IRIDOID GLUCOSIDES FROM CAMPSIS CHINENSIS

YASUHIRO IMAKURA, SHIGERU KOBAYASHI*, KIYOSHI KIDA and MASARU KIDO†

Faculty of Pharmaceutical Sciences, Tokushima University, Schomachi, Tokushima 770, Japan, † Laboratories of Natural Products Chemistry, Otsuka Pharmaceutical Co Ltd, Kawauchicho, Tokushima 770-01, Japan

(Revised received 13 January 1984)

Key Word Index—Campsis chinensis, Bignoniaceae, iridoid glucosides, 5-hydroxycampenoside, tecomoside, cachineside I, X-ray structure

Abstract—Two new iridoid glucosides, 5-hydroxycampenoside and cachineside I, were isolated together with tecomoside from leaves of *Campsis chinensis* and their structures were elucidated. The absolute stereochemistry of 5-hydroxycampenoside has been established by X-ray analysis, and the structural correlation between 5-hydroxy-campenoside and tecomoside has been determined by spectral and chemical experiments

INTRODUCTION

From methanol extract of the leaves of Campsis chinensis Voss, we isolated two new iridoid glucosides, campsiside (1) [1] and 5-hydroxycampsiside (2) [1] Further examination of the methanol extract led to the isolation of new iridoid glucosides, campenoside (3), 5-hydroxycampenoside (4), and cachineside I (5) together with tecomoside (6) [2, 3] The structural elucidations of campenoside (3) and 5-hydroxycampenoside (4) have been reported earlier [4] This paper describes details of the isolation and stereostructural elucidation of 5-hydroxycampenoside (4), tecomoside (6) and cachineside I (5)

RESULTS AND DISCUSSION

The methanol extract of fresh leaves of C chinensis was chromatographed on charcoal-Celite 535 (1 1) with methanol and methanol-acetone (1 1) as solvents The initial methanol eluate gave a yellow powder of a mixture of several components Silica gel column chromatography, and preparative TLC of the mixture led to the isolation of tecomoside (6) and cachineside I (5), together with campenoside (3) [4], 5-hydroxycampenoside (4) [4], campsiside (1) [1] and 5-hydroxycampsiside (2) [1]

5-Hydroxycampenoside (4), $C_{25}H_{30}O_{11}$, mp 191–192°, was assigned structure 4 (but not the absolute stereochemistry) with a formyl group at C-4, a *trans*-cinnamyl ester group at C-7, and a methyl group at C-8 on the basis of the IR, ¹H NMR and ¹³C NMR spectra (see Tables 1 and 2) and the data reported previously [4] Acid hydrolysis of 4 and methanolysis of the penta-O-methyl ether (7), prepared by treatment of 4 with methyl iodide-silver oxide [5], gave glucose and its penta-O-methylated compound, respectively The presence of a β -D-glucose moiety in 4 was shown by the anomeric proton signal at $\delta 4$ 63 (d, J = 7 5 Hz) in its ¹H NMR spectrum Acetylation of 4 with acetic anhydride-pyridine gave a tetraacetate (8), $C_{33}H_{38}O_{15}$, mp 176–179°, which showed a hydroxyl absorption (3560 cm⁻¹) in its IR spectrum The hydroxyl

group was located at C-5 since the downfield changes in shifts for C-5 (4080 ppm), C-6 (721 ppm) and C-9 (8 55 ppm) compared with those of 3 (see Table 2) The conformation of the cyclopentane ring and the configurations of H-1, H-7, H-8 and H-9 in 4 were determined by extensive ¹H NMR and ¹³C NMR studies (see Tables 1, 2 and 3) For example, irradiation of the H-8 signal converted the H-9 signal (dd, J = 120 and 20 Hz) to a doublet (J = 20 Hz), the H-7 signal (m) to a doubledoublet (J = 20 and 60 Hz), and the H-10 signal (d, J)= 70 Hz) to a singlet Irradiation of the H-9 signal deformed the H-8 signal and caused the H-1 signal (d, J)= 20 Hz) to collapse to a singlet Furthermore, irradiating the H-10 signal indicated the NOE increment in both the H-1 and H-9 signal shown in Scheme 1 On the basis of the assumption that H-9 has the usual β -configuration, the configurations for the methyl group at C-8 and for H-1 would be β and α , respectively. In the ¹³C NMR spectra of 4 and 8, the C-10 signals [4 δ 12 52, 8 δ 12 70] and the C-9 signals [4 δ 53 71, 8 δ 53 70] suggest all *cis*-relationships between the β -methyl group at C-8 and the oxygen at C-7, and the proton at C-9 as shown in refs [6] and [7] From these results, the structure of 5-hydroxycampenoside was established as 4 Comparison of the coupling constants of H-6, H-7, H-8 and H-9 in 4 with the calculated values in Table 3 indicates that the cyclopentane ring has the 7V or V_8 form (see Scheme 1) in 4, as well as in 9 and 10 [8]

