Lithium, Aluminum, and Gallium Complexes of the C_6F_5 -Substituted β -Diketiminate Ligand [HC(CMe)₂(NC₆F₅)₂]⁻

Dragoslav Vidovic, Jamie N. Jones, Jennifer A. Moore, and Alan H. Cowley*

Austin, Texas/USA, Department of Chemistry and Biochemistry, The University of Texas at Austin

Received March 30, 2005.

Dedicated to Professor Herbert W. Roesky on the Occasion of his 70th Birthday

Abstract. The β -aminoimine [HC(CMe)₂(NC₆F₅)₂]H (1) is readily converted into the lithium β -diketiminate [HC(CMe)₂(NC₆F₅)₂]Li·OEt₂ (2) by treatment with MeLi. The aluminum and gallium derivatives [{HC(CMe)₂(NC₆F₅)₂}MMe₂] (M = Al (3); Ga (4)) have been prepared via the CH₄ elimination reactions of 1 with MMe₃. The

Introduction

β-Diketiminates continue to attract considerable interest as supporting ligands due to their range of coordination modes and their propensity to stabilize low oxidation states [1]. Illustrative of the latter point is the isolation and characterization of novel aluminum(I) and gallium(I) β -diketiminates by *Roesky* et al. [2] and *Power* et al. [3], respectively. In the context of main group chemistry, the β -diketiminate ligands that have been employed thus far typically feature alkyl and/or aryl substituents [1]. Considerably less information is available regarding β-diketiminate ligands bearing electron-withdrawing groups. However, one such ligand, $[HC(CMe)_2(NC_6F_5)_2]^-$, has been reported [4]. At the present time, this ligand has only been used for the synthesis of two iron complexes [4]. To the best of our knowledge, there is no record of the use of this ligand in main group chemistry. However, we have recently employed the $[HC(CMe)_2(NC_6F_5)_2]^-$ ligand for the isolation of an oxoborane (LB=O) stabilized by complexation to aluminum trichloride [5]. In the present paper, we describe the syntheses and X-ray crystal structures of lithium, aluminum, and gallium complexes supported by the $[HC(CMe)_2(NC_6F_5)_2]^-$ ligand. We also report the structure of the corresponding β -aminoimine, [HC(CMe)₂(NC₆F₅)₂]H.

Results and Discussion

Syntheses

The lithium derivative $[HC(CMe)_2(NC_6F_5)_2]Li \cdot OEt_2$ (2), a potentially valuable synthon, is readily prepared in high

* Prof. Dr. A. H. Cowley The University of Texas at Austin Department of Chemistry and Biochemistry 1 University Station A5300 Austin, TX 78712-0165 USA Tel.: Int + 1-512-471-7484 Fax: Int. + 1-512-471-6822 e-mail: cowley@mail.utexas.edu X-ray crystal structures of $1\,-\,4$ have been determined and the trends in metrical parameters are discussed.

Keywords: β -Diketiminates; Lithium; Aluminum; Gallium; Crystal structure

yield by treatment of $[HC(CMe)_2(NC_6F_5)_2]H$ (1) with MeLi in hexane/diethyl ether solution. The compound crystallizes with a molecule of Et₂O. The fact that the N-H ¹H NMR chemical shift of $[HC(CMe)_2(NC_6F_5)_2]H$ is close to δ 12 [4] implies that this proton should be sufficiently acidic to render protonolysis a viable synthetic route to β -diketiminate complexes. Indeed, *Power* et al. [4] have employed 1 for the protonolysis of metal amides in order to prepare the iron β -diketiminates referred to earlier. We therefore adopted the methane elimination approach outlined below for the synthesis of the aluminum and gallium dimethyl derivatives, **3** and **4**.

$$[HC(CMe)_2(NC_6F_5)_2]H + MMe_3 \xrightarrow[-CH_4]{} \\ [{HC(CMe)_2(NC_6F_5)_2}MMe_2]$$
$$M = Al(3), Ga(4)$$

