Terminale und verbrückende Koordination von Indium-Indium-Bindungen – bemerkenswerte Polymorphie an der Verbindung $In_2R_2[(OCC_6H_5)_2CH]_2 [R = C(SiMe_3)_3]$

Terminal and Bridging Coordination of Indium-Indium Bonds – Remarkable Polymorphism with the Compound $In_2R_2[(OCC_6H_5)_2CH]_2$ [R = C(SiMe_3)_3]

Werner Uhl*, Andreas Lawerenz und Sarina Zemke

Münster, Institut für Anorganische und Analytische Chemie der Universität Münster

Bei der Redaktion eingegangen am 25. Januar 2007.

Abstract. Treatment of the dimeric indium(II) subhalide $(In_2R_2Cl_2)_2$ (1) [R = C(SiMe_3)_3] with four equivalents of lithium dipivaloylmethanide or lithium dibenzoylmethanide afforded by the release of lithium chloride the corresponding diindium diacetyl-acetonates (2 and 3). The In-In single bonds of the products were terminally coordinated by chelating acectylacetonato ligands and the bulky alkyl groups. Three different crystal structures were determined for the dibenzoylmethanide derivative 3 which in the solid state adopted *trans* and *gauche* conformations across the In-In bonds. In contrast to the terminally arranged acetylacetonato

ligands of compounds **2** and **3** alkylbenzoato ligands R-COO⁻ (3,5-dimethylbenzoate and *p-tert*-butylbenzoate) gave the bridging coordination of the In-In bonds by two chelating carboxylato groups (**4** and **5**). This particular coordination caused a strong shortening of the In-In bond length in **4** compared to the unsupported bonds in **2** and **3** (264.6 *versus* 274.7 to 279.3 pm).

Keywords: Indium; Subvalent compounds; Heterocycles; Chelating ligands

Einleitung

Mit der Synthese des Tetraindiumclusters In₄[C(SiMe₃)₃]₄ gelang in unserer Arbeitsgruppe vor einigen Jahren der einfache Zugang zu einer hervorragenden Ausgangsverbindung für die Erzeugung ungewöhnlicher Indium-organischer Folgeprodukte. Diese Verbindung bildet ein nahezu unverzerrtes Tetraeder aus vier Indiumatomen in der Oxidationsstufe +I und ist in guten Ausbeuten durch die Umsetzung von Indium(I)-bromid mit dem sperrigen Lithiumalkyl LiC(SiMe₃)₃ zugänglich [1, 2]. Seine monomeren Bruchstücke In-R sind isolobal zu Kohlenmonoxid. Dementsprechend gelang die Darstellung etlicher Analoga von Übergangsmetallcarbonylkomplexen mit terminalen [3] oder verbrückenden InR-Liganden [4]. Für homoleptische Komplexe [3] wurde quantenchemisch eine effektive Rückbindung von Elektronendichte vom zentralen Übergangsmetallatom in die unbesetzten p-Orbitale an den In-Atomen berechnet. Die vollständige Oxidation des Clusters mit Chalkogenen oder Chalkogenatomdonoren führte zur Bildung von Verbindungen des Typs In₄X₄R₄ mit Hetero-

* Prof. Dr. W. Uhl

Institut für Anorgan. Chemie der Universität Corrensstr. 30 D-48149 Münster E-Mail: uhlw@uni-muenster.de kuban-artigen In_4X_4 -Käfigen [1, 5], während die Umsetzung mit Propylensulfid unter Übertragung nur eines Schwefelatoms auf den Cluster zu der ungewöhnlichen Verbindung $In_4S[C(SiMe_3)_3]_4$ führte [6].

Gegenwärtig beschäftigen wir uns eingehend mit den chemischen Eigenschaften von elementorganischen Indiumsubhalogeniden, die sich leicht aus dem Tetraindiumcluster erhalten lassen. Sie entstehen bei den Umsetzungen von In₄R₄ mit Halogendonoren wie Dibromethan oder bei der Reaktion mit den freien Halogenen unter dem polarisierenden Einfluß von Aluminiumtrihalogeniden [7-9]. Drei unterschiedliche Strukturmotive wurden bisher nachgewiesen. Der Transfer von einem Brommolekül auf den Cluster führte zur Bildung von In₄Br₂R₄, in dem die tetraedrische Anordnung der Indiumatome erhalten bleibt [7]. Eine Dreiecksfläche des Clusters sowie eine dazugehörige Kante werden von jeweils einem Bromatom überbrückt. Elementares Iod in Gegenwart von AlI3 ergab eine Triindiumverbindung, In₃I₂R₃, die über eine Kette aus drei durch In-In-Bindungen miteinander verknüpften Indiumatomen verfügt [8]. Das dritte Motiv entstand unter vollständiger Oxidation aller Indiumatome von +I nach +II in den Verbindungen $(In_2X_2R_2)_2$ [X = Cl (1), Br], in denen jeweils zwei In-In-Einfachbindungen durch Halogenatome unter Bildung eines Realgar-artigen Käfigs miteinander verbrückt wurden [7]. Die analogen Digalliumverbindungen bleiben im Gegensatz dazu wahrscheinlich aufgrund des kleineren Kovalenzradius von Gallium und der hohen sterischen Ab-

schirmung selbst im festen Zustand monomer [9, 10]. Diese Subhalogenide sind hervorragende Ausgangsverbindungen für die Synthese von Folgeprodukten unter Salzeliminierung. Übergangsmetallcarbonylate führten zur Bildung von entsprechenden Koordinationsverbindungen [11, 12], wobei ebenso wie mit einem Lithiumphosphanid [13] Spaltung der E-E-Bindungen eintrat. In ersten orientierenden Versuchen wurden auch ein Carboxylat- und ein Acetylacetonat-Derivat mit den Indiumsubhalogeniden umgesetzt, wobei sich in guten Ausbeuten die entsprechenden Diindium-Verbindungen mit zwei verbrückenden bzw. terminalen Chelatliganden bildeten [14]. Auch ein teilweiser Ersatz nur eines Halogenatoms an der E-E-Bindung gelang [15]. Wir führten jetzt weitere systematische Untersuchungen zur Synthese derartiger Verbindungen mit Chelatliganden durch, insbesondere im Hinblick auf die einfache und reproduzierbare Synthese der Diindium-Dicarboxylate. Dabei zeigte sich rasch, dass die Übertragung der bekannten Vorschriften von Gallium auf Indium mit erheblichen Schwierigkeiten verbunden ist.

