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A b s t r a c t :  Two diastereomers of a macrocyclic hydroxyamide (norstatine-based) peptide, having an 
18-membered ring system, have been synthesized as HIV protease inhibitors. The (R)-diastereomer 
(IC50 19 nM) was ~17-fold weaker than an acyclic analog, but had comparable or better antiviral activity, 
suggesting improved cell penetration properties and/or resistance to cellular enzymes for the macrocyclic inhibitor. 

Introduction. HIV protease, the aspartic proteinase encoded by the Human Immunodeficiency Virus (HIV), 

has been identified as a promising target for the treatment of Acquired Immune Deficiency Syndrome (AIDS). 1 

Accordingly, a great number of inhibitors have been developed for this enzyme, in particular, a variety of peptide- 

derived transition-state analog inhibitors. 2 Norstatine-based inhibitors of HIV protease, which bear a key 

hydroxyamide functionality, have been investigated in our 3 and other 4 research groups. Several examples have 

exhibited low or sub-nanomolar inhibitory activities, and potent antiviral activity.3, 4 

We recently described a series of macrocyclic peptide-based inhibitors of HIV protease which incorporate 

a hydroxyethylamine functionality as the transition-state mimetic group. 5 One potent example (IC50 = 1 nM) 

exhibited HIV antiviral activity (RF/MT-2 cell assay, EC50 4 nM) which was equal to that of the Roche acyclic 

hydroxyethylamine inhibitor Ro31-8959 (Saquinavir), 6 which has recently beenapproved for marketing in the 

U.S. Another example of a macrocyclic HIV protease inhibitor, also linked from the P1 to P3 positions 

(terminology of Schechter and Berger7), has been described by Podlogar et al. 8 This derivative incorporates a 

difluoroketone group as the transition-state mimetic, and provides very effective inhibitory activity 

(Ki = 20 nM). Based on the potent activities achieved with our macrocyclic hydroxyethylamine inhibitors, 5 

and the success of the linear norstatine-based inhibitors,3, 4 we have investigated the incorporation of the 

hydroxyamide (norstatine) transition-state analog group into our macrocyclic peptide template structure. 

Results and Discussion. In our previously reported synthesis of macrocyclic hydroxyethylamines, 5 we 

generated the complete linear structure, and then performed the macrocyclization (85% yield) as the final step. In 
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contrast, for the preparation of the target macrocyclic hydroxyamide inhibitor, we decided to first assemble the 

P3-P1 macrocyele, then generate the hydroxyamide functionality, and finally incorporate the PI'  group. After 

preparation of the requisite P3 group, 9 the synthesis of the macrocycle template was achieved efficiently in four 

steps, with an overall yield of 47% (Scheme). Unfortunately, conversion of this macrocyclic methyl ester to the 

required c~-hydroxy ester was problematic, 10 and the route which was successful in providing comparable 

amounts of both diastereomers proceeded in only low yield. However, pure samples of both the (S)-CHOH- (13 

and (R)-CHOH- (2) diastereomers of final hydroxyamide product could be obtained, with stereochemical 
assignments being made by analogy with linear analogs. 11 
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Enzyme inhibition studies were carried out with protease from the BRU (11113) strain of HIV-1 virus, as 

described previously.3, 5 HIV-Antiviral activity was determined in a cell assay which used MT-2 cells infected 

with virus strain HTLV-1 RF, and measured for the level of p24 core antigen. 5 The inhibitory activities for the 

two diastereomers of the macrocyclic hydroxyamide (!, _2) are given in the Table, accompanied by data for related 

macrocyclic hydroxyethylamines, and related acyclic analogs. Structure/activity relationship observations are as 
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follows: 

Effect of chiralitv at --CHOH-: Similar to the observations for our hydroxyethylamines 3 and 4, 5 the 

macrocyclic hydroxyamide diastereomer with preferred chirality at -CHOH-  (1, designated S for the 

hydroxyamide structure) provides -200-fold greater HIV protease inhibition than the R-diastereomer 2. 

Effect of hvdroxvamide vs. hvdroxvethvlamine functionality: For acyclic derivatives having the same 

peptide frame, and with Proline at PI ' ,  hydroxyamides have been found to be >10-fold more potent as HIV 

protease inhibitors than the corresponding hydroxyethylamines. 3 This trend is also observed for the macrocyclic 
systems, in that the hydroxyamides 1 and i are -20 times more potent than the hydroxyethylamine analogs 3 and 

4, respectively, which lack only the carbonyl functionality at the transition-state mimetic group. 

Table 
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23. 

Effect of the macrocvcle structure on HIV orotease inhibition: In the case of our hydroxyethylamines, 5 

the conformationally-constrained macrocyelic inhibitors were generally less effective as HIV protease inhibitors 

than related acyclic analogs. Similarly, the macrocyclic hydroxyamide _1 is observed to be -17-fold less effective 

as an HIV protease inhibitor than the related acyclic analog 5. 

l~ff¢¢¢ of the macrocvcle structure on HIV antiviral activitv: In our study of a set of 15 hydroxyethyl- 

amines, 5 the ratio of inhibitory activities in the cell assay vs. enzvme assav (i.e., EC50/IC50) was generally 

superior for the macrocyclic inhibitors, as compared to the ratio observed for acyclic analogs. Similarly, the 
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EC50/IC50 ratio for I is ca. 30-fold better than that for 5_. That is, although _1 provides ~17-fold less HIV 

protease inhibition than 5__, it is comparable to or better than 5 in the HIV cell assay. These observations, in both 

this and our previous 5 studies, suggest that our macrocyclic inhibitors may have improved cell permeability 

and/or resistance to cellular enzymes, relative to their acyclic counterparts. 
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