New Approaches to Synthesis of Unsaturated Organochalcogen Compounds with Two Different Chalcogen Atoms

E. P. Levanova, V. S. Vakhrina, V. A. Grabel'nykh, I. B. Rozentsveig, N. V. Russavskaya, A. I. Albanov, E. R. Sanzheeva, and N. A. Korchevin

Favorskii Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, ul. Favorskogo 1, Irkutsk, 664033 Russia e-mail: venk@irioch.irk.ru

Received April 21, 2014

Abstract—Two approaches to synthesis of bis-chalcogenyl derivatives of propene with two different chalcogen atoms are proposed. Reaction of 2,3-dichloro-1-propene with two different chalcogen nucleophiles $PhY^{-}(Y = S, Se)$ results in a mixture of two products with two identical chalcogen atoms and two products with different ones. The reactivity of PhY^{-} anions under the reaction conditions (60°C) practically does not depend on the Y nature. Reaction of anions $RY^{-}(Y = S, Se, Te)$ with the products of the reaction of 2,3-dichloro-1-propene and organic chalcogenides in the hydrazine hydrate–alkali medium affords the target unsaturated chalcogen-containing compounds with two different chalcogen atoms, 1,2-bis(organylchalcogenyl) propenes in up to 73% yield.

Keywords: 2,3-dichloro-1-propene, organic dichalcogenide, hydrazine hydrate-alkali, 1,2-bis(organylchalco-genyl)propenes

DOI: 10.1134/S1070363214110152

Organochalcogen compounds are important reactants in organic synthesis [1-3]. Unsaturated organochalcogen compounds are especially promising [4, 5]. The presence of two or more of chalcogen atoms in the molecule expands their use in organic synthesis and opens possibilities for design of new chelating ligands capable of complex formation with transition metal ions [6-9]. Introduction of two different chalcogen atoms in the molecule is of special interest since such compounds are attractive in view of mutual interaction of atoms in the molecule, reactivity features, and formation of coordination bonds.

Preparation of unsaturated organochalcogen compounds with two different chalcogen atoms can be performed via photoinduced two-step radical addition of two different radicals PhY' (Y = S, Se, Te) to various unsaturated compounds [10–12], or via nucleophilic addition of anions RY⁻ (Y = Se, Te) to phenylthioacetylenes [13, 14]. The first method provides high regioselectivity of the reaction due to the different reactivity of the PhY' radicals depending on the nature of the chalcogen atom, both at the stage of addition of the radical to the multiple bond and at the stage of subsequent recombination of the formed radical-adduct with another radical PhY'. However, this method is limited to preparation of phenylchalcogenated derivatives. The second approach is limited by poor availability of phenylthioacetylenes and their analogs.

Recently, we have discovered the domino-type reaction of 2,3-dichloro-1-propene I with diphenyldisulfide [15], diphenyldiselenide [16], and dibenzyldichalcogenides [17] occurring as sequential substitution of allylic chlorine atom with chalcogen-containing nucleophile, dehydrochlorination of the product to form allenylchalcogenide, the allene–acetylene rearrangement, and addition of the nucleophile to the triple bond. The final product was 1,2-dichalcogenyl-substituted propene of *Z*-configuration [15–17].

Extending those studies, we tried to synthesize unsaturated organochalcogen compounds with two different chalcogen atoms, first via the reaction of 2,3dichloro-1-propene I with two different chalcogenide anions: PhO⁻ (IIa) and PhS⁻ (IIb); PhO⁻ and PhSe⁻ (IIc); or PhS⁻ and PhSe⁻. The PhTe⁻ (IId) anion was not used since it reacted with compound I in a different manner [18].

Anions PhO⁻ IIa were obtained by dissolving phenol in the hydrazine hydrate-KOH medium.

$$PhOH + KOH \rightarrow PhOK + H_2O.$$
(1)

Anions IIb-IId were obtained by reductive splitting of diphenyldichalcogenides in the same medium [19].

$$2Ph_2Y_2 + N_2H_4 H_2O + 4KOH$$

$$\rightarrow 4PhYK + N_2 + 5H_2O,$$
 (2)
IIb-IId

$$Y = S (b), Se (c), Te (d).$$

According to the earlier reported data [15–19] the excess of alkali (KOH : $Ph_2Y_2 = 5 : 1$) was required for complete conversion of Ph₂Y₂ via reaction (2). By analogy, the ratio of KOH : PhOH = 1.0 : 2.5 was used in reaction (1). Reagents II prepared by reactions (1) and (2) were introduced in further reactions without isolation.

When using the mixtures **Ha** + **Hb** or **Ha** + **Hc**, no oxygen-containing products were detected. The reaction of dichloropropene I with the mixture of PhO⁻ and PhS⁻ (60°C, 19 h) led to Z-1,2-bis(phenylsulfanyl)propene (Z-IIIa) as the only product with 72% yield. That was consistent with a lower reactivity of PhOanions in nucleophilic substitution reactions as compared to that of PhS⁻ and PhSe⁻ [20].