Umsetzungen von $(In_2Cl_2R_2)_2$ (1) mit Acetylacetonaten und Alkylbenzoaten

Durch Deprotonierung mit *n*-Butyllithium synthetisierten wir zunächst aus den entsprechenden Acetylacetonderivaten die Ausgangsverbindungen Lithium-dipivaloylmethanid und Lithium-dibenzoylmethanid. Diese Lithium-Verbindungen wurden nicht isoliert, sondern direkt mit einem halben Äquivalent des dimeren Subhalogenids 1 umgesetzt. Die resultierenden Mischungen wurden anschließend für 16 Stunden bei Raumtemperatur gerührt und zur Vervollständigung der Umsetzungen für zwei Stunden auf 45 bis 50 °C erhitzt. Die nach dem Filtrieren und Abdestillieren der Lösungsmittel im Vakuum verbleibenden Rückstände ergaben die Diindiumdiacetylacetonate mit intakter In-In-Bindung nach Umkristallisieren aus n-Hexan in einer Ausbeute von 50 (2) bzw. 76 % (3) (Gleichung 1). Die Trimethylsilyl-Gruppen beider Produkte zeigen in den ¹H-NMR-Spektren chemische Verschiebungen von $\delta = 0.40$ bzw. 0.42. Sie liegen damit in einem Bereich, der charakteristisch für an In-In-Bindungen mit Indiumatomen in der Oxidationsstufe +II gebundene C(SiMe₃)₃-Gruppen ist [7, 8, 14]. Auch die Resonanzen der an Indium gebundenen Kohlenstoffatome liegen im üblichen Bereich ($\delta = 18,5$ bzw. 19,1). Für die Phenylsubstituenten und den Kern der Acetylacetonat-Liganden mit delokalisiertem π -System erhielten wir mehrere Absorptionen in den IR-Spektren zwischen 1600 und 1500 cm^{-1} . Die Phenylverbindung 3 ist thermisch außerordentlich beständig und zersetzt sich erst oberhalb von 262 °C. Elementorganische Verbindungen mit In-In-Bindungen und dreifach koordinierten Indiumatomen wie das Diindan(4) R_2 In-In R_2 [R = CH(SiMe_3)_2] sind im allgemeinen intensiv farbig [16]. 2 ist dagegen wie die meisten Diindium(II)-Verbindungen mit koordinativ gesättigten Indiumatomen farblos, während 3 vermutlich aufgrund seines ausgedehnten delokalisierten π -Systems eine intensiv gelbe Farbe hat.

Die einzige bisher bekannte Dicarboxylatodiindium-Verbindung mit verbrückenden Carboxylato-Liganden entstand eher zufällig bei der Reaktion des Triindiumdiiodids R₃In₃I₂ mit Silberbenzoat [14]. Seither versuchen wir intensiv, einfachere Methoden zur Synthese derartiger Verbindungen durch die Umsetzung des Diindiumdichlorids 1 mit unterschiedlich substituierten Metallcarboxylaten zu entwickeln. Silberbenzoat, das zur Darstellung einer Dibenzoatodigallium-Verbindung erfolgreich eingesetzt wurde, und das entsprechende p-tert-Butylbenzoat führten aber nur zur Bildung von unübersichtlichen Produktgemischen. Auch die Reaktion von 1 mit Lithiumbenzoat blieb ohne verwertbares Resultat. Dagegen ergaben die Umsetzungen von 1 mit Lithium-3,5-dimethylbenzoat und Lithium-p-tert-butylbenzoat neben etlichen Nebenprodukten reproduzierbar die gewünschten reinen Produkte (4 und 5), die aber nach mehrfachem Umkristallisieren in einer relativ geringen Ausbeute von 15 bis 30 % isoliert wurden (Gleichung 2). Interessanterweise entstand die reine Verbindung 4 dann in optimaler Ausbeute, wenn die Ausgangsverbindungen nicht im eigentlich erforderlichen Verhältnis von 1 zu 2, sondern 1 zu 1 umgesetzt wurden. Im ersten Fall bildete sich eine Mischung von 4 mit unbekannten Produkten, aus der 4 durch Umkristallisieren nur in verunreinigter Form zu erhalten war. Im zweiten Fall blieb stets etwas Diindiumdichlorid 1 unumgesetzt, von dem sich 4 aber leicht abtrennen ließ. Die Resonanzen der Trimethylsilyl-Gruppen in den ¹H-NMR-Spektren ($\delta = 0.54$) sind im Vergleich zu den Acetylacetonat-Derivaten 2 und 3 deutlich nach tiefem Feld verschoben, was vermutlich auf die in 4 und 5 mit einer verbrückten In-In-Bindung auftretende höhere sterische Spannung im Molekül und deutlich veränderte Strukturparameter zurückzuführen ist (siehe Diskussion der Molekülstruktur von 4). Die IR-Spektren von 4 und 5 sind sehr ähnlich zu denjenigen der Acetylacetonat-Derivate und zeigen Absorptionen der Phenyl- und Carboxylat-Gruppen im Bereich von 1500 bis 1600 cm⁻¹.

