ACS Medicinal Chemistry Letters

Letter

Subscriber access provided by Fudan University

A pyrano[2,3,4-cd]indole as a scaffold for selective non-basic 5-HT6R ligands

Jakub Staro#, Stefan Mordalski, Dawid Warszycki, Grzegorz Sata#a, Adam S. Hogendorf, and Andrzej J. Bojarski

ACS Med. Chem. Lett., Just Accepted Manuscript • DOI: 10.1021/acsmedchemlett.6b00482 • Publication Date (Web): 27 Mar 2017

Downloaded from http://pubs.acs.org on March 28, 2017

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

ACS Medicinal Chemistry Letters is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

A pyrano[2,3,4-*cd*]indole as a scaffold for selective non-basic 5-HT₆R ligands

Jakub Staroń^{a†}, Stefan Mordalski^a, Dawid Warszycki^a, Grzegorz Satała^a, Adam Hogendorf^a, Andrzej J. Bojarski^a

^a Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, 12 Smętna Street, Poland.

ABSTRACT: In this paper, we report the synthesis of a pyrano[2,3,4-*cd*]indole chemical scaffold designed through a tandem bioisostere generation/virtual screening protocol in search of 5-HT₆R ligands. The discovered chemical scaffold resulted in the design of highly active basic and non-basic 5-HT₆R ligands (5-HT₆R $K_i = 1$ nM for basic compound **6b** and 5-HT₆R $K_i = 4$ nM for its neutral analog **7b**). Additionally, molecular modeling suggested that the hydroxyl group of non-basic ligands **7a**–**7d** forms hydrogen bonds with aspartic acid D^{3x32} or D^{7,36x35}.

KEYWORDS: Serotonin, 5-HT6, non-basic, molecular modeling, bioisosteres, virtual screening

Supporting Information Placeholder

The 5-Hydroxytryptanime receptor 6 (5-HT₆R) is one of fourteen identified serotonin receptors belonging to the Class A Gprotein coupled receptors (GPCRs) and is positively coupled to adenylate cyclase.^{1,2} It has been found that this receptor is distributed almost exclusively in areas of the central nervous system (CNS), which suggests that its ligands are unlikely to cause undesirable peripheral side effects.³ In situ hybridisation studies of the 5-HT₆ receptor in rat brains using mRNA showed a major location in the projection areas of 5-HT neurons, especially in the structures essential for cognitive processes.⁴ The location of 5-HT₆R clearly suggests application of its ligands as a procognitive drugs, which was confirmed in animal models.⁵ Additionally, recent findings showed that 5-HT₆R is involved in the development of neural circuits, including neuronal migration and neurite growth.^{6,7} As it was shown, blockade of 5-HT₆R is a promising new therapeutic perspective in the treatment of cognitive decline in patients with schizophrenia.7

So far, no selective 5-HT₆R ligand is used in the therapy, however several compounds (all selective antagonists of 5-HT₆R) that are currently under phase II or phase III clinical trials for the treatment of moderate Alzheimer disease (e.g.: Idalopirdine -Lundbeck; SUVN-502 - Suven Life Sciences) and for amplifying the effects of antipsychotic drugs (e.g.: AVN-211 - Avineuro Pharm. Inc., RVT-101 – Axovant) indicated promising results.⁸ One major drawback of basic 5-HT₆R ligands is their possible affinity towards hERG, because they fulfil the hERG pharmacophore model.9 Although there are examples of non-basic hERG ligands,¹⁰ compounds devoid of a basic nitrogen atom are much less likely to exhibit this kind of activity. Until recently, it was believed that only a compound with a basic nitrogen atom could be an orthosteric ligand of an aminergic GPCR. The validity of this statement was widely acclaimed and independently supported in numerous studies.¹¹⁻¹⁴ However, the recent emergence of the non-basic ligands has somehow shifted the paradigm of medicinal chemistry.

A very important feature of the non-basic $5-HT_6R$ ligands is their extreme selectivity. Compounds developed by Ivachtchenko et al.¹⁵ were tested against 55 therapeutic targets and achieved 5000- to >50000-fold selectivity towards 5-HT₆R. Van Loevezijn et al.¹⁶ profiled their ligands in a panel of 86 receptors, ion channels, transporters and 27 enzymes. The only off-target for which weak affinities were observed was the translocator protein and 5-HT_{2B}R.

