THE REACTION OF METHYL PHENYL KETENE AND 1-PHENYL ETHANOL -OBSERVATION OF A NEGATIVE ENTHALPY OF ACTIVATION Joachim Jahme and Christoph Ruchardt⁺⁾ Chemisches Laboratorium der Universitat Freiburg, Albertstr. 21, D-7800 Freiburg 1.Br.

<u>Abstract</u> The unusual activation parameters of the reactions of aryl methyl ketenes and α -arylethanoles ($\Delta H^{\pm}=-0.9$ to +0.3 kcal·mol⁻¹; $\Delta S^{\pm}=-68$ to -71 e.u.) are interpreted by a two step mechanism via reversible formation of a small concentration of an intermediate addition complex.

For the reaction of ketenes and alcohols only scattered kinetic data are available¹⁻⁴; the reaction order varies between 2 and 4, depending on the reaction partners and conditions. In a programme designed to study asymmetric induction⁵ and reaction mechanisms for one and the same reaction we became interested in the kinetics of the reaction of methyl phenyl ketene $\underline{1}$ (X=H) with 1-phenyl ethanol ($\underline{2}$) (Y=H) in toluene.

For the rate data recorded in table 1, an overall third order was deduced from the pseudo first order rate constants, k_{obs} , obtained by changing the concentration of the excess alcohol $\frac{2}{2}$ used ($C_0=0.24-1.3 \text{ mol/l}$; mole ratio $\frac{2}{2}: \frac{1}{2}=11:1-65:1)^{6}$. Quite unusual observations are: decreasing rate constants with increasing temperature⁸; small and even negative activation enthalpies 9-10; extremely negative activation entropies. All this points to a mechanism involving a fast, reversible equilibrium in which a small concentration of an intermediate complex is formed. This is followed by a slow, subsequent bimolecular reaction step¹¹. From the steady state treatment, the following kinetics is derived¹¹:

4011

$$A + B \xrightarrow{k_1} C \xrightarrow{B} D - d[A]/dt = \frac{k_2 \cdot k_1}{k_{-1}} [A][B]^2$$

Table 1 Rates^{a)} and Activation Parameters for the Reaction $\frac{1}{2} + \frac{2}{2} \rightarrow \frac{3}{2}$ in Toluene

<u>1</u>	2	т	$k_3 \pm \sigma^{b}$	z ^{c)}	-	$\Delta S^{\dagger} \pm \sigma^{b}$
X=	¥=	(°c)	$10^3 \cdot [1^2 \text{mol}^{-2} \text{sec}^{-1}]$		[kcal·mol ⁻¹]	e.u.
н	н	18.7	6.7 <u>+</u> 0.1	3		
н	н	40.4	6.44 <u>+</u> 0.02	7	-0.9 <u>+</u> 0.1	-71.4 <u>+</u> 0.3
н	н	59.7	6.5 <u>+</u> 0.18	4		
н	н	79.7	6.1 <u>+</u> 0.14	4		
СН3	Н	18.8	4.6 <u>+</u> 0.33	3		
сн ₃	н	40.4	5.3 <u>+</u> 0.5	3	-0.3 <u>+</u> 0.4	-70.0 <u>+</u> 1.4
СН3	н	79.7	5.0 <u>+</u> 0.6	2		
снзо	н	18.7	5.6 <u>+</u> 0.2	2		
сн ₃ о	н	40.4	6.5 <u>+</u> 0.1	4	+0.3 <u>+</u> 0.2	-67.8 <u>+</u> 0.6
сн ₃ 0	н	59.7	7.03 <u>+</u> 0.02	2		
сн ₃ о	н	79.7	7.0 <u>+</u> 0.2	4		
н	Cl	21.7	2.41 <u>+</u> 0.02	2		
н	Cl	40.4	2.97 <u>+</u> 0.11	7		
н	Cl	59.7	2.8 <u>+</u> 0.1	5	0 <u>+</u> 0.1	-70.3 <u>+</u> 0.5
н	Cl	79.7	2.91 <u>+</u> 0.04	3		
H	СН30	40.4	14.0 <u>+</u> 0.1	5		
н	H _d)	40.4	2.06 <u>+</u> 0.09	5		
н	Hg)	79.7	1.9 <u>+</u> 0.01	1		