Abb. 1 Molekülstruktur von 2. Die Schwingungsellipsoide schließen den Schwerpunkt der Atome mit 40 % Wahrscheinlichkeit ein. Methylgruppen und Wasserstoffatome sind zur besseren Übersicht nicht eingezeichnet.

Molekülstrukturen von 2, 3 und 4

Die Abbildungen 1 bis 3 zeigen Molekülstrukturen der Verbindungen 2 und 3. 2 kristallisiert in der zentrosymmetrischen monoklinen Raumgruppe C2/c mit acht Molekülen in der Elementarzelle. Ähnlich wie in der bereits publizierten Verbindung mit Acetylacetonato-Gruppen (R' = Me), besetzen die chelatisierenden Liganden terminale Positionen an den Indiumatomen der In-In-Bindungen, die hier nicht überbrückt werden. Die Konformationen dieser beiden Verbindungen lassen sich am ehesten über eine gauche-Anordnung mit einem Torsionswinkel C-In-In-C für 2 von 137,8° (Tabelle 1) beschreiben. Für die Dibenzoylmethyl-Verbindung 3 fanden wir bemerkenswerterweise unter teilweise geringfügig veränderten Bedingungen Kristalle mit drei verschiedenen Raumgruppen ($P2_1/n$, C2/c und Pc). In den Tabellen sind sie als 3a, 3b und 3c gekennzeichnet. In 3a liegt das Molekül auf einem Inversionszentrum, so daß die Konformation mit einem Torsionswinkel C-In-In-C von 180° und einer idealen trans-Anordnung der C(SiMe₃)₃-Gruppen festliegt. In 3b findet man in Anlehnung an die oben erwähnten Strukturen eine gauche-artige Anordnung mit einem allerdings deutlich kleineren Torsionswinkel C-

Abb. 2 Molekülstruktur von 3a (*trans*). Die Schwingungsellipsoide schließen den Schwerpunkt der Atome mit 40 % Wahrscheinlichkeit ein. Methylgruppen und Wasserstoffatome sind zur besseren Übersicht nicht eingezeichnet.

In-In-C von 118.5°. Schließlich treten überraschenderweise beide Konformere nebeneinander in **3c** auf. Die Torsionswinkel C-In-In-C betragen 177,3°, was einer nahezu idealen *trans*-Anordnung der Alkylgruppen entspricht, und 136,0° in enger Übereinstimmung mit dem zuerst genannten Wert für eine *gauche*-Anordnung. Aufgrund des hohen Raumanspruchs der C(SiMe₃)₃-Gruppen erscheint die *trans*-Anordnung eigentlich begünstigt, allerdings ist die sterische Wechselwirkung möglicherweise durch die recht lange In-In-Bindung minimiert. Offensichtlich sind die Energiedifferenzen zwischen den beiden beobachteten Konformeren nur gering, und die Packung im Kristall könnte einen bestimmenden Einfluß auf die jeweilige Konformation haben. In

Abb. 3 Molekülstruktur von 3b (gauche) Die Schwingungsellipsoide schließen den Schwerpunkt der Atome mit 40 % Wahrscheinlichkeit ein. Von den Tris(trimethylsilyl)methyl-Gruppen sind nur die inneren Kohlenstoffatome (C1, C2) eingezeichnet. Wasserstoffatome wurden nicht berücksichtigt.

Tabelle 1Ausgewählte Bindungslängen /pm, Bindungswinkel /°und Torsionswinkel /° für die Verbindungen 2, 3 und 4 (3a, b undc steht für die Polymorphe von 3; siehe Text)

	2	3a (trans)	3b (gauche)	3c (trans)	3c (gauche)	4
In-In	279,34(4)	276,72(7)	274,74(8)	277,80(5)	277,01(5)	264,63(4)
In-O	213,2(3) 217,0(3) 214,9(3) 217,0(3)	214,1(3) 214,2(3)	214,4(5) 216,3(5) 214,9(5) 215,5(5)	216,1(4) 216,6(4) 214,9(4) 215,9(4)	216,3(4) 215,5(4) 216,8(4) 214,4(4)	220,8(3) 221,8(3) 221,1(3) 222,7(3)
In-C	221,6(4) 221,4(4)	219,7(4)	220,3(6) 219,4(6)	221,0(5) 220,5(5)	221,1(5) 221,9(5)	215,3(4) 216,9(4)
In-In-C	133,1(1) 133,8(1)	133,07(9)	140,1(2) 138,8(1)	133,3(1) 133,4(1)	136,8(1) 134,5(1)	159,5(1) 157,3(1)
O-In-O	84,4(1) 84,5(1)	83,9(1)	85,5(2) 84,5(2)	84,5(1) 83,9(2)	85,1(1) 84,4(1)	91,8(1) 91,7(1)
O-In-In	102,03(8) 113,28(8) 104,21(8) 110,98(8)	109,60(8) 107,09(8)	100,3(1) 106,5(1) 99,0(1) 107,7(1)	108,7(1) 105,5(1) 109,7(1) 106,8(1)	100,4(1) 110,0(1) 99,2(1) 111,5(1)	83,63(8) 85,54(8) 85,79(8) 83,89(8)
C-In-In-C	137,8(2)	180,0	118,5(3)	177,3(3)	136,0(3)	18,1(4)

den Abbildungen 2 und 3 sind die Verbindungen **3a** und **3b** dargestellt.