In the reaction with the mixture of PhO⁻ and PhSe⁻ under the same conditions, two selenium-containing products, Z-1,2-bis(phenylselanyl)propene (Z-IIIb) and 2,3-bis(phenylselanyl)-1-propene (IV) were obtained with total yield of 81%, in the ratio of 10:1 (¹H NMR).

In the reaction with the mixture of PhS⁻ and PhSe⁻, four major products were formed: (Z-IIIa) (19%), (Z-IIIb) (18%), 1-phenylselanyl-2-phenylsulfanyl-1-propene (Va) (21%) and 1-phenylsulfanyl-2-phenylselanyl-1-propene (Vb) (21%).

The yields of the products of reaction (5) were indicative of the fact that reactivity of anions PhS- and PhSe⁻ under the reaction conditions was nearly the same. That was confirmed by treatment with methyl iodide of the water-hydrazine layer after extraction of the products of reaction (5). This reaction the mixture of thioanisole VIa and selenoanisole VIb in molar ratio of 1 : 1 gives.

PhY⁻ + CH₃I
$$\rightarrow$$
 PhYCH₃, (6)
IIb, IIc VIa, VIb
Y = S, Se.

formation of compounds Z-IIIa, Z-IIIb, Va, and Vb

RUSSIAN JOURNAL OF GENERAL CHEMISTRY Vol. 84 No. 11 2014

Reaction product	Y ¹	R ¹	Y ²	R ²	<i>Z</i> -Va−Vf, %	<i>E</i> -Va–Vf, %	Xa–Xf, %
а	Se	Ph	S	Ph	51	13	Traces
b	S	Ph	Se	Ph	69	Traces	"
с	S	Ph	Se	Me	58	23	-
d	S	Ph	Te	Ph	73	_	7 ^a
е	Se	Ph	Te	Ph	32	Not iden	tified
f	S	Bn	Se	Me	59	5	16

Table 1. Yields of products of reaction (9)

^a The reaction mixture contained 0.034 g of Ph₂Te₂ (conversion 97%).

¹H, ¹³C, and ⁷⁷Se NMR spectroscopy revealed that traces of bisselenide IV and 2-phenylsulfanyl-3-phenylselanyl-1-propene Xa were formed (total yield of ca. 3%) in reaction (5) besides the above-mentioned compounds. Formation of those compounds could be due to different rate of isomerization of the allenyl compounds VIII into the acetylene chalcogenides IX. For the corresponding selenide, the VIIIb \rightarrow IXb transformation was substantially slower [16, 17], so selenide VIIIb existed long enough to add anions PhS⁻ or PhSe⁻ at the allene bond.

When using larger excess of alkali in reaction (5) (KOH : $Ph_2Y_2 = 10$: 1), a more complex mixture of products was formed. By-products IV and Xa were formed in trace amounts, but *E*-isomers of compounds IIIa, IIIb, Va, Vb were detected (*E*-IIIa ~1%, *E*-IIIb 3%, *E*-Va 2%, and *E*-Vb 7%). Yields of the *Z*-isomers were as follows: *Z*-IIIa 16%, *Z*-IIIb 33%, *Z*-Va 17%, and *Z*-Vb 2%. However, reactivity of PhS⁻ and PhSe⁻ anions was again nearly equal, as indicated by forma-

tion of equimolar mixture of thioanisole **VIa** and selenoanisole **VIb** the yield being of 28% by treatment with methyl iodide [Eq. (6)] of the water-hydrazine layer after extraction of the products of reaction.

Another approach to synthesis of unsaturated derivatives containing two different chalcogen atoms is based on the use of the easily prepared [15–17] products of the first stages of the domino-type reaction: 2-chloro-3-phenylchalcogenyl-1-propenes (VIIb, VIIc), phenylchalcogenylpropadienes-1,2 (VIIIb, VIIIc) and 1-phenylchalcogenyl-1-propynes (IXb, IXc).

Compounds **VII** were selectively formed via the reaction of dichalcogenides Ph_2Y_2 , Bn_2Y_2 with dichloropropene **I** at -5 to -20°C [15–17]. Those products of the first step of the domino-type reaction were introduced in the reaction with chalcogenolate ions **IIb–IIe**¹ at 60°C. In all the cases, the major products of the reaction were the *Z*-isomers (*Z*-**Va–Vf**) of the unsaturated dichalcogenides containing two different chalcogen atoms. As by-products, the corresponding *E*-isomers (*E*-**Va–Vf**) and 2,3-dichalcogenyl-1-propenes (**Xa–Xf**) were identified in some of the batches (Table 1).

 $R^1 = Ph$, $Y^1 = S$ (VIIa), Se (VIIb); $R^1 = Bn$, $Y^1 = S$ (VIIc); $R^2 = Ph$, $Y^2 = S$ (IIb), Se (IIc), Te (IId); $R^2 = Me$, $Y^2 = Se$ (IIe); Va–Vf, Xa–Xf see Table 1.

¹ Anion CH₃Se⁻(IIe) was generated via reductive splitting of Me₂Se₂.