Our initial attempt was to design a novel 5-HT_6R ligands using an automated bioisostere generation from the Pipeline Pilot software¹⁷. As a basis for the bioisostere generation we utilized 10 structurally diverse, highly active 5-HT_6R ligands (parent structures) that were manually selected from 5-HT_6R ligands stored in the ChEMBL (version 13) database (see Supplementary Information, page 2).¹⁸

Each of these chemical entities was processed using the Breed module of Pipeline Pilot,¹⁷ which resulted in 313 bioisosteres that were subsequently visually inspected in terms of novelty and synthetic accessibility (for selected compounds and information about their synthesis see Supplementary Information, page 3). Consequently, one bioisostere (**6a**) was selected for further evaluation, that emerged from reduction of the ring size together with the aromatization of a parent compound A (Figure 1). Here, we present the synthesis of a new pyrano[2,3,4-*cd*]indole scaffold that allowed us to obtain highly active basic and non-basic 5-HT₆R ligands.

Figure 1. A general formula of a tricyclic scaffold (X = heteroatom), together with bioisosteric substitution (ring size reduction and aromatization) of the parent compound A.

Tricyclic scaffolds containing an indole moiety, as described by a presented general formula (Figure 1), have been barely explored in medicinal chemistry. Only two groups of compounds containing a nitrogen atom can be found: pyrrolo[4,3,2-de]quinolines reported by Balczewski et al.,¹⁹ and marine alkaloids ammosamides resynthesized by Takayama et al.²⁰ Ammosamides present significant cytotoxicity against human colon adenocarcinoma and moderately inhibit human quinine reductase II. To date, there is only one analog containing a sulfur atom chuangxinmycin, a potent and selective inhibitor of bacterial tryptophanyl tRNA synthetase.²¹ Surprisingly, no structures containing oxygen in the 6-membered ring have been reported to date.

The synthesis of the designed heterocyclic scaffold was planned as an intramolecular condensation of a carbonyl with the alpha carbon of a nitrile group.

The first step of the synthesis involved the addition of a chloroacetonitrile to a 4-hydroxyindole that resulted in 1 (Scheme 1). Subsequent formylation was performed using DMF with NCS and PPh₃ as a formylating agent because of an unsuccessful standard Vilsmeyer-Haack reaction. Similarly, acetylation of 1 using Vilsmeyer-Haack conditions resulted in a mixture of unidentified products. Finally, the utilization of diethylaluminium chloride combined with acetyl chloride afforded the acetylated product (2b) in high yield. The obtained intermediates (2a, 2b) were cyclised in DMF with K₂CO₃ at 150 °C; however, the cyclisation of 2b required much longer time compared to 2a (20 min vs. 4 hours).

Scheme 1. Synthesis of designed bioisosteres.

All attempts to reduce the nitrile group to an amine were unsuccessful, and only after substitution of the indole nitrogen with sulfonyl chlorides (compounds 4a-4d) was reduction with DIBAL-H possible, which afforded aldehydes 5a-5d.

Reductive amination or reduction of the obtained aldehydes resulted in the final products (**6a–6c**, **7a–7d**).

Evaluation of the binding affinities of the synthesized compounds at four serotonin (5-HT1A, 5-HT2A, 5-HT6, 5-HT7) and dopamine D₂ receptors using in vitro radioligand displacement revealed that all of the synthesized compounds (except 4b and 5b) were potent 5-HT₆R ligands ($K_i = 1-52$ nM. Table 1). The basic derivatives (6a-6c) were generally 4- to 7-fold more active than their neutral analogs (7a-7d). Compounds possessing the 1naphthylsulfonyl moiety (6b, 7b, 7d) exhibited 2- to 9-fold higher affinity for 5-HT₆R than the benzenesulfonyl derivatives (**6a**, **6c**, 7a, 7c), with 6b being the highest affinity ligand with 5-HT₆R K_{i} = 1 nM. Introduction of a methyl group at C3 position of the pyrano[2,3,4-cd]indole (compounds 7c and 7d) resulted in 2- to 5fold less active compounds than compounds without methyl group (7a and 7b). Analog 4b containing nitrile group was found to possess low affinity for 5-HT₆R (266 nM), whereas analog 5b with carbonyl group was 3-fold less active ($K_i = 755 \text{ nM}$).