Die unterschiedlichen räumlichen Anordnungen beeinflussen die Bindungsparameter (Tabelle 1) nur wenig. Die In-In-Bindungslängen betragen zwischen 274,7 und 279,3 pm, wobei der eindeutig kleinere Wert zu dem Konformeren mit dem kleinsten Torsionswinkel (**3b**), der größere Abstand zum zentrosymmetrischen *tert*-Butyl-Derivat **2** gehört. Diese Werte sind etwas kleiner als in Tetraalkyldiindium-Verbindungen [16, 17], entsprechen aber gut denjenigen der in der Einleitung zitierten Diindium-Subhalogenide. Die Verkürzung geht daher vermutlich auf den Einfluß der elektronegativen Substituenten zurück. Die In-O-Abstände in **2** und **3** betragen zwischen 213,2 und 217,0 pm. Die beiden Grenzwerte stammen von Verbindung 2; zwischen den Konformeren von 3 treten dagegen kaum signifikante Differenzen auf. Gleiches gilt für In-C-Abstände (219,4 bis 221,9 pm) oder die Winkel O-In-O (83,9 bis 85,5°). Die In-In-C-Winkel lassen einen merklichen Unterschied zwischen den Konformeren erkennen, wobei die trans-Anordnung der Alkylgruppen zu den etwas kleineren Werten führt (133,2° im Mittel für 3a und 3c versus 135,7° für 3c und 139,5° für 3b). Damit besteht eine eindeutige Korrelation zu den Torsionswinkeln über die In-In-Bindungen, und je stärker die Abweichung von der idealen trans-Anordnung ausfällt, desto stärker weitet sich der Winkel In-In-C auf. Die O-In-In-Winkel betragen 107,9° für die trans-Formen, wobei nur relativ geringfügige Abweichungen vom gemeinsamen Mittelwert auftreten. Für die gauche-Strukturen erhält man jeweils zwei deutlich separierte Bereiche von ungefähr 100 und 109°.

Die Molekülstruktur der Dicarboxylatodiindium-Verbindung 4 ist in Abbildung 4 dargestellt. Anders als in den zuvor beschriebenen Acetylacetonato-Derivaten 2 und 3 wird die In-In-Bindung durch die beiden Chelatliganden überbrückt. Der kleine Biß der Carboxylato-Gruppen von 225,0 pm führt zu einer signifikanten Verkürzung der In-In-Bindung im Vergleich zu 2 und 3 auf 264,6 pm (Tabelle 1). Auch der recht spitze Winkel In-In-O von 84,7° bestätigt die durch die Verbrückung der In-In-Bindung im Molekül induzierte sterische Spannung. Die Winkel O-In-O (91,8°) belegen die annähernd ideal senkrechte Anordnung der Chelatliganden. Dagegen nähern sich die C-In-In-C-Gruppen mit In-In-C-Winkeln von 158,4° einer linearen Anordnung an. Die Bevorzugung der verbrückenden anstelle der terminalen Koordination der Indiumatome durch die Carboxylato-Liganden beruht auf der Inflexibilität des O-C-O-Winkels und dem daraus resultierenden engen transannularen Kontakt zwischen Indium- und Kohlenstoffatomen [18]. Während sich analoge Galliumverbindungen mit überbrückter Ga-Ga-Bindung leicht und quantitativ durch Umsetzung von Tetraalkyldigallan(4) R2Ga- GaR_2 [R = CH(SiMe_3)_2] mit Carbonsäuren unter Frei-

Abb. 4 Molekülstruktur von 4. Die Schwingungsellipsoide schließen den Schwerpunkt der Atome mit 40 % Wahrscheinlichkeit ein. Methylgruppen der SiMe₃-Reste und Wasserstoffatome sind zur besseren Übersicht nicht eingezeichnet.

setzung von zwei Äquivalenten Bis(trimethylsilyl)methan erhalten lassen [19], gelingt ein entsprechender Zugang zu Diindiumdicarboxylaten nicht, da unter diesen Bedingungen immer Spaltung der In-In-Bindung eintritt [20]. Die Reaktionen ausgehend von den Indiumsubhalogeniden (Gleichung 2) bieten daher den bisher einzigen, wenn auch wegen der geringen Ausbeute noch nicht befriedigenden Zugang zu dieser interessanten Verbindungsklasse.

Experimenteller Teil

Alle Arbeiten wurden unter gereinigtem Argon in auf üblichem Weg getrockneten Lösungsmitteln (*n*-Hexan über LiAlH₄, Toluol über Na/Benzophenon) durchgeführt. Die käuflichen Verbindungen Dipivaloylmethan, Dibenzoylmethan, 3,5-Dimethylbenzoesäure und 4-*tert*-Butylbenzoesäure wurden zur Reinigung sorgfältig evakuiert und im Vakuum sublimiert. Das dimere Diindiumsubhalogenid 1, $In_2Cl_2R_2$ [R = C(SiMe₃)₃] wurde nach Literaturvorschrift erhalten [7].

Synthese von $In_2R_2\{[OC(CMe_3)]_2CH\}_2$ (2): 52,1 mg (0,283 mmol) Dipivaloylmethan werden in 25 mL Toluol gelöst und bei -30 °C mit 0,18 mL (0,283 mmol) einer 1,6 M Lösung von *n*-Butyllithium in *n*-Hexan versetzt. Die Reaktionsmischung wird auf Raumtemperatur erwärmt und 4 h gerührt. 108 mg (0,141 mmol) Dichlordiindan 1 werden in 20 mL Toluol gelöst und zu der auf -30 °C gekühlten Suspension der Lithiumverbindung getropft. Unter Rühren wird langsam (15 h) auf Raumtemperatur erwärmt und anschließend zur Vervollständigung der Reaktion für 2 h auf 50 °C erwärmt. Alle flüchtigen Bestandteile werden im Vakuum abdestilliert. Der verbleibende Rückstand wird in 15 mL *n*-Hexan aufgenommen, und die unlöslichen Bestandteile werden abfiltriert. Das Produkt 2 kristallisiert nach dem Aufkonzentrieren und Kühlen auf -20 °C in Form eines farblosen Feststoffs. Ausbeute: 74 mg (50 %). Zers.-P. (unter Argon, abgeschmolzene Kapillare): 185 °C.