Next, we isolated an iridoid glucoside (6), $[\bar{\alpha}]_{D}$ -1235° , as a hygroscopic powder from C chinensis Acetylation of 6 with acetic anhydride-pyridine gave its pentaacetate (11), $C_{26}H_{34}O_{15}$, mp 122-123°, $[\alpha]_D$ -79 1° The ¹H NMR data (see Tables 1 and 3) for 6 were similar to those for 4, except for the H-7 signal The ¹³C NMR signals (see Table 2) of 11 corresponded very closely to those of 8, except for the signals of a transcinnamoyl group On the basis of these facts, the structural correlation between 11 and 8 was established as follows Treatment of 11 with sodium borohydride gave a reduction product (12), which was acetylated with acetic anhydride-pyridine to give a hexaacetate (13) On the other hand, the same acetate (13) was obtained by reduction of 8 with lithium aluminium hydride followed by acetylation Consequently, 6 was established to be

^{*}To whom correspondence should be addressed

17 Ac

descinnamoyl-5-hydroxycampenoside (6), which at first seemed to be a new iridoid glucoside, an epimer of tecomoside (14) [2] at C-8 In recent reports [3, 7] the structure of tecomoside has been corrected to 6 with a β methyl group at C-8, rather than 14 with an α -methyl group Therefore, the iridoid glucoside (6) which we isolated from C chinensis was tecomoside

For verification of the absolute configurations of 4 and 6, a single crystal of 5-hydroxycampenoside tetraacetate (8) recrystallized from ethanol was subjected to X-ray diffraction analysis Crystal data $C_{33}H_{38}O_{15}$, orthorhombic, space group $P 2_1 2_1 2_1$, a = 12 456 (7), b = 13 292(8), c = 21 529 (14) Å, $D_x = 1 26 \text{ g/cm}^3$, Z = 4, (Mo- K_a) $= 11 \text{ cm}^{-1}$ The structure was solved by the direct method using a MULTAN program with a Syntex XTL Program [9] The atomic positional and thermal parameters were determined by a block diagonal least-squares calculation to R = 0.087 over 1662 statistically significant $|I > 196 \sigma(I)|$ reflections from Syntex R_3 diffractometer measurements (graphite monochromated Mo- K_a radiation, scan within 2θ less than 45°) The absolute configuration for 5-hydroxycampenoside tetraacetate was established as 8 from data on the configuration of its β -Dglucose moiety, as shown in Fig 1 A complete list of refined co-ordinates, together with any other revelant data, has been deposited at the Cambridge Crystallographic Data Centre

In 8, the cyclopentane ring is in the envelope form (V_8) , as shown in Table 4, and the dihydropyrane ring is in a sofa conformation with C-1 out of the plane of the other atoms, like that in loganin (15) [10], as shown in Fig 1 Namely, the results of X-ray diffraction analysis are perfectly consistent in all respects with stereostructure 8 elucidated from the above spectral studies Thus, the absolute configuration of 5-hydroxycampenoside was established as 4 and the stereostructure of tecomoside was confirmed as descinnamoyl-5-hydroxycampenoside (6) This is the first X-ray crystallographic analysis of an iridoid glucoside having a hydroxyl group at C-5

Cachineside I (5) was obtained as an amorphous powder, $C_{16}H_{24}O_9$, $[\alpha]_D - 1360^\circ$ Acidic hydrolysis of 5 gave D-glucose and black material due to decomposition of the aglycone Acetylation of 5 with acetic anhydride-pyridine gave a pentaacetate (16) ($C_{26}H_{34}O_{14}$,