Neutral analogs possessing a hydroxyl group exhibited much greater selectivity towards other receptors, than their basic counterparts, despite lower affinity for 5-HT₆R. Additionally, their functional antagonist activity was retained though they lost the ability to form a charge reinforced hydrogen bond with aspartic acid D^{3x32} (in GPCRdb notation²²), which was evidenced by the value of $K_{\rm b} = 16$ nM for **7a**.

The binding mode of the synthesized compounds was investigated with docking experiments to the homology models of 5-HT₆R (see Supplementary Information). Both the basic and nonbasic analogs exhibited very consistent binding modes (Figure 2), overlapping with the previously reported data: ²³ the peripheral aromatic group formed stacking interactions with phenylalanines F^{6x51} and F^{6x52} , and the sulfonyl group of the ligands formed a hydrogen bond with N^{6x55}, in line with the mutagenetic data.²⁴ In addition, a protonated nitrogen atom of the basic analogs formed a charge-assisted hydrogen bond with D^{3x32}, exhibiting the classical binding mode for the basic compounds.²⁵ The hydroxyl group formed hydrogen bonds either with aspartic acid D^{3x32}, D^{7.36x35} or tyrosine Y^{7.43x42}; however, the hydrogen bond with D^{7.36x35} was the most populated.

The results of molecular modeling suggested that the polar interaction of the basic amine group might be replaced with the interaction with another polar moiety (e.g., hydroxyl), and the *in vitro* tests confirmed that such a substitution did not cause a significant drop of affinity and functional activity. Although nitrile and carbonyl groups can form hydrogen bonds,²⁶ the nitrile moiety pointed outside of the binding pocket preventing it from forming any interaction. In the case of the carbonyl, the hydrogen bond was formed with a backbone nitrogen of leucine 182 located in the extracellular loop 2. Such an interaction is very weak; nevertheless, the carbonyl derivative **5b** exhibited 3-fold higher affinity than nitrile derivative **4b**.

ACS Medicinal Chemistry Letters

Figure 2. Representative L-R virtual complexes of (**A**) **6b** (5-HT₆R $K_i = 1$ nM, green) and **7b** (5-HT₆R $K_i = 4$ nM, orange), and (**B**) **4b** (5-HT₆R $K_i = 266$ nM, green) and **5b** (5-HT₆R $K_i = 755$ nM, blue) with a homology model of 5-HT₆R. The protonated nitrogen atom of **6b** formed a charge-assisted hydrogen bond with D^{3x32}, and the hydroxyl group of **7b** formed a hydrogen bond with D^{7.36x35}. The carbonyl oxygen of **4b** formed a hydrogen bond with the backbone nitrogen of leucine L182. Sulfonyl groups of every compound formed hydrogen bonds with asparagine N^{6x55}, whereas the peripheral aromatic rings (naphthalene) were placed between phenylalanines F^{6x51} and F^{6x52}, forming stacking interactions. Yellow dotted lines indicate hydrogen bonds, whereas blue dotted lines indicate aromatic interactions.

Table 1.	Structure	and in	vitro	activity	data	of	compounds	4b,	5b,	6a-	c and	7a-0	d.
----------	-----------	--------	-------	----------	------	----	-----------	-----	-----	-----	-------	------	----