X-ray Crystal Structures

To the best of our knowledge, 1 is only the third structurally characterized β -aminoimine, the other two being H(Ph)NC(Me)CHC(Me)N(Ph) (5) [6] and H(Ar)NC-(Me)CH(Me)N(Ar) (Ar = 2,6-*i*-Pr₂C₆H₃) (6) [7]. Overall, the structure of 1 (Figure 1 and Table 1) is very similar to those of 5 and 6. The fact that the N(2)-C(4) bond distance in 1 (1.300(3) Å) is shorter than those in 5 (1.314(8) Å) and 6 (1.313(4) A) might suggest that there is slightly more double bond localization in the case of 1. However, note that the C(2)-C(3) bond distance in 1 (1.358(3) Å) is the same as those in 5 (1.352(8) Å) and 6 (1.362(4) Å) within experimental error. A distinctive feature of the structure of 5 is that the nitrogen hydrogen atom is located equidistantly between the two nitrogen atoms. However, for 1 and 6 this hydrogen atom is much closer to one nitrogen (N(1) in Fig. 1) than the other. This aspect has already been commented on in the context of the structures of 5 and 6 [7].

Table 1 Selected bond distances/Å and angles/deg for 1 - 4.

1		2		3		4	
N(1)-C(2) N(1)-C(6) C(2)-C(3) C(3)-C(4) N(2)-C(4) N(2)-C(12) C(2)-N(1)-C(6) N(1)-C(2)-C(3) C(2)-C(3)-C(4) C(3)-C(4)-N(2) C(4)-N(2)-C(12)	$\begin{array}{c} 1.361(3)\\ 1.400(3)\\ 1.358(3)\\ 1.438(3)\\ 1.300(3)\\ 1.406(2)\\ 126.87(17)\\ 120.35(17)\\ 120.35(17)\\ 125.79(18)\\ 119.45(17)\\ 122.18(17)\end{array}$	N(1)-Li N(1)-C(2) C(2)-C(3) C(3)-C(4) N(2)-C(4) N(2)-Li Li-O N(1)-Li-N(2) Li-N(1)-C(2) N(1)-C(2)-C(3) C(2)-C(3)-C(4) C(3)-C(4)-N(2)-Li	1.925(5) 1.336(3) 1.398(4) 1.405(3) 1.330(3) 1.925(5) 1.896(4) 97.4(2) 123.5(2) 122.6(2) 130.0(2) 122.2(2) 124.0(2)	N(1)-A1 N(1)-C(2) C(2)-C(3) C(3)-C(4) N(2)-C(4) N(2)-A1 C(18)-A1 C(18)-A1 C(19)-A1 N(1)-A1-N(2) A1-N(1)-C(4) N(1)-C(4)-C(3) C(4)-C(3)-C(2) C(3)-C(2)-N(2)	1.926(2) 1.333(3) 1.395(3) 1.395(3) 1.343(3) 1.917(2) 1.957(3) 1.947(3) 93.99(8) 126.8(2) 122.2(2) 128.1(2) 122.6(2)	N(1)-Ga N(1)-C(2) C(2)-C(3) C(3)-C(4) N(2)-C(4) N(2)-Ga C(18)-Ga C(19)-Ga N(1)-Ga-N(2) Ga-N(1)-C(2) N(1)-C(2)-C(3) C(2)-C(3)-C(4) C(3)-C(4)-N(2)	1.987(3) 1.334(5) 1.381(6) 1.411(6) 1.330(5) 2.007(3) 1.956(5) 1.967(5) 92.5(1) 126.1(3) 123.1(3) 129.8(4) 122.3(4)
			(-)	C(2)-N(2)-Al C(18)-Al-C(19)	126.2(1) 118.9(1)	C(4)-N(2)-Ga C(18)-Ga-C(19)	126.0(3) 123.9(2)

Fig. 1 Molecular structure of $[HC(CMe)_2(NC_6F_5)_2]H$ (1) showing the atom numbering scheme. Thermal ellipsoids are set to 30 % probability.

The replacement of the nitrogen hydrogen atom of 1 by a Li·OEt₂ moiety results in 2 which, possesses a much more symmetrical structure that is indicative of π -bonding in the C₃N₂ fragment (Fig. 2 and Table 1). Thus, the two N-C and the two C-C bond distances are the same within experimental error and the sum of bond angles within the C₃N₂Li ring is 719.7(2)°. The Li atom, which is displaced from the

Fig. 2 Molecular structure of $[HC(CMe)_2(NC_6F_5)_2]Li \cdot OEt_2$ (2) showing the atom numbering scheme. Thermal ellipsoids are set to 30 % probability.

extended C_3N_2 plane by 0.018 Å, possesses a distorted trigonal planar geometry (sum of bond angles at Li = 359.7(3)°). The average N-C and C-C bond distances in **2** (1.333(3) and 1.401(4) Å, respectively) are very similar to those reported for the lithium monoetherate, [Dipp_nacnacLi-(OEt₂)] (7) (1.324(3) and 1.402(3) Å, respectively; Dipp₂ = C_6H_3 -2,6- Pr_2^I) [7]. Likewise, the Li-N and Li-O bond distances in 2 (1.925(5) and 1.896(4) Å, respectively) are very similar to those reported for 7 [7] (1.915(4) (av.) and 1.911(4) Å, respectively). The structure of 7 has also been reported by *Tolman* et al. [8].