Comp. no.	δ_{Se} , ppm	Comp. no.	δ _{Se} , ppm	
Z-IIIb	386.9 (=CHSePh) ^a 429.2 (=CMeSePh)	Xb	431.6 (=CSePh)	
<i>E</i> -IIIb	371.0 (=CHSePh) 493.7 (=CMeSePh)	Z-Vc	215.2 (=CMeSeMe) ^b	
IV	338.5 (CH ₂ SePh) 433.0 (=CSePh)	<i>E</i> -Vc	269.2 (=CMeSeMe)	
Z-Va	386.2 (=CHSePh) ^c	Z-Ve	395.3 (=CHSePh) ^d	
E-Va	361.9 (=CHSePh)	Z-Vf	203.8 (=CMeSeMe) ^e	
Xa	343.1 (CH ₂ SePh)	E-Vf	265.4 (=CMeSeMe) ^f	
Z-Vb	421.1 (=CMeSePh)	Xf	210.0 (=C-SeMe)	
E-Vb	483.4 (=CMeSePh)			

Table 2. ⁷⁷Se chemical shifts of compounds IIIb, IV, V, and X (CDCl₃)

^a ${}^{3}J_{\text{Se-Se}}$ 91.4 Hz. ^b ${}^{2}J_{\text{Se-H}}$ 48.1 Hz. ^c ${}^{2}J_{\text{CH3-Se}}$ 11.9 Hz; ${}^{3}J_{\text{Se-H}}$ 11.9 Hz. ^d δ , ppm, ¹²⁵Te 676.6. ^e ${}^{3}J_{\text{Se-C=C-H}}$ 12.4 Hz, ${}^{2}J(\text{CH}_{3}-\text{Se})$ 11.9 Hz, ${}^{3}J(\text{CH}_{3}-\text{C-Se})$ 1.9 Hz. ${}^{f_{3}}J_{\text{Se-C=C-H}}$ 10.7 Hz.

The products shown in scheme (9) were apparently formed similarly to the mechanism behind schemes (7) and (8). However, the presence of anions $(R^2Y^2)^-$ resulted in high selectivity of the process.

The *E*-isomers of compounds Va-Vf were likely the products of the $Z \rightarrow E$ isomerization of the corresponding *Z*-isomers, the degree of isomerization being dependent on the reaction time. Hence, we assumed the possibility of further optimization of the yields of the *Z* or *E*-isomers. Formation of compounds **X**, as shown in scheme (8), involved nucleophilic addition of anions $(R^2Y^2)^-$ to the allene derivatives **VIII**, the products of the second step of the domino reaction. Their yield depended on the rate of isomerization of the allenyl chalcogenide into the acetylene isomer **VIII** \rightarrow **IX**, the rate of isomerization being in turn dependent on the nature of the chalcogenyl group (R^1Y^1) and alkali concentration in the reaction mixture.

Possibility of using the products of the second and the third steps of the domino-type reaction (formed with much lower selectivity and hardly separable [15– 17]) in the synthesis of bischalcogenyl derivatives with two different chalcogen atoms was demonstrated using a mixture of allenyl **VIIIa** and acetylene derivative **IXa** in the reaction with anions MeSe⁻ as an

$$VIIIa + IXa \xrightarrow{IIe} Z-Vc + E-Vc$$
(10)
1:9 70% 13%

example. The reaction was analogous to chalcogenation of phenylthioacetylenes described in [13, 14].

As follows from scheme (10), using the products of the second and the third steps of the domino-type reaction led to more selective formation of adducts V (total yield 83%). However, degree of the $Z \rightarrow E$ isomerization was higher under those conditions (60°C, 18 h).

Structure of the synthesized compounds was confirmed by IR, ¹H, ¹³C, ⁷⁷Se, and ¹²⁵Te NMR spectroscopy and chromato-mass spectrometry. Assignment of the *Z* or *E*-isomers of compounds **Va–Vf** was performed using NOESY technique [21]. The spectra of the *Z*-isomers contained a cross peak of the CH₃ protons and the vinyl proton =CH. The ⁷⁷Se NMR parameters of the synthesized compounds are given in Table 2.

To conclude, 2,3-dichloro-1-propene I can be used as convenient reagent for synthesis of unsaturated organochalcogen compounds containing two different chalcogen atoms, the latter being promising ligands and reagents for organic synthesis.

EXPERIMENTAL

IR spectra of thin films were recorded using a Bruker IFS-25 spectrometer. ¹H, ¹³C, ⁷⁷Se, and ¹²⁵Te NMR spectra were registered with a Bruker DPX-400 spectrometer (400.13, 100.62, 76.31, and 126.2 MHz, respectively) in CDCl₃ solution, chemical shifts were

referenced to TMS (¹H, ¹³C), Me₂Se (⁷⁷Se), and (CH₃)₂Te (¹²⁵Te). Mass spectra were obtained with a Shimadzu GCMS–QP5050A chromato-mass spectrometer (column SPB-5, 60000 \times 0.25 mm), quadruple mass analyzer, electron impact 70 eV, temperature of ionic source 190°C, range of detected masses 34-650 Da.

The reactions were monitored and the liquid products analyzed by GLC on a LKhM 80-MD-2 device (column 2000 \times 3 mm, liquid phase DC-550, 5% on Chromaton N-AW-HMDS, linear temperature prog-ramming 12 deg/min, gas carrier helium).