 $^{1}\text{H-NMR}$ (C₆D₆, 400 MHz, 300K): δ = 5,79 (2 H, s, OC-CH-CO); 1,21 (36 H, s, CMe_3); 0,40 (54 H, s, $^{2}\text{J}_{\text{H-Si}}$ = 6,1 Hz, SiMe_3). $^{13}\text{C-NMR}$ (C₆D₆, 100 MHz, 300K): δ = 202,4 (CO); 94,7 (OC-C-CO); 42,0 (CMe_3); 28,5 (CMe_3); 18,5 (InC); 6,3 ($^{1}\text{J}_{\text{C-Si}}$ = 50,5 Hz, SiMe_3). IR (CsBr-Platten, Nujol-Verreibung, cm $^{-1}$): 1599 w, 1565 m, 1548 s, 1503 s vCO, vCC; 1456 vs, 1375 vs (Nujol); 1364 s, 1355 s, 1266 w, 1255 m, 1248 m δCH_3 ; 1221 w, 1185 w, 1132 m, 1020 vw, 951 w, 940 vw vCC; 858 vs, 842 vs, 796 m $_{7}\text{CH}_3$ (Si); 774 m, 722 m (Nujol); 674 w, 652 m $_{as}\text{SiC}$; 614 w $_{v}\text{SiC}$; 596 m, 489 w, 474 w vInC, vInO, δCC .

Synthese von In₂R₂{[OC(C₆H₅)]₂CH}₂ (3): 88 mg (0,393 mmol) Dibenzoylmethan werden in 25 mL Toluol gelöst und bei -30 °C mit 0,25 mL (0,392 mmol) einer 1,6 M Lösung von *n*-Butyllithium in *n*-Hexan versetzt. Die Reaktionsmischung wird auf Raumtemperatur erwärmt und 3 h gerührt, wobei Lithium-dibenzoylmethanid ausfällt. 150 mg (0,196 mmol) Dichlordiindan 1 werden in 25 mL Toluol gelöst und zu der auf -30 °C gekühlten Suspension der Lithiumverbindung getropft. Unter Rühren wird langsam (15 h) auf Raumtemperatur erwärmt und anschließend zur Vervollständigung der Reaktion für 2 h auf 45 °C erwärmt. Lithiumchlorid wird abfiltriert, und alle flüchtigen Bestandteile werden im Vakuum vom Filtrat abdestilliert. Der verbleibende Rückstand wird in 20 mL *n*-Hexan aufgenommen, und das Produkt 3 durch Abkühlen auf -30 °C auskristallisiert. Ausbeute: 170 mg (76 %). Zers.-P. (unter Argon, abgeschmolzene Kapillare): 262 °C; tiefgelbe Kristalle.

¹**H-NMR** (C₆D₆, 400 MHz, 300K): δ = 7,96 (8 H, *pseudo*-dd, *ortho*-H von Phenyl); 7,14 (4 H, *pseudo*-t, *para*-H von Phenyl); 7,11 (8 H, *pseudo*-d, *meta*-H von Phenyl); 6,84 (2 H, s, OC-CH-CO); 0,42 (54 H, s, ²J_{H-Si} = 6,0 Hz, SiMe₃). ¹³**C-NMR** (C₆D₆, 100 MHz, 300K): δ = 186,4 (CO); 139,9 (*ipso*-C

von Phenyl); 131,9 (*para*-C von Phenyl); 128,6 (*meta*-C von Phenyl); 128,0 (*ortho*-C von Phenyl); 95,8 (OC-C-CO); 19,1 (InC); 6,1 (${}^{1}J_{C-Si} = 50,5$ Hz, SiMe₃). ²⁹Si-NMR (C₆D₆, 79,5 MHz, 300K): $\delta = -2$. IR (CsBr-Platten, Nujol-Verreibung, cm⁻¹): 1590 m, 1539 s, 1521 s vCO, vCC; 1462 vs, 1377 vs (Nujol); 1364 s, 1309 m, 1289 w, 1264 w, 1254 m, 1248 m δ CH₃; 1228 w, 1190 w, 1174 w, 1158 w, 1129 vw, 1081 vw, 1054 vw, 1022 w, 1000 vw, 970 vw, 935 w vCC; 857 vs, 842 vs ρ CH₃(Si); 774 m, 754 m, 724 m (Phenyl, Nujol); 684 m, 652 w v_{as}SiC; 623 w v_sSiC; 600 w, 535 w, 518 w vInC, vInO, δ CC.

Synthese von In₂R₂| μ -O₂C(3,5-Me₂C₆H₃)-*O*,*O*'|₂ (4): 16 mg 3,5-Dimethylbenzoesäure (0,107 mmol) werden in 10 mL Toluol gelöst und bei -30 °C mit 0,067 mL einer 1,6 M Lösung von *n*-Butyllithium in *n*-Hexan (0,107 mmol) versetzt. Die Mischung wird 30 min bei Raumtemperatur gerührt. 82 mg Dichlordiindan 1 (0,107 mmol) werden in einem zweiten Kolben in 25 mL Toluol gelöst und auf +30 °C erwärmt. Zu dieser Lösung tropft man langsam die Suspension der Lithium-Verbindung. Nach einer Stunde wird die Mischung konzentriert und filtriert. Das Filtrat wird auf -30 °C gekühlt, wobei das Produkt als farbloses Pulver ausfällt. Zur weiteren Reinigung wird aus *n*-Hexan bei -30 °C umkristallisiert. Ausbeute: 15 mg (14 %). Zers.-P. (unter Argon, abgeschmolzene Kapillare): Zersetzung ab 221 °C unter Schwarzfärbung.