				,	 F	•	=	2	1	++	ž
	(CD ₃ OD)	(CD3OD)	cD30D)	(CD ₃ OD)	(CDCl ₃)	(CDCl ₃)	(CDCI ₃)	(CD ₃ OD)	(CDCl ₃)	(D ₂ 0)	(CDCl ₃)
H-I	5 46 d	5 84 d	5464	577d	567d	5 62 d	5 54 d	5434	5 37 d	6 27 d	5 23 d
Н-3	7 39 d	740	7 32 d	7 35	7 20	7 09	7 03	6 29	6 28	782	107d
H-5	3 13 m		3 07 <i>q</i> -like								3 01 m
H-6a	+-	2 67 dd	1 65 ddd	2 50 dd	2 60 <i>d</i> -like	2 64 dd	2 55 dd	2 42 dd	2 57 dd	2 40 dd	+
Н-6₿	+-	2 27 dd	2 22 ddd	2 18 dd		2 36 dd	2 18 dd	1 95 dd	1 97 dd	3 15 dd	- i
Н-7	5 24 m	5 08 m	4 03 t-like	391 m	5 15 <i>q</i> -like	5 19 m	4 94 m	+-	501 m	4 36 m	517m
H-8	+	1 88 m	1 82 m	1 63 m	1 85 m	+	180 <i>m</i>	1 78 m	1 93 m	2 22 m	+
6-H	2 14 m	2 46 dd	2 08 m	2 32 dd	2 61 dd	2 57 dd	2 46 dd	2 20 dd	2 39 dd	2 82 dd	+-
H-10	111 <i>d</i>	1134	1 10 d	1114	1 09 d	1134	1044	1104	1 03 d	1534	1 03 d
H-11	919	9 25	918	9 25	9 34	942	934	+-		9 62	9 26
H-11a									4 53 <i>d</i>		
H-11b									475 <i>d</i>		
H-13	6 48 d	6 50 d			641 <i>d</i>	6 46 d					
H-14	7664	7 69 d			7684	7 70 d					
H-16 to H-20	7 36-7 60 m	7 30-7 60 m			7 30-7 60 m	7 30-7 60 m					
OAc	7 36-7 60 m				(3 23)	196	1 92		2 01		191
(OMe)					(3 39)	2 01	2 01		2 02		1 98
					(3 46)	204	2 03		2 03		2 00
					(3 51)	212	2 04		2 06		2 05
					(3 59)		2 10		2 07		2 08
11 11		1.01				4		1 60 1	2 08 4 78 J		4
.I-H	4 63 4	4 6 5 4	46/4	4 63 4	4 b1 d	+	4 /8 d	4 29 <i>d</i>	4 /84	5 24 4	F
* J values (F	Hz) for the pro	otons of the c	clopentane r	ng in 3-6, 11 ;	and 14 are sho	wn in Table	3				
TUDSCUTED	signai 1 from ref [2]	_									
J (Hz) 3 13,	14 = 160, 1', 2	2' = 70 4 13.1	4 = 160, 1', 2	' = 7 5 5 3, 5 =	= 1 0, 1', 2' = 7	8 6 1', 2' = 7	8 7 13, 14 =	= 14 0, 1′, 2′ <i>=</i>	= 70 8 6 x,	$7 = 60, 6\beta$	$7 = 20,6\alpha$
$6\beta = 160 11$ 11b - 127 11	1', 2' = 7.5 12	$1, 9 = 22, 6\alpha,$	$7 = 58, 6\beta, 7$	= 3 5, 6α, 6β =	= 14 8, 8, 9 = 1	11 13 1, 9 =	1 7, 6α, 7 =	61, 6β, 7 = 2	2, 6α, 6β =	= 14 8, 8, 9	= 12 0, 11a,
110 = 17 / 011	IIIIIAI KCU SIBIIA	us are suigicis									

Table 2 ¹³C NMR spectral data of compounds 3-6, 8, 11-13 and 16 (50 10 MHz, TMS as internal standard)