Reaction of phenol and diphenyldisulfide with 2,3-dichloro-1-propene I in hydrazine hydrate-KOH. Phenol (4.31 g, 0.046 mol) was added to a solution of KOH (6.42 g, 0.114 mol) in 30 mL of hydrazine hydrate at 45-50°C. Diphenyldisulfide (5.0 g, 0.023 mol) was added to the solution of KOH (6.42 g, 0.114 mol) in 30 mL of hydrazine hydrate. The reaction mixture was heated during 3 h at 85-90°C. The obtained solutions of PhOK IIa and PhSK IIb were combined, and dichloropropene I (5.1 g, 0.046 mol) was added dropwise at 60°C to the mixture; the mixture was stirred during 19 h at 60°C, cooled to 20-25°C and extracted with CH_2Cl_2 (3 × 50 mL). The extracts were combined, dried over MgSO4; the solvent was removed. From GLC and ¹H NMR spectrum, the residue (4.24 g) was practically pure Z-1,2-bis(phenylsulfanyl)-1-propene (Z-IIIa) (yield 72%). Spectral parameters coincided with those in [15].

Reaction of phenol and diphenyldiselenide with 2,3-dichloro-1-propene (I). A solution of PhOK IIa was prepared as described above from phenol (2.42 g, 0.026 mol) and KOH (3.61 g, 0.064 mol) in 16 mL of hydrazine hydrate. Diphenyldiselenide (4.0 g, 0.013 mol) was added to the solution of KOH (3.6 g, 0.064 mol) in 16 mL of hydrazine hydrate and stirred during 3 h at 85-90°C. The obtained solutions of PhOK and PhSeK were combined and dichloropropene I (2.85 g, 0.026 mol) was added to the mixture dropwise at 60°C. The mixture was stirred during 19 h at 60°C and processed as described above. The residue is a mixture of the products Z-IIIb (3.34 g, 74%) and 2.3-bis (phenylselanyl)-1-propene IV (0.34 g, 8%). Spectral parameters of compound Z-IIIb coincided with those in [16].

Compound IV. $v_{C=C}$ 1601 cm⁻¹. ¹H NMR spectrum, δ , ppm: 3.66 d (2H, CH₂Se, ⁴J_{H-H} 0.7 Hz, ²J_{SeCH} 12.3 Hz), 5.09 s (1H, =CH_{cis}), 5.46 t (1H, =CH_{trans}, ⁴J_{HH} 0.7 Hz, ³J_{SeCH=CH} 16.3 Hz), 7.18–7.48 m (10H, C₆H₅). ¹³C NMR, $\delta_{\rm C}$, ppm: 35.66 (SeCH₂, ${}^{2}J_{\rm CSe}$ 64.7 Hz), 119.43 (=CH₂, ${}^{2}J_{\rm CSe}$ 9.3 Hz); for aromatic carbons the first chemical shifts in pairs are for the Ph group in PhSeCH₂, the second ones are for the Ph group in PhSe at the double bond: 127.48, 128.05 (C_p); 128.84, 129.13 (C_m); 133.38 (${}^{2}J_{\rm CSe}$ 9.9 Hz); 134.51 (${}^{2}J_{\rm CSe}$ 10.3 Hz) (C_o); 138.89 (<u>C</u>=CH₂, ${}^{1}J_{\rm CSe}$ 105.2 Hz). ⁷⁷Se NMR see in Table 2. Mass spectrum, m/z: M^{+} for ⁸⁰Se 354.

Reaction of diphenyldisulfide and diphenyldiselenide with 2,3-dichloro-1-propene (I). a. Diphenyldisulfide (2.8 g 0.013 mol) was dissolved in a mixture of KOH (3.6 g 0.064 mol) and hydrazine hydrate (16 mL) at 85–90°C (3 h). Diphenyldiselenide (4.0 g 0.013 mol) was dissolved in the same mixture of KOH and hydrazine hydrate. The two solutions were combined, and dichloropropene I (2.84 g 0.026 mol) was added at room temperature. The reaction mixture was stirred during 19 h at 60°C, cooled to room temperature, extracted with CH_2Cl_2 (3 × 50 mL), the extract was dried over MgSO4, and the solvent was removed. According to GLC, chromato-mass spectrometry, and NMR spectroscopy, the residue (4.79 g) contained four products IIIa, IIIb, Va, Vb and small amounts of compounds IV, Xa (yields are given in the text): Z-1,2-bis(phenylsulfanyl)-1-propene IIIa and Z-1,2-bis(phenylselanyl)-1-propene IIIb, their spectral charac-teristics were identical to those in [15, 16].

Z-1-(Phenylselanyl)-2-(phenylsulfanyl)-1-propene (Va) was identified in the mixture with other products. $v_{C=C}$ 1579 cm⁻¹. ¹H NMR spectrum, δ , ppm: 2.05 d (3H, Me, ⁴J_{H-H} 1.2 Hz), 6.81 q (1H, CH=, ²J_{Se} - H 15.9 Hz, ⁴J_{H-H} 1.2 Hz), 7.20–7.60 m (10H, Ph). ⁷⁷Se NMR spectrum is given in Table 2. Mass spectrum, $m/z: M^{+}$ for ⁸⁰Se 306.