Previously reported, structurally characterized (β-diketiminate)AlMe₂ compounds include [(Dipp₂nacnac)AlMe₂] (8) [9, 10] (Dipp₂ = 2,6-*i*-Pr₂C₆H₃ and [{HC(CMe)₂-(N-p-tolyl)₂}AlMe₂] (9) [10]. A characteristic feature of both compounds is the pronounced puckering of the C₃N₂Al ring. This puckering can be expressed as the distance of the metal atom from the averaged extended C_3N_2 plane or as the dihedral angle between the C₃N₂ and N₂metal planes. For 8 and 9, the displacement of the Al atom from the β -diketiminate plane amounts to 0.72 and 0.33 A, respectively. In the case of 3 (Fig. 3 and Table 1), this displacement is considerably less (0.073 Å) hence the C_3N_2Al ring is close to planarity. The ring puckering has been attributed to steric interactions between bulky groups such as Dipp and the metal substituents [11]. Moreover, a correlation has been observed between the N-Al-N angle and the extent of ring puckering in the sense that the more acute this angle, the greater the extent of ring puckering [11]. In this context, it is interesting to note that the N-Al-N angle in **3** (93.99(8)°) is more acute than those in **8** (96.18(9)°) and **9** (94.72(14)°) yet the C_3N_2Al ring of **3** is close to planar. Moreover, the average Al-N bond distance in **3** (1.921(2) Å) is almost the same as that for **8** (1.928(2) Å) despite the fact that the Dipp substituent is appreciably more bulky than C_6F_5 . Likewise, [{(HC)(CPh)_2N(p-tolyl)}AlMe_2], with an N-Al-N bond angle of 94.94(6)°, has an essentially planar AlNCCN backbone [12]. On the other hand, [{HC)(CPh)_2N(SiMe_3)_2}AlMe_2] adopts a boat conformation [13]. Finally, we note that the metrical parameters for the AlMe₂ moieties of **3**, **8**, and **9** are very similar.

The molecular structure of **4** (Fig. 4 and Table 1) bears a close resemblance to that of the analogous aluminum compound, **3**. Thus, in contrast to [(Dipp₂nacnac)GaMe₂] (**10**), which possesses a puckered C_3N_2Ga ring [11], that of **4** is very close to planarity. In fact, within experimental error, the Ga atom lies in the extended C_3N_2 plane. The Ga-N, N-C and C-C bond distances for **4** are very similar to those for **10** and indicative of π -delocalization in the C_3N_2 fragment. The β -diketiminate [{(NC)C(CMe)₂-(NH)}GaMe₂] also has a planar GaNCCCN backbone; however, this may be a consequence of intermolecular CN···HN hydrogen bonding [14].

Fig. 3 Molecular structure of $[{HC(CMe)_2(NC_6F_5)_2}AlMe_2]$ (3) showing the atom numbering scheme. Thermal ellipsoids are set to 30 % probability.

Fig. 4 Molecular structure of $[{HC(CMe)_2(NC_6F_5)_2}GaMe_2]$ (4) showing the atom numbering scheme. Thermal ellipsoids are set to 30 % probability.

Experimental Part

Synthesis

All manipulations and reactions were performed under a dry, oxygen-free argon atmosphere or under vacuum using standard Schlenk or drybox techniques; all glassware was oven-dried before use. Toluene and pentane were distilled over sodium; both solvents were degassed prior to use. Compound 1 was prepared according to the literature method [4] and MeLi (1.6 *M* solution in Et₂O), AlMe₃, and GaMe₃ were procured commercially and used without further purification.