¹**H-NMR** (C₆D₆, 400 MHz, 300K): δ = 8,18 (4 H, s, *ortho*-H von Phenyl); 6,85 (2 H, s, *para*-H von Phenyl); 2,09 (12 H, s, Me an Phenyl), 0,54 (54 H, s, SiMe₃). ¹³**C-NMR** (C₆D₆, 100 MHz, 300K): δ = 177,4 (CO₂); 138,5 (*meta-C* von Phenyl); 135,5 (*para*-C von Phenyl); 132,7 (*ipso*-C von Phenyl); 129,2 (*ortho*-C von Phenyl); 21,1 (CH₃ gebunden an Benzoat); 16,4 (InC); 5,5 (SiMe₃). ²⁹Si-NMR (C₆D₆, 79,5 MHz, 300K): δ = -1. IR (CsBr-Platten, Nujol-Verreibung, cm⁻¹): 1600 vw, 1560 w, 1528 m vCO, vCC; 1457 vs, 1375 vs (Nujol); 1295 vw, 1268 m, 1259 s, 1251 s δCH₃; 1190 vw, 1170 vw, 1120 vw, 1040 vw vCC; 856 vs, 839 vs, 789 m ρCH₃(Si); 775 m, 753 w, 721 w (Phenyl, Nujol); 672 m, 652 m v_{as}SiC; 615 w v_sSiC; 598 w, 544 vw, 496 vw, 455 vw, 422 vw vInC, vInO, δCC.

Synthese von In₂R₂| μ -O₂C(4-Me₃C-C₆H₄)-O,O']₂ (5): 44 mg 4-*tert*-Butylbenzoesäure (0,247 mmol) werden in 20 mL *n*-Hexan gelöst und bei -30 °C mit 0,16 mL einer 1,6 M Lösung von *n*-Butyllithium in *n*-Hexan (0,247 mmol) versetzt. Die Mischung wird 30 min bei Raumtemperatur gerührt. 95 mg Dichlordiindan 1 (0,124 mmol) werden in einem zweiten Kolben in 20 mL *n*-Hexan gelöst und auf +30 °C erwärmt. Zu dieser Lösung tropft man langsam die Suspension der Lithium-Verbindung. Nach Beendigung der Zugabe wird die Mischung 2 h auf +50 °C erwärmt und anschließend bei Raumtemperatur filtriert. Das Filtrat wird im Vakuum konzentriert und auf -20 °C gekühlt, wobei das Produkt als farbloses Pulver ausfällt. Ausbeute: 43 mg (33 %). Zers.-P. (unter Argon, abgeschmolzene Kapillare): Zersetzung ab 240 °C unter Schwarzfärbung.

¹**H-NMR** (C₆D₆, 400 MHz, 300K): $\delta = 8,30$ (4 H, pseudo-d, ortho-H von Phenyl); 7,15 (4 H, pseudo-d, meta-H von Phenyl); 1,07 (18 H, s, CMe₃), 0,54 (54 H, s, SiMe₃). ¹³**C-NMR** (C₆D₆, 100 MHz, 300K): $\delta = 177,1$ (CO₂); 156,5 (para-C von Phenyl); 131,1 (meta-C von Phenyl); 130,8 (ipso-C von Phenyl); 126,0 (ortho-C von Phenyl); 35,2 (CMe₃); 31,4 (CMe₃); 15,5 (InC); 6,1 (SiMe₃). **IR** (CsBr-Platten, Nujol-Verreibung, cm⁻¹): 1602 w, 1580 w, 1517 s vCO, vCC; 1457 vs, 1378 vs (Nujol); 1310 vw, 1259 m, 1252 m δCH₃; 1189 m, 1145 w, 1110 w, 1017 m vCC; 856 vs, 847 sh, 787 m pCH₃(Si); 723 m, 713 m (Phenyl, Nujol); 673 m, 663 m, 654 m v_{as}SiC; 613 w v_sSiC; 590 w, 545 w, 472 w vInC, vInO, δCC.

Kristallstrukturbestimmungen

Einkristalle der Verbindungen 2 und 3c wurden durch Umkristallisieren aus *n*-Hexan bei -20 °C erhalten; Kristalle von 3a und 3c entstanden nebeneinander aus dem gleichen Lösungsmittel (*n*-Hexan) bei -30 °C. Die kristallographischen Daten wurden an einem Bruker APEX Diffraktometer gesammelt. Die Strukturen wurden durch direkte Methoden gelöst und mit dem Programmsystem