Z-1-(Phenylsulfanyl)-2-(phenylselanyl)-1-propene (**Vb).** $v_{C=C}$ 1579 cm^{-1.} ¹H NMR spectrum, δ , ppm: 1.97 d (3H, Me, ⁴J_{H-H} 1.1 Hz), 6.69 q (1H, HC=, ⁴J_{H-H} 1.1 Hz), 7.20–7.60 m (10H, Ph). ⁷⁷Se NMR is given in Table 2. Mass spectrum, m/z: M^{+} for ⁸⁰Se 306.

Spectral features of compound IV are given above.

2-(Phenylsulfanyl)-3-(phenylselanyl)-1-propene (Xa). ¹H NMR spectrum, δ , ppm: 3.57 s (2H, CH₂Se), 4.89 s (1H), 5.11 s (1H) (=CH₂), 7.20–7.60 m (10H, Ph). ⁷⁷Se NMR spectrum is given in Table 2. Mass spectrum: M^{+} for ⁸⁰Se 306.

b. 1.75 g (8 mmol) of Ph_2S_2 and 2.5 g (8 mmol) of Ph_2Se_2 were taken for the reaction. Each dichalcogenide was dissolved in a mixture of 20 mL of hydrazine hydrate and 4.49 g (0.08 mol) of KOH (Ph₂Y₂: KOH = 1 : 10). The solutions were combined, the reaction was performed at 60°C during 18 h, and the mixture was treated as described in method *a*. The residue after removal of the solvent (2.73 g) contained (GLC and NMR) 0.93 g (yield 33%) of compound *Z*-**IIIb**, 0.33 g (16%) of *Z*-**IIIa**, 0.82 g (17%) of *Z*-**Va**, 0.33 g (7%) of *Z*-**Vb**, 0.08 g (1.6%) of *E*-**Va**, and small amounts of compounds **IV**, **Xa**, and *E*-**Vb**.

E-1-(Phenylselanyl)-2-(phenylsulfanyl)-1-propene (*E*-Va). $v_{C=C}$ 1579 cm⁻¹. ¹H NMR spectrum, δ , ppm: 2.14 d (3H, Me, ⁴*J*_{H-H} 1.2 Hz), 6.79 q (1H, CH=, ⁴*J*_{H-H} 1.2 Hz), 7.30–7.65 m (10H, Ph). ⁷⁷Se NMR spectrum is given in Table 2. Mass spectrum, *m/z*: *M*⁺ for ⁸⁰Se 306.

Reaction of 2-chloro-3-organylchalcogenyl-1propenes (VIIa–VIIc) with diorganyldichalcogenides in hydrazine hydrate–KOH. Dichalcogenide (Ph₂S₂, Ph₂Se₂, Ph₂Te₂, Me₂Se₂) was dissolved in hydrazine hydrate–KOH, and the corresponding 2chloro-3-organylchalcogenyl-1-propene (VIIa–VIIc) was added dropwise to the obtained solution. The reaction mixture was stirred at 60°C during 18 h and treated as described above.

Reaction of the solution of Ph_2S_2 (1.33 g, 6 mmol) and KOH (1.71 g, 0.03 mol) in 8 mL of hydrazine hydrate with compound **VIIb** (2.83 g, 0.012 mol) gave 2.38 g of the residue containing compounds *Z*-**Va** and *E*-**Va** in the ratio of 3.6 : 1. Fraction with bp 180– 182°C (1.5 mmHg) contained compounds *Z*-**Va** and *E*-**Va** in the ratio of 4 : 1. Found, %: C 58.83; H 4.47; S 10.61; Se 25.41. C₁₅H₁₄SSe. Calculated, %: C 59.01; H 4.62; S 10.50; Se 25.86. IR, ¹H, ⁷⁷Se NMR spectra and chromato-mass spectrometry data for compounds *Z*-**Va** and *E*-**Va** were identical to those described above.

Reaction of Ph₂Se₂ (1.97 g, 6.3 mmol), KOH (1.77 g, 0.032 mol) in 8 mL of hydrazine hydrate with 2-chloro-3-phenylsulfanyl-1-propene **VIIa** (2.33 g, 0.013 mol) gave Z-isomer of compound **Vb** in 69% yield. bp 175– 176°C (1.5 mmHg). Found, %: C 59.31; H 4.65; S 10.32; Se 25.65. C₁₅H₁₄SSe. Calculated, %: C 59.01; H 4.62; S 10.50; Se 25.86. Spectral characteristics were fully identical to those described above.