C-Atom	3 (DMSO-d ₆)	4 (DMSO-d ₆)	5 (CD ₃ OD)	6 (CD ₃ OD)	8 (CDCl ₃)	11* (CDCl ₃)	12 (CD ₃ OD)	13* (CDCl ₃)	16* (CDCl ₃)
C-1	96 35 d	94 37 d	98 23 d	97 12 d	95 19 d	95 13 d	95 74 d	94 05 d	95 66 d
C-3	160 65 d	160 77 d	162 41 d	162 70 d	155 84 d	155 98 d	139 43 d	139 34 <i>d</i>	158 73 d
C-4	123 21	124 79	126 40	126 78	126 02	125 99	120 38	116 21	125 50
C-5	28 55 d	69 39	29 55 d	72 12	70 98	70 72	74 57 d	71 77 d	28 38 d
C-6	37 25 t	44 46 t	41 20 t	48 88 t	45 20 t	45 11 t	48 88 t	43 01 t	37 64 t
C-7	76 35 d	74 94 d	74 81 d	73 38 d	74 95 d	74 93 d	73 35 d	74 28 d	76 79 d
C-8	38 45 d	37 74 d	41 43 d	41 23 d	38 75 d	38 46 d	41 40 <i>d</i>	38 02 d	38 75 d
C-9	45 16 d	53 71 d	45 90 <i>d</i>	54 72 d	53 70 d	53 58 d	55 86 d	54 02 d	45 32 d
C-10	1261 q	12 52 q	12 96 q	13 14 q	12 70 q	12 56	1361 q	12 91 q	12 50 q
C-11	190 17 d	190 61 d	192 95 d	192 95 d	189 68 d	189 68 d	60 41 t	61 06 t	189 97 d
C-12	165 20	165 80			166 44				
C-13	118 05 d	118 24 d			118 02 d				
C-14	143 83 d	144 39 d			145 15 d				
C-15	133 78	133 98			134 43				
C-16, 20	128 38 d†	128 89 d†			128 91 d†				
C-17, 19	127 74 <i>d</i> †	128 30 d†			128 16 <i>d</i> †				
C-1′	98 77 d	98 58 d	98 83 d	100 12 d	96 27 d	96 24 d	99 34 d	96 33 d	95 92 d
C-2′	72 87 d	72 90 d	74 25 d	74 37 d	70 81 d	70 72 d	74 57 d	71 28 d	70 78 d
C-3′	76 87 d‡	77 28 d‡	77 90 <i>d</i> ‡	78 43 d‡	72 44 d‡	72 38 d‡	78 17 d‡	72 18 d‡	72 44 d‡
C-4′	70 01 d	70 03 d	71 19 d	71 54 d	68 33 <i>d</i>	68 33 d	71 60 d	68 44 d	68 38 d
C-5′	76 50 d‡	75 88‡	77 61 d‡	77 55 d‡	71 95 <i>d</i> ‡	71 95 d‡	77 70 <i>d</i> ‡	72 09 d‡	72 36 d‡
C-6′	61 05 t	61 08 t	62 46 t	62 69 t	61 67 t	61 67 t	62 60 t	61 79 t	61 76 t

*The signals of the acetyl groups are not given

t, ‡Assignments with the same sign are interchangeable

Unmarked signals are singlets

Compound	$J_{1\alpha \ 9\beta}$	J _{5β 6α}	J _{58 68}	J _{6a 7a}	J _{6β 7α}	J _{7a 8a}	J _{7α 8β}	J _{8α 9β}	J _{88 98}
Measured value	ue								
3*	30	40	80	60	10	50		100	
4*	≤20			60	20	55		120	
5*	30	60	80	60	18	50		90	
6*	17			58	27	58		120	
9†	15			50			10		75
10†	14			54		54		126	
11‡	18			60	30	55		120	
14§	15			60	20	(5 5)	55	(12 0)	
Calculated val	lue¶								
⁷ V**	≤10	60	75	45	≤10	50	≤10	70	75
V ₈ **	25	30	95	60	≤05	55	≤10	105	50
V_2^+	≼05	05	75	50	100	40	100	≼05	75
Vott	≤10	100	50	50	≤05	70	≼05	40	95

Table 3 Coupling constants for the protons of the cyclopentane ring in compounds 3-6, 9-11 and 14

*Run in CD₃OD

†Run in CDCl₃ Data taken from ref [8]

‡Run in CDCl₃

 $Run in D_2O$ Data taken from ref [2]

||This assignment was made by us from the ¹H NMR data on tecomoside reported by Bianco *et al* (ref [2])

The values were calculated from $J = 95\cos^2 \alpha - 05\cos \alpha + 04$

** Preferred conformers for the cyclopentane ring of iridoid glucosides (3, 4, 5, 6 and 10) with a β -methyl group at C-8

 \dagger + Preferred conformers for the cyclopentane ring of the indoid glucoside (14) with an α -methyl group at C-8

Scheme 1 Nuclear Overhauser effect (NOE) observed for compounds 3-6 and 13

Fig 1 Molecular structure of 5-hydroxycampenoside tetraacetate (8)

mp 116–117°, $[\alpha]_D - 94$ 1°) showing no hydroxyl absorption in its IR spectrum Taking into account the molecular formula, this indicated the presence of a secondary hydroxyl group in the aglycone moiety of 5