R ² O V V V V V V V V V V	Cmpd.	D ¹	R ²	Ar	$K_{i} [nM]^{a}$						
		ĸ			5-HT ₆	$5\text{-}HT_{1A}$	5-HT _{2A}	5-HT ₇	D_2		
	4b	Н	CN	1-naphthyl	755	> 10 000	n.d.	> 10 000	> 10 000		
	5b	Н	СНО	1-naphthyl	266	> 10 000	n.d.	> 10 000	5 162		
	6a	Н	CH ₂ N(Me) ₂	Ph	$5 K_{\rm b} = 1.5 \pm 0.5^{\rm b}$	> 10 000	65	3 692	6 698		
	6b	Н	CH ₂ N(Me) ₂	1-naphthyl	1	5 967	489	438	1 489		
	6c	Н	CH ₂ N(Et) ₂	Ph	28	> 10 000	1 703	> 10 000	4 351		
	7a	Н	CH ₂ OH	Ph	$36 K_{\rm b} = 16 \pm 3^{\rm b}$	> 10 000	> 10 000	> 10 000	> 10 000		
	7b	Н	CH ₂ OH	1-naphthyl	4	n.d.	> 10 000	> 10 000	4 287		
	7c	Me	CH ₂ OH	Ph	52	> 10 000	> 10 000	> 10 000	> 10 000		
	7d	Me	CH ₂ OH	1-naphthyl	20	> 10 000	> 10 000	> 10 000	> 10 000		

^a Binding affinity, K_{i} , expressed as the average of at least two independent experiments; the maximum S.D. did not exceed 32% (see Supplementary Information, page 6); ^b full antagonist, K_b [nM] expressing the functional activity as the average of at least three independent experiments; n.d. – not determined. Affinity of the reference drugs: 5-HT₆R and 5-HT_{2A}R, Olanzapine – $K_i = 10.7 \pm 2.1$ nM and $K_i = 6.2 \pm 0.9$ nM, respectively; 5-HT_{1A}R, Buspirone – $K_i = 34.3 \pm 4.2$ nM; 5-HT₇R, Clozapine – $K_i = 45.5 \pm 5.1$ nM; D₂R, Ziprasidone – $K_i = 2.1 \pm 0.3$ nM.

The presented chemical scaffold of pyrano[2,3,4-*cd*]indole is unique, as no similar compounds have been reported in the literature. The addition of an aromatic-sulfonyl moiety at the indole nitrogen afforded highly active basic and neutral 5-HT₆R ligands. Additionally, the nitrile group of compounds **3a** and **3b** allows them to be utilized in click chemistry, thus providing a valuable building block for the synthesis of biologically active compounds. In addition, the compound **3a** exhibited strong green fluorescence, with a maximum emission of 520 nm (see Supplementary Information), which creates the possibility to use it as a building block for fluorescent markers.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website.

Synthetic procedures and characterization of new compounds, experimental details of *in vitro* assays. Fluorescent spectra of compound **3a** (PDF).

AUTHOR INFORMATION

Corresponding Author

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

[†]Tel.: +48 12 6623320, email: staron@if-pan.krakow.pl

Author Contributions

J.S. designed and synthesized compounds, S.M. performed the docking to the 5-HT₆R model, D.W. performed the virtual screening protocol, G.S. performed the *in vitro* tests, A.H. performed the spectral analysis of compounds. J.S. and A.J.B. wrote the paper with input from coauthors.

ACKNOWLEDGMENT

The study was partially supported by the grant OPUS 2014/13/B/NZ7/02210 from the Polish National Science Centre and grant PBS3/B7/20/2015 from the Polish National Centre for Research and Development.

ABBREVIATIONS

5-HT, 5-hydroxytryptamine; 5-HT₆R, 5-hydroxytryptamine receptor 6; mRNA, messanger RNA; GPCR, G-protein coupled receptor; hERG, human *Ether-à-go-go-*Related Gene; DMF, dimethylformamide; NCS, *N*-chlorosuccimide; PPh₃, triphenylphosphine; DIBAL-H, diisobutylaluminium hydride; D₂, dopamine receptor 2; GPCRdb, G- protein coupled receptor database, S.D., standard deviation.

