Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Natural products-based insecticidal agents 4. Semisynthesis and insecticidal activity of novel esters of 2-chloropodophyllotoxin against *Mythimna separata* Walker in vivo

Hui Xu*, Xiao Xiao

Laboratory of Pharmaceutical Design and Synthesis, College of Life Sciences, Northwest A&F University, Yangling 712100, China

ARTICLE INFO

Article history: Received 13 May 2009 Revised 4 July 2009 Accepted 24 July 2009 Available online 28 July 2009

Keywords: Podophyllotoxin 2-Chloropodophyllotoxin Semisynthesis Insecticidal activity

ABSTRACT

By using podophyllotoxin as a lead compound, eight novel esters of 2-chloropodophyllotoxin were designed, semisynthesized, and preliminarily evaluated for their insecticidal activity against the prethird-instar larvae of *Mythimna separata* Walker in vivo for the first time. Among all the tested compounds, especially three esters of 2-chloropodophyllotoxin **8a**, **8c**, and **8g**, and one intermediate **6** showed more promising and pronounced insecticidal activity than toosendanin, a commercial insecticide derived from *Melia azedarach*.

© 2009 Elsevier Ltd. All rights reserved.

Podophyllotoxin (**1**, Fig. 1), one of the well-known naturally occurring aryltetralin lignans, is extracted as the main component from the roots and rhizomes of *Podophyllum* species such as *Podophyllum hexandrum* and *Podophyllum peltatum*.¹ Its derivatives, such as etoposide (VP-16, **2**), teniposide (VM-26, **3**), and etopophos

virus (HIV).³ Recently, we have reported the insecticidal activity of the podophyllotoxin derivatives and found some compounds showed more promising insecticidal activity than podophyllotoxin.^{4,5} According to the previous structure–insecticidal activity relationship, it was found that the *trans*-lactone and 4'-OCH₃ moi-

(etoposide phosphate, **4**), have been used as DNA topoisomerase II inhibitors in chemotherapy for various types of cancer,² and they are also effective in the treatment of human immunodeficiency

* Corresponding author. Tel./fax: +86 29 87091952.

E-mail address: orgxuhui@nwsuaf.edu.cn (H. Xu).

eties of podophyllotoxin were essential to maintain the insecticidal activity.⁶ Meanwhile, Durst and co-workers described that 2-chlo-ropodophyllotoxin had significant anticancer activity.⁷ Based upon the above results, we want to further study the insecticidal activity of 2-chloropodophyllotoxin derivatives being the *trans*-lactone and 4'-OCH₃ fragments. Therefore, as an important part of our program

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter @ 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2009.07.116

aimed at the discovery and development of bioactive molecules,^{4,5,8-12} in this Letter a series of novel esters of 2-chloropodophyllotoxin (**8a-8h**) were designed, semisynthesized, and preliminarily evaluated for their insecticidal activity against the pre-third-instar larvae of *Mythimna separata* Walker in vivo for the first time.

A series of novel esters of 2-chloropodophyllotoxin (8a-8h) were synthesized as shown in Scheme 1. Starting from podophyllotoxin (1), the 4-OH group of 1 was firstly protected by a tetrahydropyranyl (THP) group in the presence of phosphorus oxychloride and dihydropyran (DHP) to give 4-O-tetrahydropyranylpodophyllotoxin (5).¹³ Then 2-chloro-4-O-tetrahydropyranylpodophyllotoxin (6) was obtained by treatment of 5 with lithium diisopropylamide (LDA) at -78 °C in dry THF, and followed by stereoselective reaction with hexachloroethane. Subsequently, hydrolysis of the THP group of **6** to afford 2-chloropodophyllotoxin (7).⁷ Finally, eight novel esters of 2-chloropodophyllotoxin (**8**a– **8h**) were obtained by reaction of **7** with the corresponding aromatic acids in the presence of diisopropylcarbodiimide (DIC) and 4-dimethylaminopyridine (DMAP). The structures of the compounds were well characterized by ¹H NMR, HRMS, MS, optical rotation, and IR.14

In order to obtain precise three-dimensional structural information and absolute configuration of **8a–8h**, compound **8h** was recrystallized by slow evaporation from methanol and its singlecrystal structure was determined by X-ray crystallography as illustrated in Figure 2.¹⁵ It was clearly demonstrated that the 2-chloro and the 4-ester groups of **8h** adopted the β - and α -configuration, respectively.