In addition, the IR, ¹H NMR and ¹³C NMR spectra showed the presence of a conjugated formyl group [1660 and 1630 cm⁻¹, δ 9 18 (s, CHO-4) and 7 32 (d, J = 10 Hz, H-3), 192 95 (d, C-11), 162.61 (d, C-3), and 126 40 (s, C-4)], a methyl group [δ 1 10 (d, J = 6 8 Hz, Me-8), 12 96 (C-10)] and a β -glucosyl moiety [3400 cm⁻¹, δ 4 67 (d, J = 7 8 Hz, H-1'), 98 83 (d, C-1'), 74 25 (d, C-2'), 77 90 (d, C-3' or C-5'), 71 16 (d, C-4'), 77 61 (d, C-5' or C-3') and 62 46 (t, C-6')] From the facts that the ¹H NMR data (chemical shifts, coupling constants, NOE increments shown in Tables 1 and 3, and Scheme 1, respectively) of 5 are similar to those of 3, except for the H-7 signal, and that the ¹³C NMR signals of 16 correspond closely to those of 3, cachineside I was concluded to have the same functional groups as 3 at the same positions, except for having a hydroxyl group at C-7 Thus, it was assigned the structure 5 To confirm this structure, the acetate (16) was converted to loganin pentaacetate (17) Oxidation of 16 with sodium chlorite-

Table 4 Torsional angles of the cyclopentane ring, geometrical parameter (maximum torsional angle) ψ_m^* and conformation parameter (phase angle of pseudorotation) Δ^{\dagger} of compounds 8, 15, 7V and V_8

Torsional angles											
Compound	* 0 5−9	*1 56	* 2 6–7	* 3 7–8	* 4 8–9	*m	Δ				
8	+ 27 0°	+36°	- 22 1°	+ 39 4°	- 39 9°	+ 43 5°	- 103 3°				
15‡	+ 24 0°	+ 2 7°	-28 7°	+43 2°	-41 6°	+447°	-1151°				
⁷ V form§	+ 3 5°	+ 28 5°	-43 5°	+ 46 5°	- 32 5°	+ 49 2°	-171 8°				
V ₈ form§	+ 27 5°	+40°	- 22 0°	+45 5°	-41 5°	+ 45 9°	- 106 3°				

*The values were calculated from $\psi_0 = \psi_m \cos \Delta/2$ (ref [11]) †The values were calculated from $\tan \Delta/2 = \frac{(\psi_2 + \psi_4) - (\psi_1 + \psi_3)}{30777 \psi_0}$ (ref [11]) ‡Data taken from ref [10]

Data taken from ref [10]

§The values were calculated from Dreiding model inspection

sodium hydrogen phosphate in the presence of 2-methyl-2-butene [12], followed by treatment with diazomethane gave a methyl ester (17), $C_{27}H_{37}O_{15}$, mp 134–135°, $[\alpha]_D$ -1366°, which was found to be identical to authentic loganin pentaacetate [13] by comparison of spectral data and by mixed melting point Thus, the stereostructure of cachineside I was established as 5 Cachineside I (5) is not new, as a compound with this structure has been described in ref [7] as 7 β -hydroxystanside Although only the source and a ¹³C NMR spectrum have been reported, the latter is apparently identical to that given for 5 in this paper (the small differences are due to different solvents)

EXPERIMENTAL

All mps are uncorr ¹H NMR spectra were recorded at 100 or 200 MHz ¹³CNMR spectra were determined at 5010 MHz Chemical shifts are given in δ (ppm) with TMS as internal standard Silica gel (70-230 mesh, Merck) was employed for CC Silica gel 60 (GF254, Merck) was used for TLC and silica gel 60 (PF254, Merck) was used for prep TLC Components were detected under UV light or by spraying with 1% Ce(SO₄)₂-10% H₂SO₄ soln and then heating Mass spectra were determined at 70 eV using a direct-inlet system

Plant material Plants were collected at our Faculty Herbary (Faculty of Pharmaceutical Sciences, Tokushima University) in Tokushima Pref in September 1978 A voucher specimen is available at the Herbary in Kokufu-cho, Tokushima 770, Japan

