Note

Direct fluorination at positions 3' 4', and 6' of β -D-glucopyranosyltheophylline

FRANÇOISE LECLERCQ AND KOSTAS ANTONAKIS Institut de Recherches Scientifiques sur le Cancer, C.N.R.S., 94802 Villejuif (France) (Received January 31st, 1989; accepted for publication, May 3rd, 1989)

Considerable effort has been expended in the synthesis of deoxyfluoro sugars¹⁻⁶ as a result of interest in such analogs for use as hexokinase inhibitors⁷, as carriers of ¹⁸F in positron emission tomography⁸ (PET), and as possible anticancer agents⁹. Also, fluorinated pentofuranose nucleosides have been investigated for the treatment of infections by *Herpes simplex*¹⁰ (HSV) and human immunodeficiency¹¹ (HIV) viruses.

Little has been reported on fluorinated hexopyranose nucleosides¹² and, to our knowledge, the use of diethylaminosulfur trifluoride¹⁴ (DAST) has not been reported hitherto for their synthesis.

We now decribe the synthesis of 3'-, 4'-, and 6'-fluoro derivatives of β -D-glucopyranosyltheophylline.

DAST can effect^{2,13,14} the replacement of OH by F at primary, secondary, and tertiary positions (the last two with inversion of configuration) in high yields.

7-(2,3,4-Tri-O-benzoyl-6-deoxy-6-fluoro- β -D-glucopyranosyl)theophylline (3) was prepared in dry diglyme³ at 60° from the tribenzoate 2. The key precursor of 7-(2,4,6-tri-O-benzoyl-3-deoxy-3-fluoro- β -D-allopyranosyl)theophylline (13) was 7-(4,6-O-isopropylidene- β -D-glucopyranosyl)theophylline (5), which reacted with DAST in CH₂Cl₂ containing 4-dimethylaminopyridine to afford 7-(3-deoxy-3-fluoro-4,6-O-isopropylidene- β -D-allopyranosyl)theophylline (11). 7-(2,3,6-Tri-O-benzoyl-4-deoxy-4-fluoro- β -D-galactopyranosyl)theophylline (9) was obtained by the same procedure from 7-(2,3,6-tri-O-benzoyl- β -D-glucopyranosyl)theophylline (8). If the 4-dimethylaminopyridine was omitted, then 7-(2,3,6-tri-O-benzoyl-4-deoxy- β -D-*erythro*-hex-4-enopyranosyl)theophylline was obtained instead of 9. Attempts to fluorinate 7-(3,4,6-tri-O-benzoyl- β -D-glucopyranosyl)theophylline were unsuccessful even in hot diglyme¹⁵, probably because of steric hindrance in the formation of the reaction intermediate.

Debenzoylation (Zemplén) of 3 and 9 gave 4 and 10, respectively, and deacetalation of 11 gave 12.

All the compounds synthesised were characterised by their proton-coupled ¹⁹F- and proton-decoupled ¹³C-n.m.r. spectra. The n.m.r. data given in Tables I–III