The insecticidal activity of compounds **5–7** and **8a–8h** against the pre-third-instar larvae of *M. separata* in vivo was screened by the leaf-dipping method at the concentration of 1 mg/mL^4 Podophyllotoxin phenylacetate (**9**),¹⁶ and toosendanin, a commercial insecticide derived from *Melia azedarach*, were used as positive controls.

As indicated in Table 1, the corresponding corrected mortality rates caused by these compounds after 35 d were far higher than

Figure 2. The X-ray crystallography of compound 8h.

those after 10 and 20 d. For example, the corrected mortality rate of **8a** against *M. separata* after 10 d was only 10.7%, after 20 d the corresponding mortality rate was increased to 32.1%, but after 35 d the corresponding mortality rate was rapidly increased to 70.4%, which was nearly seven times of the mortality rate after

Scheme 1.

Table 1

Insecticidal activity of novel esters of 2-chloropodophyllotoxin (8a-8h) against Mythimna separata Walker in vivo

Compounds	R	Corrected mortality rate (%)		
		10 d	20 d	35 d
1 5 6 7	 	17.9 (±17.0) 10.7 (±9.4) 23.3 (±12.5) 7.14 (±4.7)	17.9 (±17.0) 14.3 (±14.1) 33.3 (±4.7) 17.9 (±12.5)	44.4 (±12.5) 51.9 (±12.5) 66.7 (±4.7) 37.0 (±9.4)
8a	H ₂ C	10.7 (±12.5)	32.1 (±4.7)	70.4 (±4.7)
8b	O ₂ N O ₂ N	10.7 (±9.4)	25.0 (±14.1)	44.4 (±16.3)
8c	O ₂ N	28.6 (±12.5)	50.0 (±4.7)	63.0 (±4.7)
8d	—————Me	10.7 (±12.5)	21.4 (±12.5)	40.7 (±9.4)
8e	Me	3.6 (±8.2)	3.6 (±8.2)	40.7 (±17.0)
8f	CI	10.7 (±4.7)	21.4 (±9.4)	44.4 (±14.1)
8g	CH2-	28.6 (±9.4)	32.14 (±12.5)	63.0 (±12.5)
8h	CI	7.1 (±4.7)	14.3 (±8.2)	40.7 (±12.5)
9 Toosendanin	 	3.6 (±0) 25.0 (±0)	17.9 (±12.5) 35.7 (±8.2)	51.9 (±9.4) 51.9 (±12.5)

10 d. That is, these compounds, different from those conventional neurotoxic insecticides, such as organophosphates, carbamates, and pyrethroids, showed delayed insecticidal activity.^{4,5} Meanwhile, the symptoms of the tested *M. separata* were also characterized as the same as our previous reports.^{4,5} For example, the pupation of the larvae and the adult emergence of *M. separata* were inhibited by these compounds, therefore, the stage from the larvae to adulthood of *M. separata* was prolonged as compared to the con-

trol group. Moreover, many larvae of the treated groups molted to abnormal pupae, which could not reach adulthood and died during the stage of pupation because they were not able to remove their pupal skin.

