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E S T I M A T I O N  OF A F U N C T I O N  O B S E R V E D  W I T H  A S T A T I O N A R Y  
E R R O R  

V.  N.  So lev  a n d  L. G e r v i l l e - R e a c h e  UDC 519.2 

A process y(t) is assumed to be observed for t E [-T,T],  

y(t) = s(t) + x(t) (t e [-T,T]),  

where s is an unknown function (to be estimated) and x is stationary noise. The accuracy of the least-squares 
estimator s* is compared with the accuracy of the best linear unbiased estimator s*. Bibliography: 5 titles. 

1. OBSERVATIONS WITH STATIONARY NOISE 

Let x(t) be a real-valued process s tat ionary in the broad sense with zero mean  (E x(t) = 0) and spectral 
density f ,  i.e., x is a function 

x : R1---~ L2(dp)  

such tha t  

F E x(t) - x(s) = exp{i(t  - s)u} f (u )  du, 
c o  

where L2(dp)  is the L2-space generated by a probabil i ty measure P .  
We denote by x[~] "the average value" of x(t),  

F x[~] = x ( t ) ~ ( t ) d t  = (~, x) ,  

where (-,-) is the inner product  in an L2-space, induced by the Lebesgue measure on R 1. Thus,  we have 

F = = 

o o  

where ~ is the Fourier transform of the function ~, 

s 1 ~(u)exp{ ivu}  du; 

(", ")f ,  II" Ill are the inner product  and norm in the L2-space generated by the  measure f (u )du .  

For some applications and theoretical problems we need to consider the case where the functional x(t),  
"the value of a random function x at a point  t," cannot  be well defined. Hence, we need to introduce a 
generalized process when we know only such average values x[~]. 

Let x[.] be a generalized process s ta t ionary in the broad sense with spectral densi ty f ,  i.e., (see [1]) x is 
an operator  : D -~ L2(dp)  from the space D of infinitely differentiable functions with compact  support  
to the L 2 space generated by the probabili ty measure P such that  

F E x [ ~ ] . x [ r  = ~(u) . r  f ( u )du  = ( ~ , r  ( p , r  
c ~  

(1) 
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We assume that  the process-x is  real:valued, i.e., the random variables x[~] are real for any real-valued 
function ~ E D. We assume that 

Ex i t ]  = 0, ~p e D. (2) 

We can define the Hilbert structure generated by the norm II" II~, II~llx -- II@lif, on the linear set D, and 
the process x can be extended to the linear set D(x) of all locally integrable functions So E /~2oc such that 
q3 E L} (which is contained in the closure of D in the above Hilbert space). 

Further  we assume that the process x is defined on D(x) and denote 

DT = DT(X) ---- {~ :  ~ E D ( x ) , s u p p ~  C [ -T ,T]} .  

Assume that we observe a process y[~] for So E DT, 

y[~] = s[~] § x[~] (~ E DT), (3) 

where s[.] is an unknown functional: DT -+ C 1 (to be estimated) and x[.] is s tat ionary noise. 

2. REGULAR FUNCTIONALS 

Let H be a Hilbert space of functions defined on R 1 with inner product (.,-) and norm tI " lI, and let L 
be a subspace of the space H. We assume that  DT C H and DT = H,  where DT is the closure of DT in 
H. 

A functional g : D T  ---* C 1 is called regular if there exists an element g E H such that 

g[~] = (~,g> for a l l ~  ~ DT. 

We denote by v the operator that is defined on the linear subset of all regular functionals by the 
relation: vg = g, where g is an element of H such that  g[-] = (., g>. 

In the sequel, we assume that the unknown functional s is regular and denote s = vs. Assume that  the 
subspace L is known and dim(L) = m < co. 

A random variable x[~], ~ E DT, is a function ~(w) ---- ~(a3) ---- z[~] from the space L2(dp).  Conceivably, 
for some a3, the random functional x[.] is not regular. But  the projection (in the sense that will be defined 
below) of x onto some finite-dimentional subspaces may be regular almost surely. 

3. PROJECTION ONTO A SUBSPACE 

Let L and L* be subspaces of the space H such that  

L M L* = {0} textand L + L* = H.  (4) 

The projection of a functional g : Dt --* C 1 onto the space L parallel to the subspace L* is a functional 
P ( L ,  L*)g (if it exists) such that 

P (L ,L*)g[~]  = ~g[~]  if 
( 0 if 

E L. ,  

e L • (5) 

(where we denote by M • the orthogonal complement to the subspace M in the space H, and we put  

L .  = (L*) • Projection (5) is well defined if the functional g is defined on L. .  
It is easy to see that  if a functional g is defined on the subspace L. ,  then 

m 

P(L ,L*)g ( . )  = (. ,h) with h = ~-~g(r  (6) 
j = l  
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where m = dim(L), {~j, j = 1, ..., m} and ( r  j -- 1, ..., m} are orthogonal bases of the subspaces L and 
L.  such that {~i, Cj) = ~ij. 

In the case where L* -- L -L, the element P (L)g  = P(L,  LJ-)g is called the orthogonal projection of 
the functional g onto the subspace L. 

If the function g has regular representation g(-) = (., g), it is obvious that  

P ( L , L * ) g  (.) = ( . ,P (L ,L*)g) ,  

where P(L,  L*) is the corresponding projector in the space H, that is, 

P ( L , L * ) h  = / h if h E L, 
0 if h e L*. (7) 

For brevity, we shall write P(L,  L*)g instead of v P(L,  L*)g. Thus, for example, by definition we have 

P ( L , L * ) g  -- P (L ,L*)g ,  where g = v g .  