20 7 30	40	6.17		H-4'	. <u>с</u> -н	H-6'a		9.3		J3',4'		n 0' C	J5',6'b	J _{6'a,6'b}
ç, 4 %	0.48		6.04	5.74	3.80	4.10	3.91		9.5	9.5	9.1	3.5	2.8	10.0
4 ^b 8 <i>a</i>	6.56	6.06	6.12	5.77	4.33	4.71	4.55	8.8	9.4	9.7	9.3	2.5	2.7	7.3
80	5.83	4.10	3.71	I	3.82	4.74	4.74	9.1	0.6	10.0	8.6			
	6.21	5.98	5.68	4.32	Ţ	←3.85-4.05→	*		9.5	9.4	9.1	ļ	I	ł
ъ	6.55	6.18	5.65	5.29	4.63	4.52	4.43		9.5	2.2	0	4.0	1	6.3
10	5.85	4.44	3.99	4.99	4.10	+3.9'	5-3.88→		8.2	0	0	2.3	7.4	ľ
5"	5.78	4.08	3.79	3.92	Ĵ,	←3.85-3.69→	*		7.0	5.4	10.7	I	-	
11a	5.92	4.20	5.08	4.00	4.00	$0 \leftarrow 3.89 - 3.78 \rightarrow$	9-3.78→		1.8	0.5	1	-	I	
12 ⁶	6.05	4.49	5.20	4.00	Ţ	4.14-3.78-	*		0.5	0	-	I	I	1
13"	5.64	4.80	5.50	4.80	4.49	3.92	3.53		0.5	0.5	9.2	3.8		12.1
R ^C H ₂ X					H	R	R2	R ₃		R4	R5	R		×
	-			1		F	OBz	OBz	2	Н	Н	OB.	OBz	OTr
R ²				7	ł	T	OBz	OBi	2	Н	Н	OB	Z	НО
	R ²			e		Н	OB_{Z}	OB	2	Н	Н	OB	2	ĹL,
4 4				4		Н	НО	HO		Н	Н	HO	L :	ц
				ŝ	, -	H	НО	НО		Н	Н	0	CMe ₂ -O	
				9		Н	OBz	OB	Z	Н	Н	ò	CMe ₂ -O	
				7	-	Н	OBz	OB	2	Н	Н	HO		но
				œ	H	Н	OBz	OB	2	Н	Η	HO		OBz
				6	-	Н	OBz	OB	2	Н	Ľ.	Η		OBz
				10	_	Н	НО	HO		Н	ц	Η		OBz
				H		Н	НО	H		ц	H	5	O-CMe ₂ -O	
				12		Н	НО	Η		Ľ.	H	HO		HO
				13	Т	F	OBz	Η		н	Н	OBz	2	OBz

308

TABLE I

NOTE

TABLE II

Compound	F	J _{F-6',H-6'}	J _{F-6', H-5'}	J _{F-4',H-4'}	$\mathbf{J}_{\textit{F-4'},\textit{H-3'}}$	J _{F-4',H-5'}	J _{F-3',H-3'}	J _{F-3',H-4'}	J _{F-3',H-2'}
3 ^a	-56.3	46.6	21.2						
4 ^b	-56.2	47.3	25.4						
9 ^a	-48.2			52.1	25.6	25.6			
10 ⁶	-46.8			51.4	30.9	30.9			
11 ^a	-50.6						54.0	27.0	27.0
12 ^b	-48.2						53.6	28.9	28.9
13ª	-48.1						53.7	28.9	28.9

¹⁹F-N.M.R. DATA (δ in p.p.m., J in Hz)

^{*a*}In CDCl₃ (internal C_6F_6). ^{*b*}In D₂O (external C_6F_6).

establish the location of the fluorine substituents and the configuration of the products.

The ¹³C-signals (Table III) were assigned by comparing the spectra with those of the parent compounds. Replacement of OH by F causes a downfield shift of the resonance of the attached carbon by 15–20 p.p.m., upfield shifts of the signals of the adjacent carbons by 2–5 p.p.m., and ${}^{1}J_{F,C}$ values of 180–200 Hz (Table III). Thus, the locations of the fluorine substituents were shown to be at position 6 in 3 and 4, at position 4 in 9 and 10, and at position 3 in 11–13.

For 9–13, the ${}^{1}J_{F,C}$ values (Table III) are in accordance with the results of Wray¹⁶ (175.9–183.1 Hz), but those for 3 and 4 (177.5 and 169.5) are higher than the previous values (~167.5)¹⁶. The $J_{F-6,C-5}$ value of 18.5 Hz for 3 and 4 is identical to that for 6-deoxy-6-fluoro- β -D-glucopyranose¹⁶. This author recorded ${}^{2}J_{F,C}$ values of ~17.5 when the oxygen function on the coupled carbon was *gauche* to the coupled fluorine, but smaller values were found for 9 and 11–13 (Table III).

