ZANOXYLINE—A NEW ALKALOID FROM STEM BARK OF ZANTHOXYLUM OXYPHYLLUM

K. P. TIWARI and M. MASOOD

Department of Chemistry, University of Allahabad, Allahabad, India

(Received 25 July 1978)

Key Word Index—Zanthoxylum oxyphyllum; Rutaceae; alkaloids; rhetsinine; zanoxyline; 1-(4'methoxy benzyl)-6.7-dimethoxy N: N dimethyl 1,2,3,4 tetrahydroisoquinolinium hydroxide.

Abstract—The EtOH extract of stem bark of Zanthoxylum oxyphyllum yielded rhetsinine and a new alkaloid 1-(4'methoxy benzyl)-6,7-dimethoxy N: N dimethyl 1,2,3,4 tetrahydroisoquinolinium hydroxide provisionally named zanoxyline.

INTRODUCTION

Zanthoxylum oxyphyllum Edgew. is a medicinal plant used for the treatment of various ailments in this subcontinent [1]. Two alkaloids, zanthoxyphylline and corydine have been previously isolated from the root of the plant [2], while an alkaloid, rhetsinine, has already been isolated from the stem bark of the same plant [3]. In the present work a re-examination of the stem bark of Z. oxyphyllum has shown the presence of rhetsinine and a new alkaloid provisionally named zanoxyline.

RESULTS AND DISCUSSION

The EtOH extract of the air-dried, powdered stem bark of Z. oxyphyllum yielded rhetsinine (mmp and IR) and a new alkaloid provisionally named as zanoxyline, C₂₁H₂₈NO₄, mp 210-212°, which on Zn dust distillation yielded isoquinoline indicating the presence of an isoquinoline skeleton in the alkaloid. The nature of the N was quaternary because the compound (i) gave a positive response with citric acid and Ac₂O [4], (ii) did not form methiodide on treatment with MeI and (iii) showed a PMR signal at δ 2.69 ppm corresponding to 6 protons characteristic of N-Me group [5]. The IR band at 3400 cm⁻¹ suggested the presence of a-OH group in the compound. The absence of a bathochromic shift, however, with KOH indicated the absence of a phenolic -OH group [6]. The alkaloid on treatment with HI yielded an iodide (2), mp 128°, which after passing through Amberlite IR 410 (-OH form) regenerated zanoxyline showing that the -OH group in the alkaloid is attached

to the quaternary N atom. The presence of 3 OMe groups in the compound was shown by Zeisel's method [7] and the PMR signal at δ 3.72 ppm corresponding to 9 protons [5]. The alkaloid on KMnO₄ oxidation yielded *m*-hemipinic and anisic acids. The formation of these two acids indicates the presence of an isoquinoline nucleus substituted by two —OMe groups at C-6 and C-7 and a benzyl unit substituted by a *p*-OMe group. The iodide (2) on Hofmann degradation yielded a methine (3), mp 86–87°. Thus zanoxyline may be represented by the tentative structure (1), 1-(4'-methoxy benzyl), 6,7-dimethoxy N:N dimethyl 1,2,3,4 tetrahydroisoquinolinium hydroxide.

The formation of a few more abundant fragments $a^+(4)$, $b^+(5)$, $c^+(6)$, $d^+(7)$ and $e^+(8)$ lends further support to the above structure for zanoxyline [8]. The M⁺ appeared at m/e 341 instead of 359 probably due to the facile loss of the OH attached to the quaternary N atom as H₂O.

The structure assigned to zanoxyline (1) has been confirmed by partial synthesis from coclaurine, which on treatment with MeI and K_2CO_3 in Me₂CO formed its methylated methiodide (2). The methiodide (2) on passing through a column of Amberlite IR 410 (-OH form) gave a product which was identical with zanoxyline (mmp and IR).

EXPERIMENTAL

Extraction and isolation. Defatted powdered stem bark (5 kg) of Z. oxyphyllum (supplied by United Chemical and Allied Products, Calcutta, identity checked by National Botanical Garden from Herbarium sheet No. P-560) was extracted exhaustively with EtOH. The EtOH extract was concd to a thick

Short Reports

viscous mass which was dissolved in H_2O , acidified with a little of HOAc, kept overnight and filtered. The aq. filtrate gave positive tests for alkaloids. It was coned to a thick viscous mass and extracted with CHCl₃. The CHCl₃ extract on removal of solvent yielded a crystalline alkaloid, rhetsinine (0.26 mg), mp 192°.