REFERENCES

- Monsma, F. J.; Shen, Y.; Ward, R. P.; Hamblin, M. W.; Sibley, D. R. Cloning and Expression of a Novel Serotonin Affinity for Tricyclic Psychotropic Drugs Receptor with High *Mol. Pharmacol.* **1992**, *43* (3), 320–327.
- (2) Sleight, A. J.; Boess, F. G.; Bös, M.; Bourson, A. The putative 5-ht6 receptor: localization and function. *Ann. NY. Acad. Sci.* 1998, 861 (1), 91–96.
- (3) Ruat, M.; Traiffort, E.; Arrang, J. M.; Tardivellacombe, J.; Diaz, J.; Leurs, R.; Schwartz, J. C. A Novel Rat Serotonin (5-HT6) Receptor: Molecular Cloning, Localization and Stimulation of cAMP Accumulation *Biochem. Bioph. Res. Co.* **1993**, *193* (1), 268–276.
- (4) Ward, R. P.; Hamblin, M. W.; Lachowicz, J. E.; Hoffman, B. J.; Sibley, D. R.; Dorsa, D. M. Localization of Serotonin Subtype 6 Receptor Messenger RNA In The Rat Brain By In Situ Hybridization Hisdtochemistry *Neuroscience* 1995, 64 (4), 1105–1111.
- (5) Nikiforuk, A. The procognitive effects of 5-HT6 receptor ligands in animal models of schizophrenia. *Revi. neurosci.* 2014, 25 (3), 367–382.
- (6) Jacobshagen, M.; Niquille, M.; Chaumont-Dubel, S.; Marin, P.; Dayer, A. The serotonin 6 receptor controls neuronal migration during corticogenesis via a ligand-independent Cdk5-dependent mechanism. *Development* 2014, 3370–3377.
- (7) Dayer, A. G.; Jacobshagen, M.; Chaumont-Dubel, S.; Marin, P. 5-HT6 Receptor: A New Player Controlling the Development of Neural Circuits *ACS Chem. Neurosci.* 2015, *6* (7), 951–960.
 (8) https://clinicaltrials.gov/.
- (9) Kratz, J. M.; Schuster, D.; Edtbauer, M.; Saxena, P.; Mair, C.
 (9) Kratz, J. M.; Schuster, D.; Edtbauer, M.; Saxena, P.; Mair, C.
 E.; Kirchebner, J.; Matuszczak, B.; Baburin, I.; Hering, S.; Rollinger, J. M. Experimentally Validated hERG Pharmacophore Models as Cardiotoxicity Prediction Tools J. Chem. Inf. Model. 2014, 54 (10), 2887–2901.
- (10) Aronov, A. M. Common Pharmacophores for Uncharged

Human Ether-a-go-go-Related Gene (hERG) Blockers J. Med. Chem. 2006, 49 (23), 6917–6921.