In the ¹H- and ¹⁹F-n.m.r. spectra (Tables I and II, respectively), ² $J_{F,H}$ was 46.6–47.3 for **3** and **4**, 51.4–52.1 for **9** and **10**, and 53.6–54.0 for **11–13**. These values agree with other data^{2,17} on deoxyfluorosugars. The $J_{F.6,H-5}$ values of 21.2–25.4 for **3** and **4** accord with other observations³ and indicate the preponderance of the rotamer with F-6 antiperiplanar to H-5. The values of ³ $J_{F,H}$ for vicinal *trans*-diaxial nuclei in pyranose structures are generally¹⁸ in the range of 21–30 Hz. The observed ³ $J_{F,H}$ values 25.6–30.9 for **9–13** confirm the vicinal *trans*-diaxial H/F relationships. Therefore, the fluorine substituent is axial and the compounds have the ⁴ $C_1(D)$ conformation, which shows that replacement of OH by F does not affect the conformation⁶.

EXPERIMENTAL

General methods. — Melting points are uncorrected. T.l.c. was performed on Silica Gel 60- F_{254} (Merck) and flash chromatography on Silica Gel 60 (240–400

Compound	C-l'	C-2′	C-3'	C-4'	C-5'		J _{F-6', C-6'}	J _{F-6',C-5'}	C-6' JF6, C6' JF6, C5' JF6, C4' JF4, C4' JF4, C3' JF3, C3' JF3, C2' JF3, C4' JF3, C1'	J _{F-4',C-4'}	J _{F-4',C-5'}	J _{F-4',C-3'}	J _{F-3',C-3'}	J _{F-3',C-2'}	J _{F-3',C-4'}	$\mathbf{J}_{F:Y,C:I'}$
2ª	82.7	71.3	72.8	68.7	77.4	6.09										
3ª	82.5	71.9	73.8	68.3	75.8	81.0	177.5	18.5	5.4							
46	80.0	71.8	76.1	70.7	74.5	80.2	169.5	18.5								
8 a	83.2	71.1	79.2	66.6	ļ	61.7										
9 a	82.3	68.9	72.0	86.3	74.3	61.9				186.7	17.6	16.0				
10 ⁶	84.1	71.7	72.9	82.9	75.4	62.4				183.5	13.9	14.8				
5ª	85.7	72.9	74.6	75.0	62.0	70.8										
11ª	84.3	6.9	90.1	70.7	61.9	66,9							181.2	14.8	14.8	3.7
12 ^b	85.3	68.0	95.8	71.3	78.7	63.3							175.4	14.8	14.8	
13"	80.7	69.7	87.8	67.2	72.2	62.4							177.6	9.1	14.8	7.4
			2 (-												
^a In CDCl ₃ (internal Me ₄ Si). ^{n}	ternal M	e4Si). "II	וון ט _ג ט ה	nternal 3	(trimet	hylsilyl)-	-l-propan	esultonic	"In $D_2 O$ [internal 3-(trimethylsilyl)-1-propanesultonic acid, sodium salt].	ium salt]						

¹³C-N.M.R. DATA (8 IN P.P.M., J IN HZ)

TABLE III

310

mesh, Merck). N.m.r. spectra were recorded at room temperature with a Bruker 300 MSL spectrometer.

7-(2,3,4-Tri-O-benzoyl- β -D-glucopyranosyl)theophylline (2). — A solution of β -D-glucopyranosyltheophylline¹⁹ (2 g) and trityl chloride (1.7 g) in anhydrous pyridine (100 mL) was boiled under reflux overnight. Benzoyl chloride (2.2 mL) was then added and, after 2 h, the mixture was cooled, diluted with dichloromethane, washed twice with ice-water, and concentrated. Crystallisation of the residue from ethanol gave 7-(2,3,4-O-benzoyl-6-trityl- β -D-glucopyranosyl)theophylline (1; 4 g, 77%), m.p. 227–228°, $[\alpha]_D^{20} - 22^\circ$ (c 0.1, methanol).

Anal. Calc. for C₅₃H₄₄N₄O₉: C, 72.27; H, 5.00; N, 6.36. Found: C, 72.76; H, 4.96; N, 6.47.