Some preliminary structure-insecticidal activity relationships on the 2-chloropodophyllotoxin derivatives were also investigated. As shown in Table 1, when α -naphthylacetyl, 3-nitrobenzoyl, or phenylacetyl group was introduced on the C-4 position of 2-chloropodophyllotoxin, the corresponding esters 8a, 8c, and 8g showed more potent insecticidal activity than toosendanin. For example, the final mortality rates of 8a, 8c, and 8g were 70.4%, 63.0%, and 63.0%, respectively, while the final mortality rate of toosendanin was 51.9%. However, when 3,5-dinitrobenzoyl, 4-methylbenzoyl, 3-methylbenzoyl, 2-chlorobenzoyl, or 3-chlorobenzoyl group was introduced on the C-4 position of 2-chloropodophyllotoxin, the final mortality rates of the corresponding esters 8b, 8d, 8e, 8f, and 8h were \leq 44.4%, which were less potent than toosendanin. Interestingly, 2-chloro-4-O-tetrahydropyranylpodophyllotoxin (6), an intermediate of 8a-8h, also exhibited more potent insecticidal activity than toosendanin (66.7% vs 51.9%), and this encouraging result will prompt us to further study the ether derivatives of 2-chloropodophyllotoxin as the insecticidal agent in future. Meanwhile, it was also found that the substituents effect on the C-4 position of 2-chloropodophyllotoxin derivatives was very important for their insecticidal activity: (1) When some substituents were introduced on the C-4 position of 2-chloropodophyllotoxin, the corresponding compounds usually showed more potent insecticidal activity than the podophyllotoxin ones. For example, 2-chloro-4-O-tetrahydropyranylpodophyllotoxin (6) exhibited more potent insecticidal activity than 4-O-tetrahydropyranylpodophyllotoxin (5) (66.7% vs 51.9%), and 2-chloropodophyllotoxin phenylacetate (8g) showed more potent insecticidal activity than the corresponding podophyllotoxin phenylacetate (9) (63.0% vs 51.9%). (2) When there was no substituent introduced on the C-4 position of 2-chloropodophyllotoxin, the corresponding compound showed less potent insecticidal activity than podophyllotoxin (37.0% for **7** vs 44.4% for **1**). Consequently, in combination of our previous results that introducing 4^B-benzenesulfonamide substituents on the C-4 position of podophyllotoxin could lead to more potent compounds,⁵ some 4β-benzenesulfonamide-2-chloropodophyllotoxin derivatives will be synthesized and studied in our laboratory.

In conclusion, eight novel esters of 2-chloropodophyllotoxin (**8a–8h**) were designed, semisynthesized, and evaluated for their insecticidal activity against the pre-third-instar larvae of *M. separa-ta* in vivo at the concentration of 1 mg/mL. Among all the tested compounds, especially three esters of 2-chloropodophyllotoxin **8a**, **8c**, and **8g**, and one intermediate **6** exhibited the more promising and pronounced insecticidal activity than toosendanin, a commercial insecticide derived from *M. azedarach*.

Acknowledgments

This work was financially supported by the Program for New Century Excellent University Talents, State Education Ministry of China (NCET-06-0868), the Key Project of Chinese Ministry of Education (No. 107105), and the Research Fund for the Doctoral Program of Higher Education of China (No. 20070712025).

References and notes

- 1. Lin, H. W.; Kwok, K. H.; Doran, P. M. Biotechnol. Prog. 2003, 19, 1417.
- 2. Issell, B. F. Cancer Chemother. Pharmacol. 1982, 7, 73.
- (a) Lee, C. T. L.; Lin, V. C. K.; Zhang, S. X.; Zhu, X. K.; VanVliet, D.; Hu, H.; Beers, S. A.; Wang, Z. Q.; Cosentino, L. M.; Morris-Natschke, S. L.; Lee, K. H. Bioorg. Med. Chem. Lett. 1997, 7, 2897; (b) Zhu, X. K.; Guan, J.; Xiao, Z. Y.; Cosentino, L. M.; Lee, K. H. Bioorg. Med. Chem. 2004, 12, 4267.