Isolation of iridoid glucosides from leaves of C chinensis Fresh leaves (14 kg) were extracted with MeOH and the solvent was evapd in vacuo to give a residue (163 g) The residue (120 g) was partitioned in n-hexane-H₂O (3 1) The H₂O layer was extracted with n-BuOH saturated with H₂O The n-BuOH layer gave a brown residue (99 g), which (95 g) was subjected to CC on active charcoal (450 g)-Celite 535 (450 g) with MeOH (until fraction 60) and MeOH-Me₂CO (1 1, from fraction 61), yielding three fractions [fraction I (fractions 18-28) (4 9 g), fraction II (fractions 43-60) (25g) and fraction III (fractions 61-80) (70g) (each fraction 500 ml)] Fraction I (15g) gave by CC on silica gel (150g) developed with CHCl₃-MeOH-H₂O (70 30 3) crude cachineside I (5) (198 mg) and tecomoside (6) (171 mg) Fraction II (11g) gave by CC on silica gel (100g) developed with $CHCl_3$ -MeOH-H₂O (50 15 3) crude campsiside (1) (185 mg) and 5-hydroxycampsiside (2) (85 mg) Fraction III (3 6 g) gave by CC on silica gel (250 g) developed with CHCl₃-MeOH-H₂O

(13 3 2) campenoside (3) (316 mg), 5-hydroxycampenoside (4) (664 mg) and campsiside (1) (80 mg)

5-Hydroxycampenoside (4) Colourless needles from EtOH, mp 191–192°, $[\alpha]_D^{20}$ – 73 7° (MeOH, c 0 60), IR v_{max}^{KBr} cm⁻¹ 3500, 1710, 1660, 1640, for ¹H NMR (CDCl₃) and ¹³C NMR (DMSOd₆) spectra, see Tables 1 and 2, respectively (Found C, 58 96, H, 6 12 C25H30O11 requires C, 59 28, H, 5 97%)

Acetylation of compound 4 Compound 4 (30 mg) was acetylated with Ac₂O (1 ml)-pyridine (1 ml) at room temp for 30 hr The product (38 mg) was isolated in the usual manner and recrystallized from EtOH to give a tetraacetate (8), mp 173-176°, $[\alpha]_D^{20} - 90.7^\circ$ (CHCl₃, c 0.53), IR v_{max}^{KBr} cm⁻¹ 3560, 1760, 1750, 1710, 1700, 1640, for ¹H NMR (CDCl₃) and ¹³C NMR (CDCl₃) spectra, see Tables 1 and 2, respectively (Found C, 58 65, H, 5 69 C33H38O15 requires C, 58 75, H, 5 68%)

Methylation of compound 4 To a soln of 4 (100 mg) in DMF (4 ml) were added Ag₂O (2 5 g) and MeI (5 ml), and the mixture was stirred at room temp for 36 hr The product was isolated in the usual manner and purified by prep TLC to give a penta-Omethyl ether (7, 43 mg), $[\alpha]_D^{20} - 80.5^{\circ}$ (CHCl₃, c 0.43), IR ν_{max}^{KBr} cm⁻¹ no OH, 3000, 2930, 2830, 1710, 1680, 1630, ¹H NMR (C₆D₆) $\delta 0.90$ (d, J = 7.0 Hz, Me-8), 2.48 (dd, J = 14.0and 60 Hz, H-6 α), 261 (dd, J = 120 and 15 Hz, H-9), 270 (dd, J = 140 and 30 Hz, H-6 β), 316, 328, 343, 352 and 358 (each s, OMe \times 5), 4 74 (d, J = 70 Hz, H-1'), 5 18 (m, H-7), 5 58 (d, J = 1 5 Hz, H-1), 6 39 (d, J = 14 Hz, C₆H₅-CH=C<u>H</u>CO-), 6 65 (s, H-3), 7 79 (d, J = 140 Hz, $C_6H_5CH = CHCO_{-}$), 9 15 (s, CHO)

Acid hydrolysis of compound 4 A soln of 4 (15 mg) in 1 N H₂SO₄ (1 ml)-MeOH (2 ml) was refluxed for 30 min, neutralized with Amberlite IR-45 (OH-form) and filtered The filtrate was evapd in vacuo and the residue was identified with glucose by PPC [Toyo Roshi No 50, developed × 3 with i-PrOH-n-BuOH-H₂O (7 1 2), $R_f = 0.49$, detected with aniline hydrogen phthalate]

Hydrolysis of compound 4 with β -glucosidase A soln of 4 (100 mg) and β -glucosidase (prepared from almonds, Sigma Chemical Co) in 01 M acetate buffer (pH 5 1, 9 ml) was stirred at 33-37° for 6 days The mixture was filtered through activated C (1 g) and Celite 535 (1 g) The filter cake was washed with H_2O (50 ml), and the combined filtrate was evapd in vacuo The residue was identified by cochromatography with authentic D-glucose on paper (solvent *i*-PrOH-n-BuOH-H₂O, 7 1 2)