A solution of 1 (5.6 g, 6 mmol) in 3:2 HCOOH–ether²⁰ (20 mL) was kept at room temperature for 30 min, then diluted with ether (150 mL), washed successively with brine and with saturated aq. sodium hydrogencarbonate, dried, and concentrated. Flash chromatography (EtOAc–hexane, 7:3) of the syrupy residue gave 2 (3.3 g, 80%), m.p. 146–147° (from methanol), $[\alpha]_{D^0}^{20}$ -5° (c 0.1, methanol).

Anal. Calc. for $C_{34}H_{30}N_4O_{10} \cdot H_2O$: C, 60.71; H, 4.76; N, 8.33. Found: C, 60.62; H, 4.89; N, 8.17.

7-(2,3,4-Tri-O-benzoyl-6-deoxy-6-fluoro- β -D-glucopyranosyl)theophylline (3). — DAST (0.585 mL, 6 mmol) was added dropwise to a stirred solution of 2 (980 mg, 1.5 mmol) in dry diglyme (6 mL) at -20°. The temperature was raised slowly to 60° and maintained for 1 h. The mixture was poured into ice, the precipitate was collected, and a solution in CH₂Cl₂ was washed once with M NaHCO₃ and twice with water, then concentrated. Flash chromatography (dichloromethanc-ethyl acetate, 4:1) of the resulting oil gave 3 (615 mg, 68%), m.p. 179–180° (from MeOH), [α]_D²⁰ -4° (c 0.1, methanol).

Anal. Calc. for C₃₄H₂₉FN₄O₉·0.5CH₃OH: C, 61.62; H, 4.58; F, 2.83; N, 8.32. Found: C, 61.68; H, 4.47; F, 2.80; N, 8.30.

7-(6-Deoxy-6-fluoro- β -D-glucopyranosyl)theophylline (4). — To a solution of 3 (665 mg, 1 mmol) in anhydrous methanol (10 mL) was added methanolic M sodium methoxide (1 mL). The mixture was stirred for 2 h at room temperature, neutralised with Amberlite IR-120 (H⁺) resin, and concentrated. Recrystallisation of the residue from methanol gave 4 (310 mg, 90%), m.p. 218–220°, $[\alpha]_D^{20} - 12^\circ$ (c 0.12, methanol).

Anal. Calc. for C₁₃H₁₇FN₄O₆·CH₃OH: C, 44.68; H, 5.58; F, 5.05; N, 14.89. Found: C, 44.89; H, 5.53; F. 4.92; N, 15.0.

7-(4,6-O-Isopropylidene- β -D-glucopyranosyl)theophylline (5). — A mixture of 7- β -D-glucoyranosyltheophylline¹⁹ (1.8 g), 2,2-dimethoxypropane (5 mL), and dry *p*-toluenesulfonic acid (15 mg) in dry *N*,*N*-dimethylformamide (15 mL) was stirred at room temperature for 20 h. M NaHCO₃ (1 mL) was added and the mixture concentrated under vacuum. A solution of the residue in dichloromethane was filtered and concentrated, and the residue was crystallised from ethanol to give 5 (1.39 g, 70%), m.p. 208–210°, $[\alpha]_D^{20} - 33^\circ$ (*c* 0.13, methanol).

Anal. Calc. for C₁₆H₂₂N₄O₇: C, 50.26; H, 5.76; N, 14.66. Found: C, 50.06; H, 5.80; N, 14.65.

7-(2,3-Di-O-benzoyl- β -D-glucopyranosyl)theophylline (7). — Conventional treatment of **5** with pyridine and benzoyl chloride and crystallisation of the product from ethanol gave 7-(2,3-di-O-benzoyl-4,6-O-isopropylidene- β -D-glucopyranosyl)-theophylline (**6**, 90%), m.p. 136–139°, $[\alpha]_{D}^{20} - 33°$ (c 0.13, methanol).

Amberlite IR-120 (H⁺) resin was added to a methanolic solution of **6**, which was boiled under reflux for 1 h, then filtered, and concentrated. The syrupy residue was crystallised from ethanol to give **7** (90%), m.p. 225–226°, $[\alpha]_D^{20} - 12^\circ$ (c 0.1, methanol).

