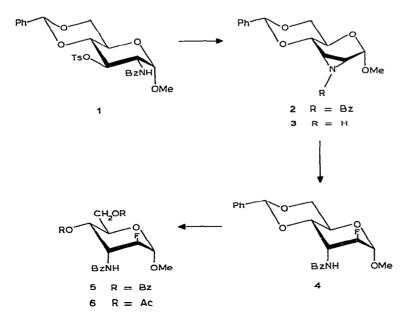
Note

The synthesis of derivatives of 3-amino-2,3-dideoxy-2-fluoro-D-altrose


LESLIE HOUGH, ANNA A. E. PENGLIS, AND ANTHONY C. RICHARDSON

Department of Chemistry, Queen Elizabeth College (University of London) London W8 7AH (Great Britain)

(Received September 20th, 1979; accepted for publication, November 7th, 1979)

In pursuit of a synthesis of the fluoro analogues of 2-amino-2-deoxy-D-glucose, we have investigated the reaction of methyl 2-benzamido-4,6-O-benzylidene-2-deoxy-3-O-tosyl- α -D-glucopyranoside¹ (1) with fluoride anion. Although direct S_N2 displacement of the 3-sulphonate is probably unfavourable², participation by the neighbouring N-benzoyl group was expected to occur, thereby enhancing the displacement with overall retention of configuration to give a derivative of the 3-fluoroglucoside.

When 1 was heated with tetrabutylammonium fluoride in either acetonitrile or hexamethylphosphoric triamide, it was rapidly converted into the N-benzoylepimine 2 and then into a faster-moving component (t.l.c.) and two less-mobile compounds. Column chromatography gave the former (35%) as a glass, which was identified as methyl 3-benzamido-4,6-O-benzylidene-2,3-dideoxy-2-fluoro- α -D-altropyranoside (4);

0008-6215/80/0000-0000/\$ 02.25, © 1980 - Elsevier Scientific Publishing Company

TABLE I

	¹ H-n.m.r.	PARAMETERSa
--	-----------------------	-------------

Compound	4 ^b	5°	6°
H-1	4.85dt	5.00dt	4.92dt
H-2	4.29ddd	4.67ddd	4.60ddd
H-3	5.06m	5.35m	5.13m
H-4	3.87dd	5.63ddd	5.18ddd
H-5		4.40dt	4.12dt
H-6a		4.67dd	1 2500
H-6b		4.47dd	4.25cm
OCH ₃	3.49s	3.54s	3.57s
CHPh	5.63s		
NH	6.88d		
$J_{1,2}$	1.5	1.5	1.5
$J_{1,3}$	1.5	1.5	1.2
$J_{2,3}$	3.0	3.6	3.5
$J_{3,4}$	2.5	4.6	4.5
$J_{4,5}$	9.0	9.6	10.0
$J_{5,6a}$		2.6	4.0
J _{5,6b}		6.0	4.0
J _{62,6b}		12.0	_
$J_{\rm F-2,H-2}$	45	44.0	45
$J_{\mathrm{F-2,H-1}}$	9	8.0	8
$J_{\rm F-2,H-3}$		9.0	
$J_{\mathrm{F-2,H-4}}$	~1	2.0	1.5

^aFor solutions in CDCl₃ (internal Me₄Si); chemical shifts on δ scale, and J in Hz. ^bAt 100 MHz. ^cAt 220 MHz.

the latter components could not be separated, but neither exhibited a 19 F-n.m.r. resonance and one was probably the *N*-debenzoylated epimine 3.

Compound 4 showed a single ¹⁹F-n.m.r. resonance which appeared as a double triplet ($J \sim 8.6$, 8.6, and 44.1 Hz) at -28.5 p.p.m. (relative to the signal for C₆F₆). Unfortunately, the ¹H-n.m.r. spectrum of 4 was not readily interpretable, but debenzylidenation of 4 followed by acetylation or benzoylation afforded, respectively, the 4,6-diacetate 6 or the 4,6-dibenzoate 5. The ¹H-n.m.r. spectrum of 5 (see Table I) was clearly incompatible with a 3-fluoroglycopyranoside, particularly inasmuch as the resonance (δ 5.63) at lowest field, due to H-4, was a double double-doublet with splittings of 9.6, 4.6, and 2 Hz. Upon irradiation of the ¹⁹F resonance, the 2-Hz splitting disappeared; the small magnitude of this internuclear coupling indicated that the fluorine was probably not vicinal to H-4. The remaining possibility that ringopening of the *N*-benzoylepimine 2 had occurred by axial attack at C-2, to give the 2-fluoroaltroside 4, was supported by the ¹H-n.m.r. parameters. The H-1 resonance occurred at δ 5.00 as a double triplet (J 8, 1.5, and 1.2 Hz). Upon irradiation at the ¹⁹F resonance, the large coupling (8 Hz) was diminished to ~4 Hz, although complete decoupling did not occur, suggesting that H-1 was vicinal to the fluorine.

¹⁹ F-N.M.R. F	ARAMETERS
--------------------------	-----------

Compound	4 ^b	5°	6 ^b
 F-2			
J _{F-2,H-2}	46	44	46
J _{F-2,H-1}	8.5	8.5	8.6
$J_{\rm F-2,H-3}$	8.5	8.5	8.6

^aFor solutions in CDCl₃ (internal C₆F₆); chemical shifts on δ scale. ^bAt 56.46 MHz. ^cAt 94.1 MHz.