The residual viscous mass left after extraction with CHCl₃ was dissolved in MeOH and adsorbed onto a column of Al₂O₃ (4 cm dia, length 16 cm) which on elution with a mixture of MeOH-CHCl₃ (5:1) yielded a new amorphous alkaloid zanoxyline, C₂₁H₂₉NO₄ (4.236 g), mp 210-212°, $[\alpha]_D^{20} + 66.34°$ (MeOH), $R_f = 0.80$ (Al₂O₃, BuOH-HOAc-H₂O (4:1:5), λ_{max}^{EiOH} nm 257, 293; ν_{max}^{KB} cm⁻¹: 3400, 1600, 1460, 1380, 1250, 1120, 722, etc.; PMR (CF₃CO₂H) δ 2.69 (s, 6H), 2.98 (s, 6H), 3.72 (4, 9H), 5.37 (s, 1H), 6.24 (s, 1H), 6.49 (s, 1H), 6.63 (s, 1H), 6.87 (s, 2H), 7.14 (s 1H), MS: *m/e* 341, 326, 283, 221, 58 (base peak). (Found: C, 70.26; H, 8.16; N, 3.97; OCH₃, 25.90% for 3 OMe groups.)

Zanoxyline iodide (2). The alkaloid (200 mg) in MeOH (4 ml) on treatment with HI (2 ml) gave zanoxyline iodide (180 mg), mp 128°, lit. 127-129° [9].

Permanganate oxidation of zanoxyline. Zanoxyline (3.5 g) was dissolved in warm H_2O (50 ml), treated with K_2CO_3 (1 g) and oxidized by slowly adding a N soln of KMnO₄. Work-up in the usual way yielded *m*-hemipinic acid, mp 174° and anisic acid, mp 184° (mmp).

Hofmann degradation of zanoxyline. The iodide 2 (150 mg) was added to a soln of KOH (0.5g) in MeOH (7 ml) and the mixture was heated at 100° for 8 hr. H_2O (15 ml) was added to the reaction mixture and the MeOH distilled off. The aq. soln was extracted with Et₂O, the extract dried (KOH) and the solvent evapd. The colourless oily residue (56 mg) crystallized from petrol as fine colourless needles of the methine 3 (22 mg), mp 86°, lit. mp 86-87° [9, 10].

Partial synthesis of zanoxyline. A soln of coclaurine (95 mg)

in 05 N methanolic KOH (1 ml) and MeI (3 ml) was heated under reflux for 6 fr. Evapn of MeOH and excess MeI left a resinous residue which was crystallized from MeOH to give the methylated methiodide of coclaurine 2 (70 mg), mp 128°, which on passing through Amberlite IR 410 (-OH form) gave zanoxyline (56 mg), mp 210-212° (mmp and IR).

Acknowledgements—The authors are grateful to Drs. T. R. Govindachari and S. Selvavinayakam (CIBA-GEIGY Research Centre, Bombay) for recording spectral data and to Dr. D. S. Bhakuni (C.D.R.I. Lucknow) who kindly supplied the authentic sample of coclaurlne.

REFERENCES

- 1. Chopra, R. N., Nayar, S. L. and Chopra, I. C. (1956) Glossary of Indian Medicinal Plants. C.S.I.R., New Delhi.
- Tiwari, K. P. and Masood, M. (1978) Phytochemistry 17, 1068.
- Chatterjee, A. and Mukherjee, K. S. (1964) J. Indian Chem. Soc. 41, 857.
- 4. Ohkuma, S. (1955) J. Pharm. Soc. Jpn 75, 1124.
- Bick, I. R. C., Mason, J. H., Sheppard, N. and Vernengo, M. J. (1961) J. Chem. Soc. 1896.
- 6. Aihara, T. (1950) J. Pharm. Soc. Jpn 70, 405.
- (a) Zeisel, S. (1885) Monatsh 6, 989; (b) Belcher, R., Fildes, J. E. and Nutten, J. E. (1955) Analyt. Chim. Acta 13, 16.
- Budzikjewicz, H., Djerassi, C. and Williams D. H (1967) Structural Elucidation of Natural Products by Mass Spectrometry, Vol. 1, pp. 173-83. Holden-Day, San Francisco.
- 9. Kupchan, S. M., Das Gupta, B., Fujita, E. and King, M. L. (1963) Tetrahedron 19, 227.
- 10. Fujita, E. and Tomimatsu, T. (1951) J. Pharm. Soc. Jpn 71, 226.