Anal. Calc. for $C_{27}H_{26}N_4O_8 \cdot H_2O$: C, 57.04; H, 4.93; N, 9.86. Found: C, 57.23; H, 4.81; N, 10.08.

7-(2,3,6-Tri-O-benzoyl- β -D-glucopyranosyl)theophylline (8). — To a stirred solution of 7 (500 mg, 1 mmol) in pyridine (50 mL) at -30° was added, dropwise, 1 equiv. (0.116 mL) of benzoyl chloride. The mixture was stored at 0° for 72 h and then worked-up in the usual manner. Flash chromatography (ethyl acetate-hexane, 70:30) of the product gave 8 (460 mg, 70%), m.p. 226° (from EtOH), $[\alpha]_{D}^{20} - 12^{\circ}$ (c 0.13, methanol).

Anal. Calc. for $C_{34}H_{30}N_4O_{10}$: C, 62.38; H, 4.59; N, 8.56. Found: C, 62.30; H, 4.63; N, 8.56.

7-(2,3,6-Tri-O-benzoyl-4-deoxy-4-fluoro- β -D-galactopyranosyl)theophylline (9). — To a stirred solution of 8 (654 mg, 1 mmol) and 4-dimethylaminopyridine (244 mg, 2 mmol) in dry dichloromethane (20 mL) at -30° was added DAST (0.195 mL, 2 mmol) during 15 min under nitrogen. The mixture was then allowed to attain room temperature. After 24 h, the mixture was cooled to 0° , methanol was added, solvents were removed under vacuum, and the resulting oil was poured into icewater. The precipitate was collected, and a solution in CH₂Cl₂ was washed with M NaHCO₃ and water to pH 7, dried, and concentrated. Flash chromatography (dichloromethane-ethyl acetate, 9:1) of the residue gave 9 (446 mg, 68%), m.p. 125-126° (from MeOH), $[\alpha]_{D}^{20} + 25^{\circ}$ (c 0.1, ethyl acetate).

Anal. Calc. for C₃₄H₂₉FN₄O₉: C, 62.20; H, 4.42; F, 2.90; N, 8.54. Found: C, 62.05; H, 4.38; F, 2.29; N, 8.29.

7-(4-Deoxy-4-fluoro- β -D-galactoyranosyl)theophylline (10). — Debenzoylation of 9, as for 3, gave 10 (90%), m.p. 215–216° (from MeOH), $[\alpha]_{D}^{20}$ +32° (c 0.1 methanol).

Anal. Calc. for $C_{13}H_{17}FN_4O_6 \cdot 0.5CH_3OH$: C, 45.0; H, 5.27; F, 5.27; N, 15.55. Found: C, 44.84; H, 5.22; F, 5.23; N, 15.52.

7-(3-Deoxy-3-fluoro-4,6-O-isopropylidene- β -D-allopyranosyl)theophylline (11). — A solution of 5 (1.53 g, 4 mmol) and 4-dimethylaminopyridine (1 g, 8 mmol) in dry CH₂Cl₂ at -20° was treated with DAST (0.8 mL, 8 mmol) as described for 9. Column chromatography (ethyl acetate-hexane, 3:1) of the product gave 11 (740 mg, 43%), m.p. 235-236° (from EtOH), $[\alpha]_{D}^{20}$ -13° (c 0.1, ethyl acetate). Anal. Calc. for $C_{16}H_{21}FN_4O_6 \cdot 0.5H_2O$: C, 48.85; H, 5.60; F, 4.83; N, 14.24. Found: C, 49.01; H, 5.59; F, 4.90; N, 14.21.

7-(3-Deoxy-3-fluoro- β -D-allopyranosyl)theophylline (12). — To a solution of 11 in methanol was added Amberlite IR-120 (H⁺) resin, and the mixture was boiled under reflux for 90 min, then filtered, and concentrated to give 12 (90%), m.p. 246° (from EtOH), $[\alpha]_{D}^{20} - 22^{\circ}$ (c 0.1, methanol).

Anal. Calc. for $C_{13}H_{17}FN_4O_6 \cdot 0.25C_2H_5OH$: C, 45.56; H, 5.20; F, 5.34; N, 15.75. Found: C, 45.58; H, 5.13; F, 5.30; N, 15.80.