	2	$3a \cdot 0,5 C_6 H_{14}$	3b	$3c \cdot 0,5 C_6 H_{14}$	$4.0,25 C_6 H_{14}$		
Formel	C42H02In2O4Si6	C53H83In2O4Si6	C ₅₀ H ₇₆ In ₂ O ₄ Si ₆	C53H83In2O4Si6	C _{39.5} H ₇₂ In ₂ O ₄ Si ₆		
Kristallsystem	monoklin	monoklin	monoklin	monoklin	triklin		
Raumgruppe [22]	C2/c; No. 15	<i>P</i> 2 ₁ /n; No. 14	C2/c; No. 15	<i>Pc</i> ; No. 7	<i>P</i> 1;m,No. 2		
Z	8	2	8	4	2		
T/K	153	153	153	153	110		
Dichte (ber.)/g·cm ⁻³	1,288	1,263	1,346	1,318	1,231		
a/pm	5126,1(4)	1472,2(3)	2598,9(6)	1920,9(1)	875,40(2)		
b/pm	1206,39(9)	1263,5(3)	1226,5(3)	2118,6(2)	1258,35(3)		
c/pm	1851,4(1)	1671,3(4)	3662,6(8)	1472,2(1)	2654,02(7)		
αĴ°					97,636(1)		
β/°	107,334(2)	91,176(4)	105,570(4)	95,980(2)	92,702(1)		
γ/°					109,198(1)		
$V (10^{-30} \text{ m}^3)$	10929(1)	3108(1)	11250(10)	5958,9(8)	2723,6(1)		
μ/mm^{-1}	1,009	0,895	0,987	0,934	1,010		
Kristallabmessungen/mm	0,16 x 0,13 x 0,04	0,10 x 0,09 x 0,09	0,13 x 0,12 x 0,06	0,23 x 0,17 x 0,06	0,22 x 0,07 x 0,05		
Strahlung	MoK_{α} (Graphit-Monochromator)						
Messbereich/°	$0,83 \le \theta \le 31,28$	$1,82 \le \theta \le 30,10$	$1,15 \le \theta \le 30,08$	$0,96 \le \theta \le 28,05$	$1,56 \le \theta \le 26,06$		
Gemessener Bereich des rezipro-	$-72 \le h \le 72$	$-20 \le h \le 20$	$-36 \le h \le 36$	$-25 \le h \le 25$	$-10 \le h \le 10$		
ken Raumes	$-17 \le k \le 17$	$-17 \le k \le 17$	$-17 \le k \le 17$	$-27 \le k \le 28$	$-15 \le k \le 15$		
	$-26 \le 1 \le 26$	$-23 \le 1 \le 23$	$-51 \le 1 \le 51$	$-19 \le l \le 19$	$-30 \le 1 \le 31$		
Symmetrieunabhängige Reflexe	16614 [R(int) = 0,0773]	9072 [R(int) = 0,0607]	16368 [R(int) = 0,0896]	28543 [R(int) = 0,0623]	9288 [R(int) = 0,0382]		
Reflexe mit $I > 2\sigma(I)$	10271	7096	11883	20296	8168		
Zahl der verfeinerten Parameter	517	435	695	1222	723		
$R [I > 2\sigma(I)]$	0,0526	0,0661	0,1079	0,0494	0,0411		
wR_2 (alle Daten) ^a	0,1375	0,1653	0,2182	0,0821	0,1178		
Max. Restelektronendichte (10^{30} e/m^3)	1,872	1,386	1,887	1,459	1,456		
$ \begin{array}{l} \mbox{Min. Restelektronendichte } (10^{30} \mbox{ e/m}^3) \\ \mbox{R1} = \Sigma \ F_o - F_c\ / \Sigma F_o \\ \mbox{wR2} = \{ \Sigma w (F_o^2 - F_c^2)^2 / \Sigma w (F_o^2)^2 \}^{1/2} \end{array} $	-1,024	-1,254	-2,701	-0,631	-0,904		

Tabelle 2 Kristalldaten, Angaben zur Messung der Reflexintensitäten und zu den Kristallstrukturbestimmungen von 2, 3a, 3b, 3c und 4

^{a)} Die kristallographischen Daten der hier beschriebenen Verbindungen wurden als "supplementary publication no. CCDC-634386 (2), -634387 (3a), -634388 (3b), -634389 (3c) und -634385 (4)" beim Cambridge Crystallographic Data Centre hinterlegt. Kopien der Daten können kostenlos bei CCDC, 12 Union Road, Cambridge CB2 1EZ (Fax: (+44)1223-336-033; E-mail: deposit@ccdc.cam.ac.uk), Großbritannien, angefordert werden.

SHELXL-97 [21] bei vollständiger Matrix unter Verwendung von allen Strukturfaktoren (F²) verfeinert. Kristalldaten, Angaben zu den Messungen der Reflexintensitäten und zu den Kristallstrukturbestimmungen finden sich in Tabelle 1. Die Moleküle von **3a** liegen auf einem kristallographischen Inversionszentrum. Ihre C(SiMe₃)₃-Gruppen sind über zwei Positionen fehlgeordnet und wurden mit Besetzungsfaktoren von 0,71 und 0,29 verfeinert. Ähnliche Fehlordnungen wurden auch in den Strukturen von **3b** (C2; 0,59 zu 0,41), **3c** (C4; 0,85 zu 0,15; nur die Si-Atome der geringer besetzten Position wurden berücksichtigt) und **4** (C1 und C2; 0,51 zu 0,49 bzw. 0,59 zu 0,41) beobachtet. Die Kristalle von **3a**, **3c** und **4** schließen *n*-Hexanmoleküle ein.

Wir danken der **Deutschen Forschungsgemeinschaft** und dem **Fonds** der Chemischen Industrie für großzügige finanzielle Unterstützung.

Literatur

- [1] W. Uhl, R. Graupner, M. Layh, U. Schütz, J. Organomet. Chem. 1995, 493, C1.
- [2] W. Uhl, A. Jantschak, W. Saak, M. Kaupp, R. Wartchow, Organometallics 1998, 17, 5009.
- W. Uhl, M. Pohlmann, R. Wartchow, Angew. Chem. 1998, 110, 1007; Angew. Chem. Int. Ed. Engl. 1998, 37, 961; W. Uhl, M. Benter, S. Melle, W. Saak, G. Frenking, J. Uddin, Organometallics 1999, 18, 3778.