Methanolysis of compound 7 Compound 7 (8 mg) was refluxed in 6% HCl-MeOH (5 ml) for 1 hr The reaction mixture was neutralized with Ag₂CO₃ and filtered The filtrate was evapd and

the residue was identified by TLC ($C_6H_6-Me_2CO$, 41) with methyl tetra-O-methyl-(α , β)-D-glucopyranosides prepared from D-glucose with MeI and Ag₂O

Conversion of compound 8 to compound 13 To a soln of 8 (100 mg) in dry THF (15 ml), a suspension of LiAlH₄ (100 mg) and dry THF (17 ml) was added dropwise in 5 min, and the mixture was stirred for 2 hr The product (65 mg) was isolated in the usual manner and was purified by CC (n-BuOH saturated with H_2O to give a hygroscopic, amorphous powder (12) (43 mg), IR $v_{\text{max}}^{\text{film}}$ cm⁻¹ 3350, 1660; $[\alpha]_D^{20}$ - 52 1° (MeOH, c 1 00), for ¹H NMR (CD₃OD) and ¹³C NMR (CD₃OD) spectra, see Tables 1 and 2, respectively A mixture of 12 (30 mg), Ac₂O (2 ml) and pyridine (2 ml) was stirred at room temp for 2 hr and evapd in vacuo The residue was purified by prep TLC (CHCl₃-Me₂CO, 10 1) to give 13 (22 mg) as a colourless gum, IR $v_{\text{max}}^{\text{fim}}$ cm⁻¹ 3540, 1760, 1750, 1740, $[\alpha]_{\text{D}}^{20}$ - 106 3° (CHCl₃, c 0 88), MS m/z (rel int) 630 2176 [M]⁺ (0 2), (C₂₈H₃₈O₁₆), for ¹H NMR (CDCl₃) and ¹³C NMR (CDCl₃) spectra, see Tables 1 and 2, respectively

Tecomoside (6) Hygroscopic, amorphous powder, $[\alpha]_{D}^{20}$ – 123 5° (MeOH, c 0 55) ($[\alpha]_{D}^{25}$ – 118° (MeOH, c 2 00) [2]), for ¹H NMR and ¹³C NMR (CD₃OD) spectra, see Tables 1 and 2, respectively

Acetylation of compound 6 Crude 6 (80 mg) was acetylated with Ac₂O (3 ml) and pyridine (2 5 ml) to give a pentaacetate (11, 41 mg), mp 122–123° (from EtOH–H₂O) (mp 124–125° [2] and 118–120° [3]), $[\alpha]_{D}^{20}$ – 79 1° (CHCl₃, c 0 46) ($[\alpha]_{D}^{21}$ – 97° (CHCl₃, c 0 60) [3]), IR v_{max}^{KBr} cm⁻¹ 3550, 2720, 1760, 1740, 1680, and 1630, for ¹H NMR and ¹³C NMR (CDCl₃) spectra, see Tables 1 and 2, respectively (Found C, 53 12, H, 5 79 C₂₆H₃₄O₁₅ requires C, 53 25, H, 5 84%)

Conversion of compound 11 to compound 13 A mixture of 11 (80 mg), NaBH₄ (20 mg) and MeOH (3 ml) was stirred at room temp for 1 hr The crude product (12, 28 mg) was isolated in the usual manner and identified with authentic 12 obtained from 8, by TLC The product was acetylated with Ac₂O (1 5 ml)-pyridine (1 5 ml) to give 13 (18 mg) $[\alpha]_D^{20}$ - 103 5° (CHCl₃, c 0 38) which was identical to authentic 13 prepared from 8, by spectral data and TLC

Cachineside I (5) Amorphous powder, $[\alpha]_{20}^{00} - 1360^{\circ}$ (MeOH, c 0 25), IR v $_{\text{max}}^{\text{KBr}}$ cm⁻¹ 3400, 1660 and 1625, MS m/z (rcl int) 360 1420 [M]⁺ (0 4) (C₁₆H₂₄O₉), for ¹H NMR and ¹³C NMR (CD₃OD) spectra, see Tables 1 and 2, respectively

