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ABSTRACT: An asymmetric Pd-catalyzed intramolecular
followed by an intermolecular double Heck reaction of
arenediazonium salts with simple alkenes is disclosed. This
reaction features mild reaction conditions, simple operation,
and excellent functional group tolerance and provides a rapid
access to functionalized dihydrobenzofurans bearing all-
carbon quaternary centers in good regioselectivity (>95/5)
and enantioselectivity (90—99% ee).

he fused tricyclic dihydrobenzofuran framework repre-
sents a prevalent core structure present in a large number
of natural products such as Isoabietenin A, Parviflorene J,
Morphine, and its derivatives (Codeine, Thebaine, and
Codeinone), which show a wide range of important bio-
logically activities (Figure 1)." Therefore, it is not surprising

-)-Thebaine

Tncycllc framework

R = H, (-)-Morphine
R = Me, (-)-Codeine

\

Isoabletenln A Me

parviflorene J

Figure 1. Representative examples of biologically active molecules
and natural products.

that enormous efforts have been devoted to developing new
transformations to synthesize this privileged structural
skeleton.” Nevertheless, efficient methods for their enantiose-
lective preparation are still rare. Therefore, it is highly desirable
to develop new strategies to access these scaffolds.

On the other hand, catalytic asymmetric dicarbofunctional-
ization of alkenes by simultaneously installing two carbon
groups on each side of the double bond has experienced
remarkable progress and emerged as a powerful synthetic tool
for constructmg molecules containing quaternary stereo-
centers.’ Among them, the double Heck reaction is a
particularly appealing transformation, since it not only offers
a facile route to diverse cyclic scaffolds having all-carbon
quaternary centers, but also the introduced alkenyl group can
be further functionalized. Our group recently reported the first
example of a highly enantioselective aryl-alkenylation reaction
by Ni-catalyzed reductive cyclizative cross- couphng of an aryl
bromide with a vinyl bromide (Scheme 1A, top).* In addition,
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Scheme 1. Transition-Metal-Catalyzed Double Heck
Reaction
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(B) Previously reported Pd-catalyzed double Heck reaction (Ref 8)
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transition metal catalyzed redox-neutral aryl-alkenylation
reaction of aryl halides with vinylmetallic reagents has also
been well investigated (Scheme 1A, bottom).’ However,
asymmetric transformation has not been reported.’ Only
recently, the Zhang group reported the Pd-catalyzed
enantioselective aryl-alkenylation reaction of aryl halides with
vinyl boronic acids.” However, the above-mentioned methods
are limited to the use of pregenerate coupling partners (the
vinylmetallic reagents or vinylhalides), which require many
stoichiometric transformations for their preparation.

The direct double Heck reaction with nonfunctionalized
olefins is a significantly more efficient and atom-economical
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strategy. A single racemic example of a double Heck reaction of
aryl iodide with methyl acrylate has been reported; however, a
mixture of products was obtained (Scheme 1B),* which draws
into question the generality of this approach. To solve this
problem, we anticipated that a mild generation of active
arylmetallic species is critical for success. Inspired by the
seminal contributions by Correia’ as well as Sigman and
Toste'® on enantioselective Heck—Matsuda reactions, we
expected to achieve an enantioselective double Heck reaction
of aryldiazonium salts with simple alkenes by utilizing the
ability of aryldiazonium salts to be easily available and highly
reactive.' Herein, we report the first catalytic enantioselective
double Heck reaction that provides access to functionalized
dihydrobenzofurans bearing all-carbon quaternary centers
(Scheme 1C). This protocol reported in this work proceeds
under open flask and mild conditions without requiring
anhydrous solvents and air-sensitive chiral phosphines ligands.