- 4. Xu, H.; Zhang, X.; Tian, X.; Lu, M.; Wang, Y. G. Chem. Pharm. Bull. 2002, 50, 399.
- Xu, H.; Zhang, L.; Su, B. F.; Zhang, X.; Tian, X. Heterocycles 2009, 77, 293.
- Gao, R.; Gao, C. F.; Tian, X.; Yu, X. Y.; Di, X. D.; Xiao, H.; Zhang, X. Pest. Manag. 6. Sci. 2004, 60, 1131.
- 7 Glinski, M. B.; Freed, J. C.; Durst, T. J. Org. Chem. 1987, 52, 2749.
- Xu, H.; Jian, K. Z.; Guan, Q.; Ye, F.; Lv, M. Chem. Pharm. Bull. 2007, 55, 1755. 8
- 9. Xu, H.; Liu, W. Q.; Fan, L. L.; Chen, Y.; Yang, L. M.; Lv, L.; Zheng, Y. T. Chem. Pharm. Bull. 2008, 56, 720.
- 10 Xu, H.; Fan, L. L. Chem. Pharm. Bull. 2008, 56, 1496.
- Dai, H. L.; Liu, W. Q.; Xu, H.; Yang, L. M.; Lv, M.; Zheng, Y. T. Chem. Pharm. Bull. 11. 2009. 57. 84.
- 12. Xu, H.; Lv, M.; Tian, X. Curr. Med. Chem. 2009, 16, 327.
- 13.
- Gensler, W. J.; Gatsonis, C. D. J. Org. Chem. **1966**, 31, 4004. Spectral data for **8a**: White solid, mp 200–203 °C; $[\alpha]_D^{20} = -147$ (c 0.56 mg/mL, CHCl₃); IR cm⁻¹: 2919, 1776, 1736, 1596, 1505, 1484, 1459, 1379, 1236, 1127, 14. 1038, 937, 753; ¹H NMR (400 MHz, CDCl₃) δ : 7.98 (d, J = 8.0 Hz, 1H, naphthalene ring), 7.88 (d, J = 7.2 Hz, 1H, naphthalene ring), 7.82 (dd, J = 2.8, 6.8 Hz, 1H, naphthalene ring), 7.53 (m, 2H, naphthalene ring), 7.41 (m, 2H, naphthalene ring), 6.54 (s, 1H, H-5), 6.48 (s, 1H, H-8), 6.32 (s, 2H, H-2', 6'), 5.97 (m, 3H, H-4 and OCH₂O), 4.71 (s, 1H, H-1), 4.35 (m, 1H, H-11), 4.19 (s, 2H, CH₂C₁₀H₇), 4.05 (m, 1H, H-11), 3.78 (s, 3H, 4'-OCH₃), 3.63 (s, 6H, 3',5'-OCH₃), 2.93 (m, 1H, H-3); ESI-MS m/z: 639 ([M+Na]⁺, 78), 641 ([M+Na]⁺, 33); HRMS: Anal. Calcd for C₃₅H₃₁O₉NaCl ([M+Na]⁺): 