2: 0.740 g (1.72 mmol) of **1** was dissolved in 30 mL of hexane in a Schlenk flask. A solution of 1.08 mL of 1.6 *M* MeLi in Et₂O was added dropwise and the reaction mixture was allowed to warm to 25 °C. A crop of colorless crystals (mp 106-109 °C) formed upon storage of the reaction mixture overnight at -30 °C. The yield of **2** was essentially quantitative.

¹**H NMR** (C_6D_6) δ 4.96 (s, 1H, CH), 2.62 (q, 4H, CH₂ (Et₂O)), 1.74 (s, 6H, CMe) 0.62 (t, 6H, CH₃ (Et₂O)). ¹⁹**F NMR** (C_6D_6) δ –153.1 (m, 2F, *m*-F), –165.1 (m, 1F, *p*-F), –166.0 (m, 2F, *o*-F). MS (CI⁺, CH₄): *m*/*z* 511 [M + H]⁺. **HRMS** (CI⁺, CH₄) Calc. for C₂₁H₁₈F₁₀LiN₂O: 511.1420. Found: 511.1417.

3: 0.282 g (0.656 mmol) of **1** and 0.0472 g (0.656 mmol) of trimethylaluminum were allowed to mix in 50 mL of toluene at 25 °C in a Schlenk flask. The resulting pale yellow reaction mixture was stirred overnight at 25 °C. Removal of the solvent and volatiles under reduced pressure afforded a 67 % yield of white solid **3** (mp 145-146 °C). Compound **3** was recrystallized from toluene.

¹H NMR (C₆D₆): δ 4.74 (s, 1H, CH), 1.27 (s, 6H, CMe), -0.49 (s, 6H, AlMe); ¹⁹F NMR (C₆D₆) δ -147 (m, 2F, *m*-F), -156 (t, 1F, *p*-F), -162 (m, 2F, *o*-F); ²⁷Al NMR (C₆D₆): δ 212 (br, s). MS (CI⁺, CH₄): *m*/z 487 (M⁺). HRMS (CI⁺, CH₄) Calc. for C₁₉H₁₄AlF₁₀N₂ 487.0813. Found: 487.0820.

4: 0.181 g (0.158 mmol) of trimethylgallium was allowed to react with 0.068 g (0.158 mmol) of **1** in 50 mL of toluene as described above for the synthesis of **3**. Removal of the solvent and volatiles resulted in a 60 % yield of white, solid **4** (mp 140-142 °C). Compound **4** was recrystallized from pentane.

¹H NMR (C₆D₆) δ 4.70 (s, 1H, CH), 1.32 (s, 6H, CMe), -017 (s, 6H, GaMe). ¹⁹F NMR (C₆D₆) δ -145 (m, 2F, *m*-F), -151 (t, 1F, *p*-F), -164 (m, 2F, *o*-F). MS (CI⁺, CH₄): *m*/*z* 528 (M+). HRMS (CI⁺, CH₄) Calc. for C₁₉H₁₄F₁₀GaN₂: 529.0253. Found: 529.0266.

Single crystal X-ray crystallography

Crystals of 1-4 of suitable quality were collected directly from a Schlenk-type flask under argon pressure, and covered immediately with degassed perfluorinated polyether oil. The X-ray data were collected on a Nonius Kappa CCD diffractometer. All four structures were solved by direct methods, and refined by full-matrix least-squares on F^2 using the SHELXTL software package [15]. A summary of crystallographic data is presented in Table 2. Note that **4** crystallizes as a racemic twin in the non-centrosymmetric space group Pca2₁. The refined Flack Parameter is 0.582(14).

Crystallographic data for the structures 1-4 have been deposited with the Cambridge Crystallographic Data Centre, CCDC 265977-265980. Copies of the data can be obtained free of charge on application to the Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax:int.code+(1223)336-033; e-mail for inquiry; fileserv@ccdc.cam.ac.uk; e-mail for deposition: deposit@ccdc. cam.ac.uk).

Spectroscopic measurements

CI mass spectra were measured on a Finnigan MAT TSQ-700 instrument. Solution-phase NMR spectra were recorded at 295 K on a GE QE-300 spectrometer (¹H, 300 MHz; ¹⁹F, 282 MHz; ²⁷Al, 78.21 MHz) or a Varian Inova-500 spectrometer (¹H, 500 MHz; ¹⁹F, 470 MHz; ²⁷Al, 130 MHz). All NMR samples were flame-sealed or run immediately following removal from the drybox. Benzene- d_6 was dried over sodium-potassium alloy and distilled prior to use. ¹H NMR spectra are reported relative to tetramethylsilane (δ 0.00) and are referenced to solvent. ¹⁹F chemical shifts are reported relative to C₆F₆ (δ –162.9), and ²⁷Al chemical shifts are reported relative to [Al(D₂O)₆]³⁺ (δ 0.00). Melting points were obtained in sealed capillaries under argon (1 atm) on a Fisher-Johns apparatus and are uncorrected.

