), m.p. 201-203.5 (from MeOH). UV $\lambda_{\text {max }}^{\mathrm{MeOH}} \mathrm{nm}(\log \epsilon$): 241 (4.77), 316 (3.72), 328 (3.75). IR $\nu_{\text {max }}^{\mathrm{KB}}: 1710 \mathrm{~cm}^{1}(\mathrm{COOH}) .{ }^{1} \mathrm{H}$ NMR $\delta: 3.68,3.78,3.88(3 \mathrm{H} \times 3$, each $\left.\mathrm{s} . \mathrm{OCH}_{3} \times 3\right), 7.18\left(1 \mathrm{H}\right.$, d.d. $\left.J=3.0,9.0 \mathrm{~Hz}, \mathrm{C}_{4}-\mathrm{H}\right), 7.30,7.38$ $\left(1 \mathrm{H} \times 2\right.$, each $\mathrm{s}, \mathrm{C}_{5}-\mathrm{H}$ and $\left.\mathrm{C}_{8}-\mathrm{H}\right), 7.38\left(1 \mathrm{H}, \mathrm{d}, J=3.0 \mathrm{~Hz} . \mathrm{C}_{6}-\mathrm{H}\right)$, $7.68\left(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}, \mathrm{C}_{4}-\mathrm{H}\right) .8 .50\left(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}, \mathrm{C}_{3}-\mathrm{H}\right)$, $8.71\left(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}, \mathrm{C}_{3}-\mathrm{H}\right) . \mathrm{MS} m / 2(\not / 4): 339\left(\mathrm{M}^{+}, 19.0\right), 322$ $\left(\mathrm{M}^{+}-\mathrm{OH}, 20.0\right), 295\left(\mathrm{M}^{+}-\mathrm{CO}_{2}, 87.1\right), 294\left(\mathrm{M}^{+}-\mathrm{COOH}, 61.7\right), 281$ $\left(295-\mathrm{CH}_{3}, 22.3\right), 280\left(294-\mathrm{CH}_{3}\right.$, base peak), 265 (24.5), 264 (64.2). (Found: C. $66.08: \mathrm{H}, 4.89 ; \mathrm{N}, 3.96$. Calc for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{9} \cdot 1 / 3 \mathrm{H}_{2} \mathrm{O}$: C, 66.07; H. $5.15 ; \mathrm{N}, 4.05 \%$). Methyl ester of $9 \mathbf{b}$, colorless needles. m.p. 117-120 (from $\mathrm{Et}_{2} \mathrm{O} \cdot \mathrm{Me}_{2} \mathrm{CO}$). UV $\lambda_{\max }^{\mathrm{ErOH}} \mathrm{nm}$ (log є): 239 (4.36), 315 (3.37). 328 (3.36). IR $\nu_{\max }^{\mathrm{CHCl}_{2}}: 1705 \mathrm{~cm}^{-1}$ $\left(\mathrm{COOCH}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\delta: 3.41 .3 .77,3.88,4.03(3 \mathrm{H} \times 4$. each s . $\left.\mathrm{OCH}_{3} \times 4\right), \quad 6.84, \quad 7.12\left(1 \mathrm{H} \times 2\right.$ each $\mathrm{s}, \mathrm{C}_{5}-\mathrm{H}$ and $\left.\mathrm{C}_{8}-\mathrm{H}\right)$, $7.01\left(1 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz}, \mathrm{C}_{6}-\mathrm{H}\right), 7.05(1 \mathrm{H}, \mathrm{d} . \mathrm{d}, J=2.5,9.0 \mathrm{~Hz}$, $\left.\mathrm{C}_{4}-\mathrm{H}\right), 7.52\left(1 \mathrm{H}, \mathrm{d}, J-5.5 \mathrm{~Hz}, \mathrm{C}_{4}-\mathrm{H}\right), 8.21(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}$, $\left.\mathrm{C}_{3}-\mathrm{H}\right), 8.44\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.5 \mathrm{~Hz}, \mathrm{C}_{3}-\mathrm{H}\right) . \mathrm{MS} m / \mathrm{z}(\%): 354\left(\mathrm{M}^{2}-1\right.$, 16.3), $353\left(\mathrm{M}^{+}, 63.8\right), 323\left(354-() \mathrm{CH}_{3}, 22.9\right), 322\left(\mathrm{M}^{+}-\mathrm{OCH}_{3}\right.$, base
peak), 294 (322-CO, 9.5), 280 (14.1). (Found: C, 67.74; H, 5.41; N, 3.74. Calc for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{5}: \mathrm{C}, 67.98 ; \mathrm{H}, 5.42 ; \mathrm{N}, 3.96$).