- Ho, B. Y.; Karschin, A.; Branchek, T.; Davidson, N.; Lester, H. A. The role of conserved aspartate and serine residues in ligand binding and in function of the 5-HT1A receptor: A site-directed mutation study *FEBS Lett.* **1992**, *312* (2–3), 259–262.
- (12) Savarese, T. M.; Fraser, C. M. In vitro mutagenesis and the search for structure-function relationships among G proteincoupled receptors *Biochem. J.* **1992**, *283 (Pt 1, 1–19)*.
- (13) Schwartz, T. W. Locating ligand-binding sites in 7tm receptors by protein engineering *Curr. Op. Biotech.* **1994**, 5 (4), 434–444.
- (14) Strader, C. D.; Sigal, I. S.; Candelore, M. R.; Rands, E.; Hill, W. S.; Dixon, R. a. Conserved aspartic acid residues 79 and 113 of the beta-adrenergic receptor have different roles in receptor function. *J. Biol. Chem.* **1988**, *263* (21), 10267–10271.
- Ivachtchenko, A. V; Golovina, E. S.; Kadieva, M. G.; Kysil, V. M.; Mitkin, O. D.; Tkachenko, S. E.; Okun, I. M. Synthesis and Structure–Activity Relationship (SAR) of (5,7- Disubstituted 3-phenylsulfonyl-pyrazolo[1,5-a]pyrimidin-2-yl)- methylamines as Potent Serotonin 5-HT6 Receptor (5-HT6R) Antagonists J. Med. Chem. 2011, 54, 8161–8173.
- (16) van Loevezijn, A.; Venhorst, J.; Bakker, W. I. I.; de Korte, C. G.; de Looff, W.; Verhoog, S.; van Wees, J.-W.; van Hoeve, M.; van de Woestijne, R. P.; van der Neut, M. A. W.; Borst, A. J. M.; van Dongen, M. J. P.; de Bruin, N. M. W. J.; Keizer, H. G.; Kruse, C. G. N'-(Arylsulfonyl)pyrazoline-1-carboxamidines as Novel, Neutral 5-Hydroxytryptamine 6 Receptor (5-HT6R) Antagonists with Unique Structural Features *J. Med. Chem.* 2011, *54*, 7030–7054.
- (17) Warr, W. A. Scientific workflow systems: Pipeline Pilot and KNIME. J. Comp. Aided Mol. Des. 2012, 26 (7), 801–804.
- Gaulton, A.; Bellis, L. J.; Bento, A. P.; Chambers, J.; Davies, M.; Hersey, A.; Light, Y.; McGlinchey, S.; Michalovich, D.; Al-Lazikani, B.; Overington, J. P. ChEMBL: a large-scale bioactivity database for drug discovery. *Nucleic Acids Res.* 2012, 40 (Database issue), D1100–D1107.
- (19) Balczewski, P.; Joule, J. A.; Estevez, C.; Alvarez, M. Synthesis of Some Pyrrolo[4,3,2-de]quinolines J. Org. Chem. 1994, 59, 4571–4575.
- (20) Takayama, Y.; Yamada, T.; Tatekabe, S.; Nagasawa, K. A tandem Friedel–Crafts based method for the construction of a tricyclic pyrroloquinoline skeleton and its application in the synthesis of ammosamide B *Chem. Comm.* **2013**, *49*, 6519– 6521.
- (21) Brown, M. J.; Carter, P. S.; Fenwick, A. E.; Fosberry, A. P.; Hamprecht, D. W.; Hibbs, M. J.; Jarvest, R. L.; Mensah, L.; Milner, P. H.; O'Hanlon, P. J.; Pope, A. J.; Richardson, C. M.; West, A.; Witty, D. R. The antimicrobial natural product chuangxinmycin and Some synthetic analogues are potent and selective inhibitors of bacterial tryptophanyl tRNA synthetase *Bioorg. Med. Chem. Lett.* **2002**, *12* (21), 3171–3174.
- Isberg, V.; Mordalski, S.; Munk, C.; Rataj, K.; Harpsøe, K.; Hauser, A. S.; Vroling, B.; Bojarski, A. J.; Vriend, G.; Gloriam, D. E. GPCRdb: an information system for G protein-coupled receptors *Nucleic Acids Res.* 2016, 44 (D1), D356–D364.
- (23) de la Fuente, T.; Martín-Fontecha, M.; Sallander, J.; Benhamú, B.; Campillo, M.; Medina, R. a; Pellissier, L. P.; Claeysen, S.; Dumuis, A.; Pardo, L.; López-Rodríguez, M. L. Benzimidazole derivatives as new serotonin 5-HT6 receptor antagonists. Molecular mechanisms of receptor inactivation. *J. Med. Chem.* 2010, *53* (3), 1357–1369.
- (24) Harris, R. N.; Stabler, R. S.; Repke, D. B.; Kress, J. M.; Walker, K. A.; Martin, R. S.; Brothers, J. M.; Ilnicka, M.; Lee, S. W.; Mirzadegan, T. Highly potent, non-basic 5-HT 6 ligands. Site mutagenesis evidence for a second binding mode at 5-HT 6 for antagonism *Bioorgan. Med. Chem. Lett.* **2010**, *20* (11), 3436– 3440.
- (25) González-Vera, J. A.; Medina, R. A.; Martín-Fontecha, M.; Gonzalez, A.; de la Fuente, T.; Vázquez-Villa, H.; García-Cárceles, J.; Botta, J.; McCormick, P. J.; Benhamú, B.; Pardo, L.; López-Rodríguez, M. L. A new serotonin 5-HT6 receptor antagonist with procognitive activity – Importance of a halogen bond interaction to stabilize the binding *Sci. Rep.* 2017, 7, 41293.
- (26) Questel, J. Le; Berthelot, M.; Laurence, C. Hydrogen-bond acceptor properties of nitriles : a combined crystallographic and ab initio theoretical investigation *J. Phys. Org. Chem.* **2000**, *13*,

 347-358.

88x34mm (300 x 300 DPI)