Acknowledgement. We are grateful to the National Science Foundation (CHE-024008) and the Robert A. Welch Foundation (Grant F-135) for financial support.

Table 2 Crystallographic data for compounds 1 - 4.

	1	2	3	4
formula	$C_{17}H_8F_{10}N_2$	C ₂₁ H ₁₇ F ₁₀ LiN ₂ O	C ₁₉ H ₁₃ AlC ₁₀ F ₁₀ N ₂	C ₁₉ H ₁₃ F ₁₀ GaN ₂
fw	430.25	510.31	486.29	529.03
crystal system	monoclinic	monoclinic	monoclinic	orthorhombic
space group	$P2_1/c$	$P2_1/c$	$P2_1/c$	Pca2 ₁
a /Å	17.084(5)	7.357(5)	9.447(5)	25.347(5)
b /Å	10.808(5)	19.517(5)	24.498(5)	9.330(5)
c /Å	19.084(5)	15.297(5)	8.594(5)	8.323(5)
β /deg	110.095(5)	94.541(5)	95.396(5)	90.0
V/Å ³	3309(2)	2189.5(17)	1980.1(16)	1968.3(16)
Ζ	8	4	4	4
μ (Mo-K α) /mm ⁻¹	0.182	0.154	0.204	1.500
T/K	293(2)	153(2)	153(2)	153(2)
R ₁	0.0498	0.0798	0.0460	0.0392
wR ₂	0.1109	0.1138	0.0881	0.0785

References

- [1] For a review, see L. Bourget-Merle, M. F. Lappert, J.-R. Severn, *Chem. Rev.* 2002, 102, 3031.
- [2] C. Cui, H. W. Roesky, H.-G. Schmidt, M. Noltemeyer, H. Hao, F. Cimpoesu, *Angew. Chem.* 2000, 112, 4444; *Angew. Chem., Int. Ed. Engl.* 2000, 39, 4274.
- [3] N. J. Hardman, B. E. Eichler, P. P. Power, Chem. Commun. 2000, 1491.
- [4] A. Panda, M. Stender, R. J. Wright, M. M. Olmstead, P. Klavins, P. P. Power, *Inorg. Chem.* 2002, 41, 3909.
- [5] D. Vidovic, J. A. Moore, J. N. Jones, A. H. Cowley, J. Am. Chem. Soc. 2005, 127, 4566.
- [6] S. Brownstein, E. J. Gabe, L. Prasad, Can. J. Chem. 1983, 61, 1410.
- [7] M. Stender, R. J. Wright, B. E. Eichler, J. Prust, M. M. Olmstead, H. W. Roesky, P. P. Power, J. Chem. Soc., Dalton Trans. 2001, 3465.

- [8] B. A. Jazdzewski, P. L. Holland, M. Pink, V. G. Young, Jr., D. J. E. Spencer, W. B. Tolman, *Inorg. Chem.* 2001, 40, 6097.
- [9] C. E. Radzewich, M. P. Coles, R. F. Jordan, J. Am. Chem. Soc. 1998, 120, 9384.
- [10] B. Qian, D. L. Ward, M. R. Smith, III, Organometallics 1998, 17, 3070.
- [11] M. Stender, B. E. Eichler, N. J. Hardman, P. P. Power, J. Prust, M. Noltemeyer, H. W. Roesky, *Inorg. Chem.* 2001, 40, 2794.
- [12] Y.-L. Huang, B.-H. Huang, B.-T. Ko, C.-C. Lin, J. Chem. Soc., Dalton Trans. 2001, 1359.
- [13] F. Coslédan, P. B. Hitchcock, M.-F. Lappert, Chem. Commun. 1999, 705.
- [14] M. R. Kopp, T. Kräuter, A. Dashti-Mommertz, B. Neumüller, Organometallics 1998, 17, 4226.
- [15] SHELX 97: G. M. Sheldrick, Universität Göttingen, 1997.