6-Hydroxy-5,10-dimethoxy-7H-dibenzo[de, h]quinolin -7-one (10b), yellow needles (64.1% yield), m.p. $244-245^{\circ}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). UV $\lambda_{\text {max }}^{\mathrm{ErOH}} \mathrm{nm}(\log \epsilon): 219$ (4.52), 252 (4.50), 310 (3.73), 346 (3.98), 380 (3.87), 402 (3.97), 422 (4.04) (bathochromic shifts upon addition of alkali). ${ }^{\mathrm{i}} \mathrm{H}$ NMR $\delta: 4.10\left(6 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3} \times 2\right), 7.22(1 \mathrm{H}$, d.d, $\left.J=3.0,9.0 \mathrm{~Hz}, \mathrm{C}_{9}-\mathrm{H}\right), 7.23\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}_{4}-\mathrm{H}\right), 7.60(1 \mathrm{H}, \mathrm{d}$, $\left.J=5.5 \mathrm{~Hz} . \mathrm{C}_{3}-\mathrm{H}\right), 8.43\left(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}, \mathrm{C}_{8}-\mathrm{H}\right), 8.48(1 \mathrm{H}, \mathrm{d}$, $\left.J=3.0 \mathrm{~Hz}, \mathrm{C}_{11}-\mathrm{H}\right), 8.73\left(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}, \mathrm{C}_{2}-\mathrm{H}\right) . \mathrm{MS} m / z(\%):$ $307\left(\mathrm{M}^{+}\right.$, base peak), $306\left(\mathrm{M}^{+}-1,31.4\right), 278\left(\mathrm{M}^{+}-\mathrm{CO}, 38.8\right), 261$ (26.2). (Found: $\mathrm{C}, 70.48 ; \mathrm{H}, 4.19 ; \mathrm{N}, 4.61$. Calc for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{NO}_{4}$: C , 70.35; H. $4.26 ;$ N. 4.56%).
5.6, 10-Trimethoxy - 7H-dibenzo[de, h]quinolin - 7-one (4), pale yellow needles (67.0% yield), m.p. 195-196 ${ }^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ mixted solvent). UV $\lambda_{\text {max }}^{\mathrm{EtoH}} \mathrm{nm}(\log \epsilon): 217$ (4.66), 254 (4.46), 262 (4.46), 270 (sh, 4.43). 280 (sh, 4.25), 302 (sh, 3.85), 315 (3.93), $346(4.13), 376(4.05)$. IR $\nu_{\max }^{\mathrm{KBr}}: 1655 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR $\delta: 4.05,4.07,4.15\left(3 \mathrm{H} \times 3\right.$, each s. $\left.\mathrm{OCH}_{3} \times 3\right), 7.15(1 \mathrm{H}$, d.d, $\left.J=3.0,9.0 \mathrm{~Hz}, \mathrm{C}_{9}-\mathrm{H}\right), 7.35\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}_{4}-\mathrm{H}\right), 7.58(1 \mathrm{H}, \mathrm{d}, J=$ $\left.5.5 \mathrm{~Hz}, \mathrm{C}_{3}-\mathrm{H}\right), 8.35\left(1 \mathrm{H}, \mathrm{d}, J=3.0 \mathrm{~Hz}, \mathrm{C}_{11}-\mathrm{H}\right) .8 .37(1 \mathrm{H}, \mathrm{d}, J=$ $\left.9.0 \mathrm{~Hz}, \mathrm{C}_{8}-\mathrm{H}\right), 8.67\left(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}, \mathrm{C}_{2}-\mathrm{H}\right) . \mathrm{MS} \mathrm{m} / \mathrm{z}(\%): 321$ $\left(\mathrm{M}^{+}\right.$, base peak), $306\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 32.0\right), 292$ (35.0). (Found: C , $70.90 ; \mathrm{H}, 4.56 ; \mathrm{N}, 4.20$. Calc for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}()_{4}: \mathrm{C} .71 .02 ; \mathrm{H}, 4.71 ; \mathrm{N}$, 4.36\%).

Acknowledgement - The authors are grateful to Miss K. Suwz, Mukogawa Women's University, for elemental analyses and measurements of UV, IR, 'H NMR and MS.

REFERENCES

${ }^{1}$ Part 8. Y. Okamoto, S. Tanaka, K. Kitayama, M. Isomoto, M. Masaishi, H. Yanagawa and J. Kunitomo, Yakugaku Zasshi 91, 684 (1971). This paper constitutes Part 279 in the series Studies on the Alkaloids of Menispermacenus Plants (Part 278, see S. Kondo, M. Matsui and Y. Watanabe, Chem. Pharm. Bull. Tokyo in press (1983). Part of the contents was reported by rapid publication in J. Kunitomo and M. Satoh, Chem. Pharm. Bull Tokyo 30, 2659 (1982).
${ }^{2} \mathrm{M}$. Shamma, The Isoquinoline Alkaloids, p. 245. Academic Press, New York (1972).
${ }^{3}$ R. H. F. Manske, The Alkaloids, XIV, p. 225. Academic Press, New York (1973).
${ }^{4}$ J. Kunitomo, Y. Murakami and M. Sugisakon, Yakugaku Zasshi 99. 102 (1979).
${ }^{5}$ A. Vaidyanathan, Ind. J. Chem. 21B, 356 (1982).
${ }^{6}$ C. F. H. Allen, 6-Membered Heterocyclic Nitrogen Compounds with Four Condensed Rings, p. 204. Interscience, New York (1951).
${ }^{7}$ M. Tomita and K Fujitani, Yakugaku Zasshi 76, 1126 (1956).