a) measured by following the decrease of absorption at 395 nm; the pseudo first order rate law was obeyed up to > 95% consumption of 1;

first order rate law was obeyed up to \geq 95% consumption of $\underline{1}$; b) σ = standard deviation; for the least square treatment see Lit.⁷⁾; k_3 = $k_1 \cdot k_2/k_{-1}$;

c) z= number of kinetic runs with different concentrations of $\frac{2}{2}$;

d) 1-phenylethan-D-ol.

Accordingly^{11a)} $\Delta H_{exp}^{\dagger} = \Delta H_{eq}^{o} + \Delta H_{2}^{\dagger}; \Delta S_{exp}^{\dagger} = \Delta S_{eq}^{o} + \Delta S_{2}^{\dagger}.$

This explains the unusual values of the activation parameters in the table: each is a sum of two terms. Because ΔH_{eq}^{O} is a negative term, ΔH_{exp}^{\dagger} can become negative also. Despite this, the overall rate remains "slow" because both entropy terms are negative, resulting in $\Delta S_{exp}^{\dagger} \sim -70$ e.u.

We propose the following reaction sequence: a reversible addition step bet-

$$\underline{1} + \underline{2} \rightleftharpoons \begin{pmatrix} CH_3 & O \\ C=C & \rightleftharpoons & C=C \\ Ar & O^+ - CHAr & Ar & OCHAr \\ H & CH_3 & & CH_3 \\ \underline{4} & \underline{5} \end{bmatrix} \xrightarrow{[\underline{2}]} \underline{3}$$

ween alcohol and ketene, followed by ketonisation with catalysis by alcohol 2. The alternative mechanism consistently discussed in the literature 2^{-4} , the concerted reaction between an alcohol dimer and the ketene, seems inappropriate for several reasons. Alcohol dimers are observed only in very dilute solutions, and then only in C < 5%, while higher aggregates are the prevalent species¹²⁾. The association enthalpy seems to be too small¹²⁾ to render ΔH_{exp}^{\dagger} negative. For a final test, the kinetics of the reaction between stoichiometric amounts of <u>1</u> (X=H) and <u>2</u> (Y=H) was measured at $19.0^{\circ}C$ (C $_{\rm O} \sim$ 0.4 mol/1). If the alcohol dimer were the intermediate complex, as required by the kinetics, its concentration should not be stationary during a run and therefore third order kinetics should not be obeyed¹³⁾. The observation of third order kinetics for about 70% of the reaction and the reasonable agreement of k_3 (4.2-6.9.10⁻³ 1²·mol⁻²sec⁻¹)¹⁴ with the value derived from pseudo first order kinetics therefore supports our mechanistic proposal. The mechanism is also in agreement with $k_{\rm H}/k_{\rm D}$ =3.1-3.2 at 40-80 $^{\rm O}C$ for the overall reaction (see table), and with the increase in rate when Y becomes more electron-donating (σ_p -scale) or when X becomes more electronattracting $(\sigma_{\tau}$ -scale)¹⁵⁾. Finally this mechanism leaves room for non-integral reaction orders $^{15)}$, when the substrate and reaction conditions $^{16)}$ are changed as has been observed 2-4,14). Qualitative observations in ether show

that the rate is somewhat reduced in the more polar solvent as was observed

earlier in other cases¹⁾. This suggests that 5 is the preferred inter-

mediate complex instead of 4.

Acknowledgement: We thank Prof.R.L.Schowen for a helpful discussion and

the Deutsche Forschungsgemeinschaft for financial support.