639.1392. Found: 639.1396. Compound **8b**: Yellow solid, mp 142–145 °C; $[x]_D^{20} = -90$ (c 0.26 mg/mL, CHCl₃); IR cm⁻¹: 2923, 2845, 1787, 1732, 1590, 1493, 1464, 1337, 1245, 1119, 1041, 927, 781, 721; ¹H NMR (400 MHz, CDCl₃) δ: 9.30 (s, 1H, H-4"), 9.15 (s, 2H, H-2", 6"), 6.82 (s, 1H, H-5), 6.64 (s, 1H, H-8), 6.50 (s, 2H, H-2', 6'), 6.35 (d, J = 8.8 Hz, 1H, H-4), 6.04 (m, 2H, OCH₂O), 4.86 (s, 1H, H-1), 4.62 (m, 1H, H-11), 4.41 (m, 1H, H-11), 3.75 (s, 9H, 3',4',5'-OCH₃), 3.31 (m, 1H, H-3); ESI-MS m/z: 665 ([M+Na]⁺, 20), 667 ([M+Na]⁺, 9); HRMS: Anal. Calcd for C₂₉H₂₃N₂O₁₃NaCl ([M+Na]⁺): 665.0781. Found: 665.0776. Compound 8c: Yellow solid, mp 96-98 °C; [α]_D² = -103 (c 0.38 mg/mL, CHCl₃); IR cm⁻¹: 2936, 2831, 1786, 1726, 1588, 1532, 1504, 1484, 1459, 1380, 1237, 1123, 1036, 932, 772, 718; ¹H NMR (400 MHz, CDCl₃) δ: 8.82 (s, 1H, H-2"), 8.40 (d, J = 7.6 Hz, 2H, H-4", 6"), 7.72 (m, J = 8.0 Hz,1H, H-5"), 6.86 (s, 1H, H-5), 6.62 (s, 1H, H-8), 6.50 (s, 2H, H-2', 6'), 6.28 (d, J = 9.2 Hz, 1H, H-4), 6.03 (m, 2H, OCH₂O), 4.85 (s, 1H, H-1), 4.60 (m, 1H, H-11), 4.42 (m, 1H, H-11), 3.80(s, 9H, 3',4',5'-OCH₃), 3.24 (m, 1H, H-3); ESI-MS m/z: 620 ([M+Na]⁺, 100), 622 ([M+Na]⁺, 42); HRMS: Anal. Calcd for C₂₉H₂₈ClN₂O₁₁ ([M+NH₄]⁺): 615.1376. Found: 615.1370. Compound 8d: 2917, 2831, 1784, 1720, 1588, 1504, 1485, 1455, 1380, 1239, 1122, 1101, 1034, 929,752; ¹H NMR (400 MHz, CDCl₃) δ : 7.91 (d, J = 8.0 Hz,2H, H-2", 6"), 7.26 (d, J = 2.8 Hz,5H, H-3", 5" and 4"-CH₃), 6.91 (s, 1H, H-5), 6.59 (s, 1H, H-8), 6.49 (s, 2H, H-2', 6'), 6.18 (d, J = 9.2 Hz, 1H, H-4), 6.00 (m, 2H, OCH₂O), 4.83 (s, 1H, H-1),