Furthermore, the small, residual proton-proton couplings $(J_{1,2} \sim J_{1,3} \sim 1.5 \text{ Hz})$ were in accord with the ${}^{4}C_{1}$ conformation of an α -altropyranoside (as in 5). The H-2 resonance appeared as a double double-doublet (J 44, 3.6, and 4.6 Hz) and H-3 as a complex multiplet. The ¹H-n.m.r. spectrum of the 4,6-diacetate 6 gave further support to the structure of the 2-fluoroaltroside 4 (Table I).

The results reveal that fluoride displacement of 1 occurs via 2, involving Nrather than O-participation from the benzamido group. N-Participation in 1 occurs¹ under basic conditions, whereas O-participation occurs under neutral conditions¹. Presumably, N-participation must be due to the high basicity of fluoride anion. Although Guthrie and Murphy reported³ that 2 underwent predominant *trans*diequatorial ring-opening on reaction with azide and other nucleophiles, it was concluded later⁴ that "diaxial ring-opening" predominated. Our findings provide a further example of the predominant, if not exclusive, formation of a *trans*-diaxial product from 2.

EXPERIMENTAL

Esters of methyl 3-benzamido-2,3-dideoxy-2-fluoro- α -D-altropyranoside. — (a) 4,6-Dibenzoate (5). A solution of the 3-tosylate¹ 1 (4 g, 7.4 mmol) and anhydrous tetrabutylammonium fluoride⁵ (16 g, 61 mmol) in hexamethylphosphoric triamide (20 ml) was heated at 85° and the reaction monitored by t.l.c. Within 5 min, 1 was totally consumed, giving the N-benzoylepimine 2. A portion (~0.5 ml) of the reaction mixture was removed after ~15 min and processed as described below, to give a product that was identical (i.r., m.p., mixture m.p.) with authentic⁶ 2. On further reaction, 2 was slowly converted into the faster-moving 4 together with the two slower-moving compounds of similar mobility. After 6 h, the reaction mixture was poured into water, the solid was collected, and a solution in ethyl acetate was washed with water, dried (MgSO₄), and concentrated onto a little silica gel. Dry-packed column chromatography⁷ with cyclohexane-ethyl acetate (4:1) then gave 4 as a colourless glass (1 g, 35%) (Found: C, 65.0; H, 5.65; N, 3.35. C₂₁H₂₂FNO₅ calc.: C, 65.1; H, 5.7; N, 3.6).

The reaction followed the same course when acetonitrile was used as solvent, but the initial conversion of $1\rightarrow 2$ required at least 20 min for completion.

A solution of 4 (0.3 g, 0.78 mmol) in methanol (75 ml) containing conc. hydrochloric acid (2.5 ml) was heated under reflux for 15 min; t.l.c. then indicated the complete conversion of 4 into a slower-moving product. The solution was cooled, neutralised (PbCO₃), and concentrated, and the syrupy residue was conventionally benzoylated using dry pyridine (15 ml) and benzoyl chloride (1 ml) to give 5 (0.28 g, 71%), m.p. 162.5–164° [from dichloromethane–light petroleum (b.p. 60–80°)], $[\alpha]_D$ +149° (c 0.7, chloroform) (Found: C, 66.0; H, 5.0; F, 4.0; N, 2.7. C₂₈H₂₆FNO₇ calc.: C, 66.3; H, 5.10; N, 2.75; F, 3.75).

(b) 4,6-Diacetate (6). The syrupy product obtained from 4 (0.5 g, 1.3 mmol) as described in (a) was treated conventionally with pyridine (20 ml) and acetic anhydride (6 ml), to give 6 (0.25 g, 51%), m.p. 102–104° [from ether-light petroleum (b.p. 60–80°)], $[\alpha]_{\rm D}$ +129° (c 0.5, chloroform) (Found: C, 56.6; H, 5.7; N, 3.55. C₁₈H₂₂FNO₇ calc.: C, 56.4; H, 5.75; N, 3.65).

ACKNOWLEDGMENTS

We thank P.C.M.U. (Harwell) for 220-MHz n.m.r. spectra, and Dr. L. Phillips (Imperial College) for helpful discussions and for the measurement of some ¹⁹F-decoupled ¹H-n.m.r. spectra.

REFERENCES

- 1 Y. ALI, A. C. RICHARDSON, C. F. GIBBS, AND L. HOUGH, Carbohydr. Res., 7 (1968) 255-271.
- 2 A. C. RICHARDSON, Carbohydr. Res., 10 (1969) 395-402.
- 3 R. D. GUTHRIE AND D. MURPHY, J. Chem. Soc., (1965) 3828-3834.
- 4 R. D. GUTHRIE AND G. D. WILLIAMS, J. Chem. Soc., Perkin Trans. 1, (1976) 801-804.
- 5 A. F. HADFIELD, L. HOUGH, AND A. C. RICHARDSON, Carbohydr. Res., 63 (1978) 51-60.
- 6 D. H. Buss, L. HOUGH, AND A. C. RICHARDSON, J. Chem. Soc., (1963) 5295-5301.
- 7 L. HOUGH, A. K. PALMER, AND A. C. RICHARDSON, J. Chem. Soc., Perkin Trans. 1, (1972) 2513–2517.