Our investigations commenced with the coupling of
arenediazonium salt la and methyl acrylate 2a. Gratefully,
the desired E-configuration dihydrobenzofuran 3aa was
obtained exclusively in 74% yield using Pd(OAc), (10 mol
%) as a catalyst in the absence of ligand (Table 1, entry 1).
This result may indicate that controlling the enantioselectivity
of the reaction is challenging because of the background
reaction. Facing the challenge, we decided to employ the same
protocol to test the asymmetric transformation using (S)-‘Bu-
Pyrox (L1) as a chiral ligand, affording 3aa in 75% yield, albeit
with only 9% ee (entry 2). Subsequently, we found that the
anions in palladium catalysts had a great influence on both the
efficiency and enantioselectivity (entries 3—S). PdCl, was
found to be particularly effective in terms of enantioselectivity
(entry S, 77% ee), albeit with a lower yield. Attempts to add
DTBMP, a highly eﬂic1ent organic base in asymmetric Heck—
Matsuda reaction,'” or the addition of carbonates such as
Na,CO; or K,CO; as base,"” inhibited the desired domino
process (entries 6—8). To our surprise, noteworthy improve-
ment of the yield to 90% was observed when Ag,CO; was used
as an additive (entry 9). Next, the chiral ligands L2—L14 were
examined (entries 11—23), and L14 proved to be the most
effective, delivering 3aa in 65% yield with 82% ee (entry 23).
Gratefully, when lowering the reaction temperature to 10 °C,
the enantioselectivity of 3aa could be improved to 94% (3aa/
3aa’ > 95/5, entry 24)."* We assume that the cationic pathway
might be established by removing chloride ions through
Ag,CO3, so only catalytic amounts of silver salt are sufficient.
To our surprise, the enantioselectivity was significantly reduced
with 10 mol % of Ag,CO; (entry 25, 60% ee). Obviously, the
addition of Ag,CO; was beneficial for both the reactivity and
enantioselectivity. Although the role of Ag,COj is unclear, we
suspect that it may play a dual role, not only as a Lewis acid to
promote the oxidative addition of Pd(0) to arenediazonium
salt but also as a chloride scavenger.

With the optimized reaction conditions in hand (Table 1,
entry 24), the substrate scope of alkenes 2 was first explored
(Scheme 2). Gratifyingly, the reaction showed excellent
regioselectivity to produce the E-configuration linear product
3 rather than the branched product 3’ in almost all cases (3/3’
> 95/5). In addition to acrylates, both the electron-rich and
electron-deficient styrenyl derivatives can undergo cyclizative
cross-coupling to provide the desired dihydrobenzofurans
3ac—at in good yields with high enantioselectivities (90%—
97% ee). Notably, the inclusion of an ortho-substituent did not
hinder the reaction (3aq). The reaction was rather general and

Table 1. Optimization of the Reaction Conditions”
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MeOH, 40 °C
1a  Me 2a MOMe
° 3aa’
o]
Q. @ % G}% 3, =T
R
- tBu Ve g L10,R ='Bu
|_2 R Ph u L11,R=Ph
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yield of 3aa ee of 3aa
entry [Pd] additive  ligand (%)Y (%)<
1 Pd(OAc), — - 74 -
2 Pd(OAc), - L1 75 9
3 Pd(TFA), - L1 26 20
4 Pd(dba),  — L1 28 37
5 PdCl, - L1 9 77
6 PdCl, DTBMP L1 trace -
7 PdCl, Na,CO, L1 trace -
8 PdCl, K,CO, L1 trace -
9 PdCl, AgpCO, L1 90 74
10 PdCl, Ag,PO, Ll 83 69
11 PdCl, Ag,CO4 L2 trace -
12 pdcl Ag,CO, L3 14 67
13 PdCl, Ag,CO, L4 71 69
14 Pdcl Ag,CO, LS 56 70
15 PdcCl, AgCO, L6 31 73
16  PdCl, Ag,CO, L7 83 67
17 PdCl Ag,CO, L8 89 1
18 PdCl, Ag,CO, L9 57 79
19 Pdcl, Ag,CO;,  L10 62 17
20 Pdcl Ag,CO, LIl 85 48
21 PdCl Ag,CO;,  LI2 87 69
22 PdClL Ag,CO;,  L13 52 81
23 PdCl, Ag,CO,  Ll4 65 82
247 pdcl, Ag,CO;  Ll4 79 94
25°  Ppdcl, Ag,CO,  Ll4 76 60