4.63 (m, 1H, H-11), 4.44 (m, 1H, H-11), 3.71(s, 9H, 3',4',5'-OCH₃), 3.23 (m, 1H, H-3); ESI-MS m/z: 589 ([M+Na]^{*}, 8), 591 ([M+Na]^{*}, 3); HRMS: Anal. Calcd for C₃₀H₂₇KClO₉ ([M+K]^{*}): 605.0975. Found: 605.0987. Compound **8e**: White solid, mp 116–119°C; ($z_{12}^{D0} = -128$ (c 0.33 mg/mL, CHCl₃); IR cm⁻¹: 2931, 2821, 2821 mp from 175 (1735, 1548, 1503, 1484, 1458, 1378, 1237, 1124, 1037, 934, 775, 721; ¹H NMR (400 MHz, CDCl₃) δ : 7.83 (s, 2H, H-2", 6"), 7.43 (d, *J* = 7.2 Hz, 1H, H-5"), 7.36 (m, J = 8.0 Hz, 1H, H-4"), 6.91 (s, 1H, H-5), 6.60 (s, 1H, H-8), 6.50 (s, 2H, H-2', 6'), 6.21 (d, J = 8.8 Hz, 1H, H-4), 6.00 (m, 2H, OCH₂O), 4.83 (s, 1H, H-1), 4.61 (m, 1H, H-11), 4.43 (m, 1H, H-11), 3.80 (s, 9H, 3',4',5'-OCH₃), 3.26 (m, 1H, H-3), 2.41 (s, 3H, 3"-CH₃); ESI-MS m/z: 589 ([M+Na]⁺, 100), 591 ([M+Na]⁺, 38); HRMS: Anal. Calcd for $C_{30}H_{27}$ NaClO₉ ([M+Na]⁺): 589.1236. Found: 589.1229. Compound **8f**: White solid, mp 202–205 °C; [α]_D²⁰ = -121 (*c* 0.30 mg/mL, CHCl₃); IR cm⁻¹: 2929, 2831, 1781, 1731, 1590, 1502, 1482, 1454, 1380, 1235, 1122, 1032, 925, 749; ¹H NMR (400 MHz, CDCl₃) δ: 7.85 (d, J = 8.0 Hz, 1H, H-6"), 7.49 (m, 2H, H-3", 5"), 7.35 (m, 1H, H-4"), 6.94 (s, 1H, H-5), 6.58 (s, 1H, H-8), 6.47 (s, 2H, H-2', 6'), 6.28 (d, J = 9.2 Hz, 1H, H-4), 6.00 (m, 2H, OCH₂O), 4.82 (s, 1H, H-1), 4.63 (m, 1H, H-11), 4.49 (m, 1H, H-11), 3.74(s, 3H, 4'-OCH₃), 3.68(s, 6H, 3',5'-OCH₃), 3.30(m, 1H, H-3); ESI-MS m/z: 609 ([M+Na]⁺, 100), 611 ([M+Na]⁺, 75), 613 ([M+Na]⁺, 16); HRMS: Anal. Calcd for C₂₉H₂₄NaCl₂O₉ $([M+Na]^*)$: 609.0690. Found: 609.0689. Compound **8g**: White solid, mp 88–91 °C; $[\alpha]_D^{20} = -150$ (*c* 0.54 mg/mL, CHCl₃); IR cm⁻¹: 2923, 2831, 1780,1735, 1589, 1503, 1483, 1457, 1378, 1235, 1124, 1037, 935, 756; ¹H NMR (400 MHz, CDCl₃) δ: 7.36-7.26 (m, 5H, H-2", 3", 4", 5", 6"), 6.68 (s, 1H, H-5), 6.52 (s, 1H, H-8), 6.39 (s, 2H, H-2', 6'), 5.98 (m, 3H, H-4 and OCH₂O), 4.75 (s, 1H, H-1), 4.41 (m, 1H, H-11), 4.19 (m, 1H, H-11), 3.81-3.67(s, 11H, 3', 4', 5'-OCH₃ and C₆H₅CH₂), 3.03 (m, 1H, H-3); ESI-MS m/z: 589 ([M+Na]⁺, 100), 591 ([M+Na]⁺, 37); HRMS: Anal. Calcd for $C_{30}H_{27}$ NaClO₉ ([M+Na]⁺): 589.1236. Found: 589.1225. Compound **8h**: White solid, mp 82–84 °C; $[\alpha]_{20}^{20} = -99$ (*c* 0.71 mg/mL, CHCl₃); IR cm⁻¹: 2934, 2831, 1783, 1722, 1589, 1504, 1484, 1459, 1380, 1239, 1123, 1036, 933, 748; ¹H NMR (400 MHz, CDCl₃) *δ*: 7.98 (s, 1H, H-2"), 7.93 (d, J = 8.0 Hz, 1H, H-6"), 7.60 (d, J = 7.6 Hz, 1H, H-4"), 7.42 (m, 1H, H-5"), 6.88 (s, 1H, H-5), 6.60 (s, 1H, H-8), 6.49 (s, 2H, H-2', 6'), 6.29 (d, J = 9.2 Hz, 1H, H-4), 6.01 (m, 2H, OCH₂O), 4.83 (s, 1H, H-1), 4.61 (m, 1H, H-11), 4.42 (m, 1H, H-11), 3.71(s, 9H, 3',4',5'-OCH₃), 3.25 (m, 1H, H-3); ESI-MS m/z: 609 ([M+Na]⁺, 100), 611 ([M+Na]⁺, 64), 613 ([M+Na]⁺, 13); HRMS: Anal. Calcd for C₂₉H₂₄O₉NaCl₂ ([M+Na]⁺): 609.0690. Found: 609.0685.

- Crystallographic data (excluding structure factors) for the structure of 8h in this paper has been deposited with the Cambridge Crystallographic Data Centre as supplementary publication number CCDC 738791. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax: +44 (0)1223 336033 or e-mail: deposit@ccdc.cam.ac.uk].
- 16. Lopez-Perez, J. L.; del Olmo, E.; de Pascual-Teresa, B.; Abad, A.; San Feliciano, A. Bioorg. Med. Chem. Lett. 2004, 14, 1283.