Z-1-(Phenylsulfanyl)-2-(methylselanyl)-1-propene (Z-Vc) and E-1-(phenylsulfanyl)-2-(methylselanyl)-1-propene (E-Vc). Me₂Se₂ (1.06 g, 6 mmol) was dissolved in 10 mL of hydrazine hydrate containing 1.58 g (0.03 mol) of KOH at 80–85°C in the course of 3 h. The mixture was cooled to 60°C, and 2-chloro-3-phenylsulfanyl-1-propene (VIIa) (2.08 g, 0.012 mol) was added dropwise. The mixture was stirred at the same temperature for 18 h, and treated as described above. Light-yellow residue (2.23 g) was a mixture of compounds Z-Vc and *E*-Vc in the ratio 10 : 4 (¹H NMR). bp 145–147°C (2 mmHg). Found, %: C 49.20; H 4.82; S 12.78; Se 32.93. $C_{10}H_{12}SSe$. Calculated, %: C 49.38; H 4.97; S 13.18; Se 32.46.

Compound Z-Vc. $v_{C=C}$ 1582 cm^{-1.} ¹H NMR spectrum, δ , ppm: 2.181 s (3H, SeMe), 2.21 d (3H, MeC=, ${}^{4}J_{\text{H-H}}$ 1.3 Hz), 6.28 q (1H, =CH, ${}^{4}J_{\text{H-H}}$ 1.3 Hz), 7.12–7.22 m (5H, Ph). ¹³C NMR, δ , ppm: 4.75 (MeSe), 24.51 (MeC=), 119.76 (=CH), 126.23 (C_p), 128.57 (C_m), 128.99 (C_o), 134.44 (MeC=), 136.11 (C_i). ⁷⁷Se NMR is given in Table 2. Mass spectrum, *m/z*: *M*⁺ for ⁸⁰Se 244.

Compound *E*-Vc. $v_{C=C}$ 1567 cm⁻¹. ¹H NMR spectrum, δ , ppm: 2.185 d (3H, MeC=, ${}^{4}J_{H-H}$ 1.1 Hz), 2.19 s (3H, SeMe), 6.06 q (1H, =CH, ${}^{4}J_{H-H}$ 1.1 Hz), 7.12–7.22 m (5H, Ph). ¹³C NMR, δ , ppm: 6.08 (MeSe), 20.96 (MeC=), 116.92 (=CH), 126.10 (C_p), 128.17 (C_m), 129.04 (C_o), 132.47 (MeC=), 136.67 (C_i). ⁷⁷Se NMR is given in Table 2. Mass spectrum, *m/z*: *M*^{t-} for ⁸⁰Se 244.

Z-1-(Phenylsulfanyl)-2-(phenyltellanyl)-1-propene (*Z*-Vd) and 2-(phenyltellanyl)-3-(phenylsulfanyl)-1propene (Xd). Compound VIIa (1.1 g, 6 mmol) was added dropwise to a solution of Ph_2Te_2 (1.22 g, 3 mmol) in 4 mL of hydrazine hydrate containing 0.84 g (0.015 mol) of KOH; the mixture was stirred for 18 h at 60°C, cooled, and treated as described above to give 1.72 g of the residue (dark-red liquid) containing compounds Vd, Xd, and Ph_2Te_2 in the ratio of 10 : 1 : 0.2 (¹H NMR). The compounds decomposed upon distillation at 1.5–2 mmHg.

Compound Z-Vd. $v_{C=C}$ 1573 cm⁻¹. ¹H NMR spectrum, δ , ppm: 2.01 d (3H, Me, ⁴J_{H-H} 1.0 Hz), 6.59 q (1H, HC=, ⁴J_{H-H} 1.0 Hz, ³J_{H-Te} 12.9 Hz), 7.12–7.84 m (10H, Ph). ¹³C NMR, δ_{C} , ppm: 28.04 (Me), 113.22 (=<u>C</u>Me), 123.79 (C_p, TePh), 126.26 (C_p, SPh), 128.23 (C_m, TePh), 128.49 (C_m, SPh), 128.96 (C_o, TePh), 129.12 (C_o, SPh), 135.61 (C_i, TePh), 136.70 (C_i, SPh), 141.02 (=CH). ¹²⁵Te NMR spectrum, δ , ppm: 673.9 (³J_{Te-H(Me)} 12.9 Hz). Mass spectrum, m/z: M^{+} for ¹³⁰Te 356.

Compound Xd. $v_{C=C}$ 1582 cm⁻¹. ¹H NMR spectrum, δ , ppm: 3.80 s (2H, CH₂S), 5.35 s (1H of CH₂=, ³J_{H-Te} 12.1 Hz), 6.04 s (1H of CH₂=, ³J_{H-Te} 27.0 Hz), 7.12–7.84 m (10H, Ph). ¹²⁵Te NMR spectrum, δ , ppm: 689.9. Mass spectrum, m/z: M^{+} for ¹³⁰Te 356.

Diphenylditelluride. ¹²⁵Te NMR, δ , ppm: 427.5. Reference data: 420.8 ppm [22].