References:

- 1) W.T.Brady, W.L.Vaughn and E.F.Hoff, J.Org.Chem. 34, 843 (1969).
- 2) a) P.J.Lillford and D.P.N.Satchell, J.Chem.Soc. <u>B</u>, <u>1968</u>, 889. b) D.P.N.Satchell and R.S.Satchell, Chem.Soc.Rev. 4, 231 (1975).
- 3) A.Tille and H.Pracejus, Chem.Ber. 100, 196 (1967).
- 4) H.Mayr and R.Huisgen, Dissertation H.Mayr, Univ.München 1974.
- 5) J.Jähme and C.Rüchardt, Angew.Chem. 93, 919 (1981); Angew.Chem.Int.Ed. Engl. 20, 14 (1981).
- 6) A.A.Frost and R.G.Pearson, Kinetics and Mechanism, 1.ed., p.14, Chapman and Hall, London, 1953.
- 7) Program KINETIC 80 from W.Barbe, Dissertation Univ.Freiburg, 1981.
- 8) E.Anders (Dissertation, FU Berlin 1972) has observed this phenomenon qualitatively in reactions of phenyl trifluormethyl ketene with alcohols. 9) For the reaction of dimethyl ketene and ethanol activation parameters

 $E_a=3.3 \text{ kcal} \cdot \text{mol}^{-1}$ and $\Delta S^{+}=-57$ e.u. were calculated from three single

rate constants between 5 and 25°C ^{2a)}.

- 10) For further recent examples of negative activation enthalpies see a) J.J.Zupancic and G.B.Schuster, J.Am.Chem.Soc. 103, 944 (1981); b) B.Giese, W.-B.Lee and C.Neumann, Angew.Chem. 94, 320 (1982); c) N.J.Turro, G.F.Lehr and J.A.Butcher, J.Am.Chem.Soc. 104, 1754 (1982).
- 11) a) K.Schwetlick, H.Dunken, G.Pretzschner, K.Scherzer and H.-J.Tiller, Chemische Kinetik, 1.ed., p.103 ff., Verlag Chemie, Weinheim 1973.
 - b) A.A.Frost and R.G.Pearson, Kinetics and Mechanism, 1.ed., p.93 and 179 ff., Chapman and Hall, London, 1953.
 - c) W.Drenth and H.Kwart, Kinetics Applied to Organic Reactions.
- 1.ed., p.36, Marcel Dekker, New York 1980. 12) J.H.Rytting, B.D.Anderson and T.Higuchi, J.Phys.Chem. <u>82</u>, 2240 (1978); R.Aveyard, B.J.Briscoe and J.Chapman, J.Chem.Soc.Farad.Soc.(1), 69, 1772 (1973); H.C.van Ness, T.van Winkle, H.H.Richtol and H.B.Hollinger, J.Phys.Chem. 71, 1483 (1967).
- 13) see Dissertation J.Jähme, Univ.Freiburg, 1982 for details of the kinetic equation used.
- 14) Because of the high sensitivity of <u>1</u> towards O₂ and other impurities a higher precision in these measurements is not ² within easy reach; 85-95% 3 was isolated from the kinetic runs.
- 15) This becomes more evident when the kinetic data for <u>1</u> (X=Cl) are taken into consideration also: $\Delta H^{\dagger} = 0 + 0.7 \text{ kcal·mol}^{-1}, \Delta S^{\dagger} = -65 + 2.4 \text{ e.u.}$ These values were omitted from the table, because the reaction order increases between 18.8 and 79.7°C from 2.7 to 3.4.
- 16) R.Huisgen and F.Mietzsch, Angew.Chem. <u>76</u>, 36 (1964); Angew.Chem.Int.Ed. Engl. 3, 85 (1964); R.Huisgen, Angew.Chem. 82, 783 (1970); Angew.Chem.Int.Ed.Engl. 9, 751 (1970).

(Received in Germany 29 June 1982)