STEREOCONTROLLED ADDITIONS OF ALLYLTRI-<u>n</u>-BUTYL-STANNANE TO ∝-HYDROXYALDEHYDE DERIVATIVES. A USEFUL ROUTE TO MONOPROTECTED <u>ERYTHRO</u> OR <u>THREO</u> DIOLS. Gary E. Keck,^{* ‡} and Eugene P. Boden Department of Chemistry, University of Utah Salt Lake City, UT 84112

<u>Summary</u>: By proper choice of Lewis acid and protecting group, the Lewis acid mediated addition of allyltri-<u>n</u>-butylstannane to the α -hydroxyaldehyde derivatives <u>1b</u> and <u>1c</u> can be controlled to give excellent (95:5 to > 250:1) stereoselectivity for the formation of either erythro or threo products.

The general problem of the stereocontrolled construction of acyclic materials has been a topic of intensive investigation in recent years. Many approaches to this general problem have focussed on controlling diastereofacial selectivity in the addition of various nucleophiles to carbonyl compounds.¹ In this context, we report the results of a study of the Lewis acid mediated addition² of allyltri-<u>n</u>-butylstannane to chiral α -hydroxyaldehyde derivatives.

For this study, readily available³ protected derivatives of α -hydroxyaldehyde <u>la</u> were chosen as substrates to evaluate the effects of protecting group, Lewis acid, and solvent on the diastereofacial selectivity of allylstannane addition. Mechanistic and theoretical reasoning suggested that derivatives <u>lb</u> and <u>lc</u> should suffice to determine trends in diastereofacial selectivity which should prove rather general, as well as synthetically useful, since the utility of benzyl and <u>tert</u>-butyldimethylsilyl functions as protecting groups in organic synthesis is well established. The overall reaction process and results obtained are summarized in equation 1 and Table I below.⁴

Entry	Substrate	<u>Lewis Acid^a</u>	<u>Solvent, T(^oC)^b</u>	<u>2/3 Ratio^C(Yield</u>	<u>()</u>
1	16	BF3•Et20	CH ₂ C1 ₂ (-78 ⁰)	39:61	
2	lb	MgBr ₂	Et ₂ 0	94:6	
3	1b	MgBr ₂	THF	20:80	
4	1ь	MgBr ₂	CH ₂ Cl ₂ (-23 ⁰)	> 250:1 (85%	;)
5	1b	MgC12	Et ₂ 0	No reaction	
6	1b	MgC12	THF	22:78	
7	lb	MgC12	СН ₂ С1 ₂	No reaction	
8	۱b	$Mg(C10_4)_2$	Et ₂ 0	69:31	
9	1b	ZnBr ₂	THF (67 ⁰)	27:73	
10	1b	ZnBr ₂	CH2C12	77:23	
11	1b	ZnBr ₂	Toluene	41:59	
12	1b	ZnI2	Et ₂ 0	35:64	
13	lb	ZnI2	CH2C12	97:3 (92%)
14	1b	TiCl ₄	CH ₂ C1 ₂ (-78°)	> 250:1 (75%	;)
15	lc	TiCl4	CH ₂ C1 ₂ (-78°)	36:64	
16	1c	MgBr ₂	CH2C12	21:79	
17	1c	ZnI2	CH2C12	53:47	
18	1c	BF ₃ •Et ₂ 0	CH ₂ C1 ₂ (-78 ⁰)	9:91	
19	lc	$BF_3 \cdot Et_2 0$ (2 eq.)	CH ₂ Cl ₂ (-78 ⁰)	5:95 (83%	;)

(a)

Unless otherwise stated, 1.0-1.1 equivalents of Lewis acid were used. Unless otherwise indicated, reactions were initiated at 0⁰C and allowed to warm to room (b) temperature.

Determined by capillary vpc analysis on a 32 m J & W-DB1701 column (after acetylation (c) with acetic anhydride-pyridine) assuming equal response factors (flame ionization detector) for the diastereomeric acetates derived from alcohols 2 and 3.

Several of the results in Table I are quite striking. Perhaps most important, in a practical sense, is that the diastereofacial selectivity of the addition process can be controlled to give very highly stereoselective access to a monoprotected derivative of either the erythro or threo diol: the erythro material can be obtained with 95:5 selectivity (entry 19) using the <u>tert</u>-butyldimethylsiloxy substrate (<u>lc</u>) with 2.0 eq of $BF_3 \cdot Et_20$ in CH_2Cl_2 at

TABLE I

 -78° while the <u>threo</u> product is obtained with > 250:1 stereoselectivity using the benzyloxy substrate (<u>1b</u>) with TiCl₄ in CH₂Cl₂ at -78° .

This material, which corresponds to the product expected for a "chelation controlled" nucleophilic addition process, is also obtained as the major product (stereoselectivity of 94:6) using MgBr₂ as catalyst with ether as solvent. Even better selectivity is realized in dichloromethane at -23°C (entry 4). In sharp contrast, use of THF as solvent (entry 3) results in stereochemical reversal, and the "chelation controlled" product <u>2</u> becomes the <u>minor</u> component of an 80:20 mixture. It is also of interest that other sources of Mg⁺² (entries 5-8) are considerably less effective catalysts (with regard to diastereofacial selectivity) and that the reaction of <u>1b</u> with allylmagnesium bromide in ether does not show useful diastereofacial selectivity, affording a 58:42 mixture of 2 and 3.

The use of $ZnBr_2$ (entries 9-11) as catalyst gave relatively poor selectivity, and stereochemical reversal can again be observed (<u>e.g.</u>, entries 8 and 9) upon changing solvents. However, ZnI_2 in CH_2Cl_2 gave excellent (97:3) selectivity for the formation of <u>2</u>.