Reaction of Ph₂Te₂ with 2-chloro-3-phenylselanyl-1-propene (VIIb). Compound VIIb (1.43 g, 6 mmol) was added dropwise at 60°C to a solution of Ph₂Te₂ (1.26 g, 3 mmol) in 4 mL of hydrazine hydrate containing KOH (0.87 g, 0.015 mol); the mixture was stirred at the same temperature for 18 h and treated as described above to give 1.6 g of the residue (dark-red liquid). The target product, Z-1-(phenylselanyl)-2-(phenyltellanyl)-1-propene (Z-Ve) was identified in the mixture with other products (the yield calculated using internal standard was of 32%). ¹H NMR spectrum, δ , ppm: 2.02 d (3H, Me, ${}^{4}J_{H-H}$ 1.0 Hz), 7.01 q (1H, HC=, ${}^{4}J_{\text{H-H}}$ 1.0 Hz), 7.22–7.88 m (10H, Ph). 13 C NMR, δ_c, ppm: 29.97 (MeC=), 123.68 (=CH), 127.11, 127.95, 128.53, 128.60, 129.35, 129.55, 130.83, 139.03, 140.65. Mass spectrum, m/z: M^{+} (⁸⁰Se, ¹³⁰Te) 404.

Reaction of dimethyldiselenide with 2-chloro-3benzylsulfanyl-1-propene (VIIc). Compound VIIc (1.90 g, 0.01 mol) was added dropwise to the solution of Me₂Se₂ (0.9 g, 5 mmol) in 6 mL of hydrazine hydrate containing KOH (1.35 g, 0.025 mol); the mixture was stirred for 18 h at 60°C and treated as described above. The residue (1.96 g, light red liquid) Z-1-(benzylsulfanyl)-2-(methylselanyl)-1contained propene (Z-Vf), E-1-(benzylsulfanyl)-2-(methylselanyl)-1-propene (E-Vf), and 2-(methylselanyl)-3-(benzvlsulfanyl)-1-propene (Xf) in the ratio of 13 : 1 : 3.5 (¹H NMR). The mixture was distilled at 146–150°C (2 mmHg) practically without change of the ratio of the isomers Z-Vf, E-Vf, and Xf. Found, %: C 50.84; H 5.37; S 12.34; Se 31.14. C11H14SSe. Calculated, %: C 51.36; H 5.49; S 12.46; Se 30.69. Chromato-mass spectroscopy for all three isomers gives M^{+} (⁸⁰Se) 258.

Compound Z-Vf. $v_{C=C}$ 1577 cm⁻¹. ¹H NMR spectrum, δ , ppm: 2.04 d (3H, <u>Me</u>C=, ⁴J_{H-H} 1.3 Hz), 2.09 s (3H, MeSe), 3.85 s (2H, SCH₂), 6.04 q (1H, CH=, ⁴J_{H-H} 1.3 Hz), 7.20 m (1H, H_p), 7.28 m (4H, H_{o+m}). ¹³C NMR spectrum, δ_{C} , ppm: 4.58 (MeSe, ¹J_{C-Se} 64.7 Hz), 24.42 (<u>Me</u>C=), 38.17 (SCH₂), 121.94 (CH=), 127.05 (C_p), 128.44 (C_m), 128.78 (C_o), 126.91 (Me<u>C</u>=), 137.84 (C_i). ⁷⁷Se NMR spectrum is given in Table 2.

Compound *E*-Vf. $v_{C=C}$ 1577 cm⁻¹. ¹H NMR spectrum, δ , ppm: 2.00 d (3H, <u>Me</u>-C=, ⁴J_{H-H} 1.1 Hz), 2.04 s (3H, MeSe), 3.82 s (2H, SCH₂), 5.91 q (1H, CH=, ⁴J_{H-H} 1.1 Hz), 7.18–7.31 m (5H, Ph). ¹³C NMR, δ_{C} , ppm: 4.26 (MeSe), 20.87 (Me<u>C</u>=), 38.51 (SCH₂), 120.14

(CH=), 128.35 (C_m), 129.02 (C_o), 127.25 (C_p), C_i and Me<u>C</u>= signals could not be assigned because of low intensity. ⁷⁷Se NMR spectrum is given in Table 2.

Compound Xf. $v_{C=C}$ 1601 cm⁻¹. ¹H NMR spectrum, δ , ppm: 2.11 s (3H, MeSe), 3.28 s (2H, SCH₂C=), 3.65 s (2H, SCH₂Ph), 5.02 s, 5.53 narrow m (2H, CH₂=), 7.18–7.31 m (5H, Ph). ¹³C NMR spectrum, δ_{C} , ppm: 4.91 (MeSe), 35.19 (S<u>CH₂Ph</u>), 40.03 (SCH₂C=), 112.86 (CH₂=), 128.36 (C_m), 128.87 (C_o), 127.47 (C_p), 136.91 (C_i), 139.80 (CH₂-<u>C</u>(Se)=). ⁷⁷Se NMR spectrum is given in Table 2.

Reaction of the mixture of 1-phenylsulfanyl-1propyne (IXa) and 1-phenylsulfanylpropadiene (VIIIa) with dimethyldiselenide. The mixture of compounds VIIIa and IXa (1.8 g, 0.012 mol, ratio 1:9) was added dropwise to a solution of Me₂Se₂ (1.14 g, 6 mmol) in 8 mL of hydrazine hydrate containing KOH (1.7 g, 0.03 mol), the mixture was stirred for 18 h at 60°C and treated as described above. The residue (2.6 g) was a mixture of compounds Z-VIc and E-VIc in the ratio of 5.6 : 1.0. Spectral characteristics of the products Z-VIc and E-VIc were fully consistent with those given above.