Acetylation of compound 5 A mixture of 5 (50 mg), Ac₂O (1 ml) and pyridine (1 5 ml) was stirred at room temp for 18 hr The product (43 mg) was isolated in the usual manner and recrystallized from EtOH-H₂O to give 16, mp 116-117°, $[\alpha]_D^{20}$ -94 1° (MeOH, c 0 17), IR $\nu_{\text{Max}}^{\text{KBr}}$ cm⁻¹ no OH, 1760, 1755, 1745, 1735, 1680 and 1630, for ¹H NMR and ¹³C NMR (CDCl₃) spectra, see Tables 1 and 2, respectively, MS m/z (rel int) 571 2012 [M + 1]⁺ (0 3) (C₂₆H₃₅O₁₄) (Found C, 54 86, H, 5 62 C₂₆H₃₄O₁₄ requires C, 54 73, H, 601%)

Acid hydrolysis of compound 5 A mixture of 5 (10 mg), 1 N H_2SO_4 (1 ml) and MeOH (2 ml) was refluxed for 30 min The

product (glucose) was isolated in the manner described for 4, and was identical to an authentic sample of glucose of PPC, as employed for 4

Conversion of compound 16 to loganin pentaacetate (17) To a mixture of 16 (50 mg), t-BuOH (2 5 ml) and 2-methyl-2-butene (0 6 ml), a soln of NaClO₂ (120 mg) and Na₂HPO₄ (120 mg) in H₂O (1 ml) was added dropwise during 2 min with stirring The reaction mixture was stirred at room temp for 1 hr, poured into ice-H₂O, and then extracted with CHCl₃ The extract was washed with cold H₂O and coned to dryness The residue was purified by prep TLC (CHCl₃-Me₂CO, 10 1) to give 18 (20 mg), which was treated with CH₂N₂ in MeOH-Et₂O The resulting residue was crystallized from EtOH to give 17 (20 mg), mp 134-135° $[\alpha]_{D}^{2D}$ - 163 6° (MeOH, c 016), IR v^{MBr}_{max} cm⁻¹ no OH, 1760, 1740, 1710, 1700, 1640, ¹H NMR (CDCl₃) δ 1 02 (d, J = 6 6 Hz, H₃-8), 191 (s, OAc), 2 01 (s, OAc), 2 03 (s, OAc × 2), 2 09 (s, OAc), 3 00 (m, H-5), 5 23 (d, J ≤ 2 0 Hz, H-1), 7 30 (d, J ≤ 1 0 Hz, H-3), MS m/z (rel int) 601 2145 [M + 1]⁺ (2 2) (C₂₇H₃₇O₁₅)

Acknowledgements—We thank Prof H Inouye, Kyoto University, for a generous gift of loganin and Assistant Profs Y Takeda and M Kihara, Tokushima University, for helpful discussions

REFERENCES

- 1 Tagawa, M, Wakamatsu, K, Murai, F, Kobayashi, S and Yamahara, Y (1979) 43th Annual Meeting of the Chemical Society of Japan, 18–20 October, Abstracts of Papers, p 577 Fukuoka, Japan
- 2 Bianco, A, Guiso, M, Iavarone, C and Trogolo, C (1975) Gazz Chim Ital 105, 195
- 3 Bianco, A, Guiso, M, Iavarone, C, Massa, M and Trogolo, G (1982) Gazz Chim Ital 112, 199
- 4 Kobayashi, S, Imakura, Y, Yamahara, Y and Shingu, T (1980) Heterocycles 19, 1475
- 5 Kuhn, R, Trishmann, H and Low, I (1955) Angew Chem 67, 32
- 6 Chaundhuri, R K, Afifi-Yazar, F Ü, Sticher, O and Winkler, T (1980) Tetrahedron 36, 2317
- 7 Damtoft, S, Jensen, S R and Nielsen, B J (1981) Phytochemistry 20, 2717
- 8 Mils, S and Rimpler, H (1978) Tetrahedron Letters 895, 3549
- 9 German, G, Main, P and Woolfson, M M (1971) Acta Crystallogr Sect A 27, 368
- 10 Jones, P G, Scheldrick, G M, Glusenkamp, K H and Tieyze, L F (1980) Acta Crystallogr Sect B 36, 481
- 11 Altona, C, Geise, H J and Romers, C (1968) Tetrahedron 24, 13
- 12 Bal, B S, Childers, W E, Jr and Pinnick, H W (1981) Tetrahedron 37, 2091
- 13 Inouye, H, Yoshida, T, Tobita, S and Okigawa, M (1970) Tetrahedron 26, 3905