“1a (0.1 mmol), 2a (0.2 mmol), Pd-catalyst (10 mol %), ligand (20
mol %), additive (01 mmol) in solvent (1 mL) at 40 °C for 24 h,
3aa/3aa’ > 95/5. Isolated yields. “Determined by HPLC analysis
with a chiral column. “Reaction was performed at 10 °C for 4 days.
“Reaction was conducted with 10 mol % of Ag,CO;. DTBMP = 2,6-
di-tert-butyl-4-methylpyridine.

distinguished by an exquisite chemoselectivity profile, as
methoxyl (3ae, 3ap, and 3as), fluoro (3ag, 3ar, and 3at),
nitro (3ah), trifluoromethyl (3ai), triftuoromethoxyl (3am),
ester (3al), or chloro (3aq) could all be perfectly
accommodated. Particularly interesting was the observation
that the presence of bromo atom on the aromatic ring did not
interfere, affording 3ak and 3ao in good yields without traces
of the further competing Heck coupling product being
observed, thus providing opportunities for further derivatiza-
tion by cross-couplings.

The substrate scope of arenediazonium salts 1 was examined
next (Scheme 3). Dihydrobenzofurans 3bk—fk were obtained
in good yields and high enantioselectivities (90%—92% ee)
regardless of whether the para-substitutions of arenediazonium
salts are electron-donating or electron-withdrawing groups.
The meta-substituted arenediazonium salts all posed no
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Scheme 2. Substrate Scope of Alkenes 2“
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Scheme 3. Substrate Scope of Arenediazonium Salts 1¢
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problems (3gk—hk). However, the reaction of arenediazonium
salt with a monosubstituted olefin was unsuccessful (3ik).
Given the wide structural diversity of chiral fused tricyclic
dihydrobenzofurans in target compounds as illustrated in
Figure 1, a further synthetic application of this catalytic double
Heck reaction was proven by efficient synthesis of fused
tricyclic dihydrobenzofuran S (Scheme 4). The arenediazo-

Scheme 4. Gram-Scale Reaction and Synthetic Applications
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“3-Chloro-2- methylprop l-ene (1.5 equiv), K,CO; (3 equiv),
acetone, 65 °C. “Zn°, MeOH/NH,Cl. “HBF,, NaNO, (2.5 equiv),
H,0, 0 °C, 68% (three steps). m-CPBA = meta-chloroperbenzoic
acid.

nium salt la was synthesized from inexpensive and
commercially available 2-nitrophenol in three steps without
the need for column chromatographic separation. The
preparative utility of this key double Heck reaction was
evaluated using 1.3 g of substrate la to afford the desired
product 3ac in 80% yield with 94% ee value. The double bond
was then epoxidized in the presence of m-CPBA to afford the
corresponding epoxide 4 in 80% yield (1.1/1 dr). Further
investigations with other Brensted or Lewis acids found that
BF;-Et,O was the best to furnish product § with high
diastereoselectivity (100/13)."

In summary, we have demonstrated a facile and efficient
protocol for the construction of functionalized dihydrobenzo-
furans through the Pd-catalyzed double Heck reaction of
arenediazonium salts with simple alkenes. This reaction
features mild reaction conditions, simple operation, and
excellent functional group tolerance and exhibits exquisite
regioselectivity (>95/5) and enantioselectivity (90%—99% ee).
In addition, this reaction has been applied to efficient synthesis
of athe enantiopure tricyclic dihydrobenzofuran scaffold from
commercially available and inexpensive 2-nitrophenol.
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