The main results were obtained using the equipment of the Baikal analytical center for collective use of Siberian Branch of Russian Academy of Sciences.

REFERENCES

- Poluchenie i svoistva organicheskikh soedinenii sery (Preparation and Properties of Organic Sulfur Compounds), Belen'kii, L.I., Ed., Moscow: Khimiya, 1998.
- Papernaya, L.K., Shatrova, A.A., Levanova, E.P., Albanov, A.I., Klyba, L.V., Rudyakova, E.V., and Levkovskaya, G.G., *Heteroatom. Chem.*, 2013, vol. 24, no. 6, p. 466.
- Sadekov, I.D., Rivkin, B.B., and Minkin, V.I., Russ. Chem. Rev. 1987, vol. 56, no. 4, p. 343.
- Perin, G., Lenardão, E.J., Jacob, R.G., and Panatieri, R.B., Chem. Rev., 2009, vol. 109, p. 1277.
- Zeni, G. Liidtke, D.S., Panatieri, R.B., and Braga, A.L., Chem. Rev., 2006, vol. 106, p. 1032.
- Skopenko, V.V., Tsivadze, A.Yu., Sovranskii, L.I., Granovskii, A.D., *Koordinatsionnaya khimiya* (Coordinated Chemistry), Moscow: Akademkniga, 2007.
- Singh, A.K. and Srivastava, V., J. Coord. Chem. A., 1992, vol. 27, no. 4, p. 237.
- Singh, A.K. and Sharma, S., J. Coord. Chem. Rev., 2000, vol. 209, no. 1, p. 49.
- 9. Shimizu, T., Kawaguchi, M., Tsuchiya, T., Hirabayashi, K.,

and Kamigata, N., J. Org. Chem., 2005, vol. 70, p. 5036.

- Ogawa, A., Obayashi, R., Ine, H., Tsuboi, Y., Sonoda, N., and Hirao, T., *J. Org. Chem.*, 1998, vol. 63, p. 881.
- Ogawa, A., Obayashi, R., Doi, M., Sonoda, N., and Hirao, T., J. Org. Chem., 1998, vol. 63, p. 4277.
- Ogawa, A., Ogawa, I., Obayashi, R., Umezu, K., Doi, M., and Hirao T., J. Org. Chem., 1999, vol. 64, p. 86.
- Dabdoub, M.J., Dabdoub, V.B., and Pereira, M.A., *Tetrahedron Lett.*, 2001, vol. 42, p. 1595.
- Martynov, A.V., Seredkina, S.G., and Mirskova, A.N., Bull. Acad. Sci. USSR. Div. Chem. Sci., 1990, vol. 39, no. 8, p. 1693.
- Levanova, E.P., Grabel'nykh, V.A., Elaev, A.V., Russavskaya, N.V., Klyba, L.V., Albanov, A.I., Tarasova, O.A., and Korchevin, N.A., *Russ. J. Gen. Chem.*, 2013, vol. 83, no. 7, p. 1341.
- Levanova, E.P., Grabel'nykh, V.A., Vakhrina, V.S., Russavskaya, N.V., Albanov, A.I., Klyba, L.V., Tarasova, O.A., Rosentsveig, I.B., and Korchevin, N.A., *Russ. J. Gen. Chem.*, 2013, vol. 83, no. 9, p. 1660.
- 17. Levanova, E.P., Grabel'nykh, V.A., Vakhrina, V.S.,

Russavskaya, N.V., Albanov, A.I., Rosentsveig, I.B., and Korchevin, N.A., *Russ. J. Gen. Chem.*, 2014, vol. 84, no. 3, p. 439.

- Levanova, E.P., Vakhrina, V.S., Grabel'nykh, V.A., Rosentsveig, I.B., Russavskaya, N.V., Albanov, A.I., and Korchevin, N.A., *Russ. J. Org. Chem.*, 2014, vol. 50, no. 2, p. 175.
- Deryagina, E.N., Russavskaya, N.V., Papernaya, L.K., Levanova, E.P., Sukhomazova, E.N., and Korchevin, N.A., *Bull. Acad. Sci. USSR. Div. Chem. Sci.*, 2005, vol. 54, no. 11, p. 2473.
- Dneprovskii, A.S. and Temnikova, T.I., *Teoreticheskie* osnovy organicheskoi khimii (Theoretical Foundations of Organic Chemistry), Leningrad: Khimiya, 1991.
- Volovenko, Yu.M., Kartsev, V.G., Komarov, I.V., Turov, A.V., and Khilya, V.P., Spektroskopiya yadernogo magnitnogo rezonansa dlya khimikov (Nuclear Magnetic Resonance Spectroscopy for Chemists), Moscow: ICSPF, Moscow, 2011.
- Granger, P., Chapelle, S., McWhinnie, W.R., and Al-Rubaie, A., J. Organomet. Chem. 1981, vol. 220, no. 2, p. 149.