7-(2,4,6-Tri-O-benzoyl-3-deoxy-3-fluoro-β-D-allopyranosyl)theophylline (13). — Conventional treatment of 12 with benzoyl chloride-pyridine gave 13 (80%), m.p. 126-127° (from MeOH), $[\alpha]_D^{20}$ -35° (c 0.1, methanol).

Anal. Calc. for C₃₄H₂₉FN₄O₉: C, 62.20; H, 4.40; F, 2.90; N, 8.50. Found: C, 62.20; H, 4.34; F, 2.83; N, 8.40.

REFERENCES

- A. B. FOSTER, R. HEMS, AND J. M. WEBBER, Carbohydr. Res., 5 (1967) 292–301; J. S. BRIMACOMBE, A. B. FOSTER, R. HEMS, J. H. WESTWOOD, AND L. D. HALL, Can. J. Chem., 48 (1970) 3946–3952; E. M. BESSELL, A. B. FOSTER, J. H. WESTWOOD, L. D. HALL, AND R. N. JOHNSON, Carbohydr. Res., 19 (1971) 39–48; L. D. HALL, R. N. JOHNSON, J. ADAMSON, AND A. B. FOSTER, Can. J. Chem., 49 (1971) 118–123.
- 2 C. W. SOMAWARDHANA AND E. G. BRUNNGRABER, Carbohydr. Res., 121 (1983) 51-60.
- 3 M. SHARMA AND W. KORYTNYK, Tetrahedron Lett., (1977) 573-576.
- 4 P. J. CARD, J. Org. Chem., 48 (1983) 393-395.
- 5 S. G. WITHERS, D. J. MACLENNAN, AND I. P. STREET, Carbohydr. Res., 154 (1986) 127-144.
- 6 P. KOVÁČ, H. J. C. YEH, AND C. P. J. GLAUDEMANS, Carbohydr. Res., 169 (1987) 23-34.
- 7 W. A. SZAREK, G. W. HAY, AND B. DOBOSZEWSKI, J. Chem. Soc., Chem. Commun., (1985) 663-664.
- 8 P. G. WALTER, in P. N. CAMBELL AND G. D. GREVILLE (Eds.), *Essays in Biochemistry*, Vol. 2, Academic Press, New York, 1966, p. 33.
- 9 J. B. SHATTON, H. P. MORRIS, AND S. WEINHOUSE, Cancer Res., 29 (1969) 1161-1171.
- 10 A. D. BORTHWICK, S. BUTT, K. BIGGADIKE, A. M. AXALL, S. M. ROBERTS, P. M. YOUDS, B. E. KIRK, B. R. BOOTH, J. M. CAMERON, S. W. COX C. L. P. MARR, AND M. D. SHILL, J. Chem. Soc., Chem. Commun., (1988) 656–658.
- 11 P. HERDEWIJN, R. PAUWELS, M. BABA, J. BALZARINI, AND E. DE CLERCQ, J. Med. Chem., 30 (1987) 2131-2137.
- 12 J. KIBURIS, A. B. FOSTER, AND J. H. WESTWOOD, J. Chem. Soc., Chem. Commun., (1975) 44-45, and references therein.
- 13 W. J. MIDDLETON, J. Org. Chem., 40 (1975) 574-578.
- 14 M. HUDLICKY, Org. React., 35 (1988) 513-637.
- 15 P. KOVÁČ, Carbohydr. Res., 153 (1986) 168-170.
- 16 V. WRAY, J. Chem. Soc., Perkin Trans. 2, (1976) 1598-1605.
- 17 L. PHILIPPS AND V. WRAY, J. Chem. Soc., B, (1971) 1618-1624.
- 18 A. A. E. PENGLIS, Adv. Carbohydr. Chem. Biochem., 38 (1981) 195-285.
- 19 F. LECLERCQ, Thèse, Paris, 1971.
- 20 M. BESSODES, D. KOMIOTIS, AND K. ANTONAKIS, Tetrahedron Lett., 27 (1986) 579-580.