- [4] W. Uhl, M. Pohlmann, Organometallics 1997, 16, 2478; W. Uhl, S. U. Keimling, M. Pohlmann, S. Pohl, W. Saak, W. Hiller, M. Neumayer, Inorg. Chem. 1997, 36, 5478; W. Uhl, S. U. Keimling, W. Hiller, M. Neumayer, Chem. Ber. 1995, 128, 1137; W. Uhl, S. U. Keimling, W. Hiller, M. Neumayer, Chem. Ber. 1996, 129, 397.
- [5] W. Uhl, R. Graupner, M. Pohlmann, S. Pohl, W. Saak, *Chem. Ber.* **1996**, *129*, 143; W. Uhl, M. Pohlmann, *Chem. Commun.* **1998**, 451.
- [6] W. Uhl, R. Graupner, W. Hiller, M. Neumayer, Angew. Chem. 1997, 109, 62; Angew. Chem. Int. Ed. Engl. 1997, 36, 62.
- [7] W. Uhl, S. Melle, Chemistry Eur. J. 2001, 7, 4216.
- [8] W. Uhl, S. Melle, G. Geiseler, K. Harms, *Organometallics* 2001, 20, 3355; W. Uhl, F. Schmock, G. Geiseler, Z. Anorg. Allg. Chem. 2002, 628, 1963.
- [9] W. Uhl, A. El-Hamdan, M. Prött, P. Spuhler, G. Frenking, J. Chem. Soc., Dalton Trans. 2003, 1360; W. Uhl, A. El-Hamdan, G. Geiseler, K. Harms, Z. Anorg. Allg. Chem. 2004, 630, 821.
- [10] Weitere Subhalogenide, die aber nicht durch Oxidation von Clustermolekülen erhalten wurden: M. Kehrwald, W. Köstler, A. Rodig, G. Linti, T. Blank, N. Wiberg, Organometallics 2001, 20, 860; C. Klemp, C. Üffing, E. Baum, H. Schnöckel, Z. Anorg. Allg. Chem. 2000, 626, 1787; G. Linti, W. Köstler, Angew. Chem. 1996, 108, 593; Angew. Int. Ed. Engl. 1996, 35, 550; A. H. Cowley, A. Decken, C. A. Olazabal, J. Organomet. Chem. 1996, 534, 271; N. Wiberg, T. Blank, M. Westerhausen, S. Schneiderbauer, H. Schnöckel, I. Krossing, A. Schnepf, Eur. J. Inorg. Chem. 2002, 351; V. Lomeli, B. G. McBurnett, A. H.

Cowley, J. Organomet. Chem. 1998, 562, 123; N. J. Hardman, R. J. Wright, A. D. Phillips, P. P. Power, Angew. Chem. 2002, 114, 2966; Angew. Chem. Int. Ed. 2002, 41, 2842; N. J. Hardman, R. J. Wright. A. D. Phillips, P. P. Power, J. Am. Chem. Soc. 2003, 125, 2667.

- [11] W. Uhl, A. El-Hamdan, W. Petz, G. Geiseler, K. Harms, Z. Naturforsch. 2004, 59b, 789; W. Uhl, F. Schmock, W. Petz, Z. Naturforsch. 2003, 58b, 385.
- [12] G. Linti, W. Köstler, Chem. Eur. J. 1998, 4, 942; G. Linti, G. Li, H. Pritzkow, J. Organomet. Chem. 2001, 626, 82.
- [13] W. Uhl, A. El-Hamdan, Z. Anorg. Allg. Chem. 2006, 632, 793.
- [14] W. Uhl, A. El-Hamdan, *Eur. J. Inorg. Chem.* 2004, 969; W. Uhl, A. El-Hamdan, A. Lawerenz, *Eur. J. Inorg. Chem.* 2005, 1056.
- [15] W. Uhl, A. El-Hamdan, K. P. Schindler, Eur. J. Inorg. Chem. 2006, 1817.
- [16] W. Uhl, M. Layh, W. Hiller, J. Organomet. Chem. 1989, 368, 139.
- [17] R. D. Schluter, A. H. Cowley, D. A. Atwood, R. A. Jones, M. R. Bond, C. J. Carano, J. Am. Chem. Soc. 1993, 115, 2070; P. J. Brothers, K. Hübler, U. Hübler, B. C. Noll, M. M. Olmstaed, P. P. Power, Angew. Chem. 1996, 108, 2528; Angew. Chem. Int. Ed. Engl. 1996, 35, 2355; N. Wiberg, T. Blank, K. Amelunxen, H. Nöth, H. Schnöckel, E. Baum, A. Purath, D. Fenske, Eur. J. Inorg. Chem. 2002, 341; N. Wiberg, K. Amelunxen, H. Nöth, M. Schmidt, H. Schwenk, Angew. Chem. 1996,

108, 110; Angew. Chem. Int. Ed. Engl. **1996**, 35, 65; R. Wochele, W. Schwarz, K. W. Klinkhammer, K. Locke, J. Weidlein, Z. Anorg. Allg. Chem. **2000**, 626, 1963; Übersicht: W. Uhl, Adv. Organomet. Chem. **2004**, 51, 53.

- [18] W. Uhl, T. Spies, R. Koch, J. Chem. Soc., Dalton Trans. 1999, 2385.
- [19] W. Uhl, I. Hahn, H. Reuter, Chem. Ber. 1996, 129, 1425; W. Uhl, R. Graupner, I. Hahn, T. Spies, W. Frank, Eur. J. Inorg. Chem. 1998, 355; W. Uhl, T. Spies, W. Saak, J. Inorg. Chem. 1998, 1661; W. Uhl, T. Spies, D. Haase, R. Winter, W. Kaim, Organometallics 2000, 19, 1128; W. Uhl, A.-C. Fick, T. Spies, G. Geiseler, K. Harms, Organometallics 2004, 23, 72; W. Uhl, E. Er, Organometallics 2006, 25, 5832; W. Uhl, L. Cuypers, M. Prött, K. Harms, Polyhedron 2002, 21, 511; W. Uhl, M. Prött, G. Geiseler, K. Schüler, T. Spies, C. Strohmann, K. Lehmen, Z. Anorg. Allg. Chem. 2000, 626, 1526.
- [20] W. Uhl, R. Graupner, S. Pohl, W. Saak, W. Hiller, M. Neumayer, Z. Anorg. Allg. Chem. 1997, 623, 883.
- [21] SHELXTL-Plus, REL. 4.1; Siemens Analytical X-RAY Instruments Inc.: Madison, WI, 1990. Sheldrick, G. M. SHELXL-93, Program for the Refinement of Structures; Universität Göttingen, 1993.
- [22] Hahn, T. (Ed.) International Tables for Crystallography, Space-Group Symmetry, Vol. A, Kluwer Academic Publishers, Dordrecht-Boston-London, 1989.