The pronounced tendency of $MgBr_2$, ZnI_2 , and $TiCl_4$ to selectively catalyze the formation of $\underline{2}$ with benzyloxy substrate lb is not observed with the tert-butyldimethylsiloxy substrate 1c (entries 15-17). However, excellent selectivity for the formation of the "Cram product"⁷ $\frac{3}{2}$ may be obtained with BF₃·Et₂0 in CH₂Cl₂ at -78°C (entries 18, 19). This result is in accord with the known⁸ lower basicities of silyl ethers relative to alkyl ethers, which has been attributed to oxygen p π -silicon d π interactions. Hence bidentate chelation of Lewis acids such as MgBr₂ or ZnI₂ would be expected to be less effective in this case. Moreover, electron withdrawal from oxygen would be expected to result in a lowering of C-O σ^{\star} and hence provide increased stabilization for a Felkin-Anh⁹ antiperiplanar nucleophilic addition to the aldehyde carbonyl. The bulk of the tert-butyldimethylsilyl moiety may also play a helpful role in this regard, however; we prefer the electronic explanation advanced above as the dominant effect, since, in other systems, the tert-butyldimethylsiloxy moiety appears to exhibit steric requirements comparable to simple alkyl ethers 10 , and the stereoselectivity obtained with <u>lb</u> and BF₃ is very low. Similar effects have been observed previously, as in the reduction of α -alkoxy and α -siloxy ketones,^{1C} but attributed to "bulkiness" of the sily] ethers.

<u>Acknowledgement</u>: Support of this research by Eli Lilly and Co., the Alfred P. Sloan Foundation, and the National Institutes of Health (through NIH Grant #GM-28961) is gratefully acknowledged.

Fellow of the Alfred P. Sloan Foundation, 1981-1985.

References and Notes:

- 1. For some recent leading references in this area, note:
 - (a) W. C. Still and J. H. McDonald, III, <u>Tetrahedron Lett.</u>, 21, 1031 (1980); (b) W. C. Still and J. A. Schneider, <u>Ibid.</u>, 21, 1035 (1980. (c) L. E. Overman and R. J. McCready, <u>Ibid.</u>, 23, 2355 (1982). (d) M. D. Lewis and Y. Kishi, <u>Ibid.</u>, 23 2343 (1982); (e) J. Mulzer and A. Angermann, <u>Ibid.</u>, 24, 2843 (1983) (f) T. Nakata, M. Fukui, and T. Oishi, <u>Ibid.</u>, 24, 2657 (1983); (g) T. Nakata, M. Fukui H. Ohtsuka, and T. Oishi, <u>Ibid.</u>, 24, 2661 (1983; (h) T. Mukaiyama, T. Yamada, and K. Suzuki, <u>Chem Lett.</u>, 5 (1983).
- (a) Y. Naruta, S. Ushida, and K. Maruyama, <u>Chem. Lett.</u>, 919 (1979);
 (b) A. Hosomi, H. Iguchi, M. Endo, and H. Sakurai, Ibid., 977 (1979).
- Substrates <u>lb</u> and <u>lc</u> were prepared from cyclohexanecarboxaldehyde <u>via</u> reaction with vinylmagnesium bromide, followed by hydroxyl protection and ozonolysis.
- 4 (a) Workup for these reactions proceeded via addition of aq. NaHCO₃ solution, dilution with 1:1 ether-pentane, addition of aq. KF solution, and passage of the dried, concentrated organic phase through basic alumina using ca 2% THF-hexanes.
 - (b) Product structures were confirmed by correlation with materials prepared by unambiguous independent synthesis. Thus, hydrogenation, protecting group removal, and acetonide formation yields the easily separable (capillary vpc) acetonides 4 (from 2) & 5 (from 3). These were independently synthesized by the sequence: T) Wittig reaction of butylidenetriphenyl phosphorane with cyclohexanecarboxaldehyde (ether, -78°C) to yield an 85:15 <u>cis-trans</u> mixture of olefins; 2) <u>cis-hydroxylation</u>⁵ (OsO₄, N-methylmorpholine-N-oxide, aqueous acetone; and 3) acetonide formation (dimethoxypropane, acetone, pTSOH) followed by chromatographic (column chromatography over silica gel) isolation.⁶
 - (c) No attempt was made to determine isolated chemical yields for reactions which showed low diastereofacial selectivity.
- 5. V. Van Rheenen, R. C. Kelly, and D. Y. Cha, Tetrahedron lett., 1973 (1976).
- 6. Acetonides <u>4</u> and <u>5</u> are easily distinguished by their ¹³C NMR Spectra (diagnostic resonances only) <u>4</u> (CDCl₃): δ 107.7, 85.8, 78.7; <u>5</u> (CDCl₃) 107.2, 82.5, 77.4.
- 7. (a) D. J. Cram and F. A. Abd. Elhafez, <u>J. Am. Chem. Soc.</u>, **74** 5828 (1952);
 (b) D. J. Cram and K. R. Kopecky, <u>Ibid</u>, **81**, 2748 (1959).
- 8. (a) R. West, L. S. Wilson, and D. L. Powell, <u>J. Organomet. Chem.</u>, 178, 5 (1979);
 (b) B. Sternbach and A. G. MacDiarmid, <u>J. Am. Chem. Soc.</u> 83, 3384 (1961).
- 9. N. T. Anh and O. Eisenstein, Nouv. J. Chim., 1 (1977).
- 10. For example, the <u>tert</u>-butyldimethylsilyl ether from <u>cis-2</u>-methylcyclohexanol appears to have an axially disposed siloxy group based upon the observed $w_{1/2}$ (9 Hz) for the C-1 methine proton, as compared to 22 Hz in the <u>trans</u> isomer.

(Received in USA 14 November 1983)