4 .  L I N E A R  E S T I M A T O R S .  U N B I A S E D  E S T I M A T O R S  

Consider the problem of linear estimation of an unknown function s E H, based on the observations 

y[~] = s[(p] + x[~] (~ E DT, DT C H) 

(for details, see [2, 3, 5]). Assume that  s[~] = (~, s), the unknown function s belongs to a finite-dimensional 
subspace L of the space H, and the subspace L is known. We also assume that  x[.] is a stationary generalized 
process with spectral density f .  

Let {~j, j = 1, . . . ,m} be a basis of L and 

m 

s ( . )  = 
j = l  

We consider linear estimators ~ for the unknown function s, based on the observations y[~], ~ E DT, i.e., 
estimators such that  they can be represented in the form 

m 

= Z (s )  
5----1 

where ~5 E YT T (j ---- 1,..., m). We denote 

Y~ = ~pp{y[~],supp~ E [a,b]}. 

It is clear that 
#J = Y[~Ph] = s[~5] + x[r for some r e DT (j = 1, ..., m) 

and 
siva] = <s, Cj> (j = 1,..., m). 

A linear estimator ~ is called an unbiased estimator if E ~ = s for any s E L. If an estimator (8) is 
unbiased, then, by the fact that E y[~] = s[~] (see (2)), 

m m 

E E~5~5(') = E (s, r = s(.) 
j : l  j----1 
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for any s E L. Thus, if an estimator ~ is unbiased, then <~i, Cj) = 5ij 
conclude that  a linear unbiased estimator g in (8) has a representation: 

~(.) = [P(L,L*)y]  (.), 

where the subspace L* = L* (~) is defined by the relation 

L* = H O L. ,  

and the subspace L .  = L .  (g) is defined by the relation 

L .  = ~pp{~pj,j = I ,  ...,m}. 

We need to assume that 

It is clear that  

L .  C DT. 

(j  ---- 1, . . . ,m).  Therefore, we 

(9) 

L + L* = H ,  L N L *  = 0, 

because (~j, Cj} = 5ij (j  = 1, . . . ,m).  We denote P = P (L ,L*) .  
operator  P* is a projector onto the subspace L .  parallel to the subspace L • = H O L: 

h if h E L. ,  

P * h  = 0 if h E L • ( I I )  

where the conjugate operator B* is defined by  the relation 

< B . , . >  = <.,B*.>. 

5. ACCURACY OF ESTIMATION 

Assume that  the estimator ~ is a linear unbiased estimator,  g -- Py ,  where P -- P~ -- P (L ,  L*) for a 
subspace L* such that (10) holds. The accuracy of the estimation can be measured by the value of 

~2(~, s) = E[[g - s[[ 2. 

We denote by 1~  the covariance operator of a process x : 

E{<x[hl],X[h2])} = (Rxhx,h2),  hi,h2 e H. 

By (1), we have ~ - s -- P z  and (see (6)) 

m 

[Px](-) = E z[r . ~j(.) 
j = l  

for an orthonormal basis {~j,  j = 1, ..., m} of the subspace L and for a basis {~j,  j -- 1, ..., m} of the space 
L* such that  (~i, ~'j)--6ij (i , j  = 1, . . . ,m). Therefore, 

m m 

cr2(~, s ) =  EIIPxl l  2 -- E l i  E x[r 2 = E EIx[r  2. (12) 
j=l j----i 

Thus, we have 

m m m 

~2(~, s) = E ( R x C j , r  = E < R x P *  ~j ,P* ~j} = E < P R x P *  ~y, ~j>. 
j = l  j - = l  j = l  

As soon as P*h  = 0 for h E L • we obtain 

s) 

(10) 

It is easy to see that the conjugate 

where tr  A is the trace of an operator A. 

= t r P P ~ P * ,  (la) 

1185 



6. T H E  BEST LINEAR UNBIASED ESTIMATOR 

We also consider another Hilbert structure on H. Let H .  be a Hilbert space with inner product 

(~, r  = (1~o,  r = Ex[~o]x[r 

and norm I1" IP. = (', %. 
We note that, without loss of generality, we may assume that 

Rx~a ~ 0 for a n y ~  �9 L. 

Let L J- be the orthogonal complement (in the space H) of the subspace L, let L. be the orthogonal 
complement (in the space H.)  of the subspace L -L, and let L* be the orthogonal complement (in the space 
H) of the subspace L.. We put P .  = P(L, L*). It is easy to see that 

{ p . } . ~  ={ ~ if ~oeL . ,  
0 if ~o �9 L • (14) 

and 

P.qo = 0 if ~o E L*. 

Consider an estimator s* = P . y .  

P r o p o s i t i o n  1. The estimator s* is the best linear unbiased estimator for s, i.e., 

(15) 

Es*  = s and G2(h, s)>G~.(s*,  s) 

for any linear unbiased estimator ~. 

Proof. The estimator s* is an unbiased estimator. We put ~ = Py, where P -- P(L,  L*). Let {qoj, j = 
1, 2, ...,m} be an orthonormal basis of the space L and Cj = Pqoj (j = 1, ...,m). Thus, 

~oj = r  + qo j,  where q~/E L • (16~ 
In this case (see (12), (14)), 

m m 

@(g, s) = ~ E[x[r 2 = ~ [1r (17) 
j=l  j=l 

Hence, 
m m 

G2(g, s) = E ]l~~ - ~j[12 -> E IIP*.~j[I.,2 
j = l  j---1 

because (see (14)) P* is the orthoprojector of the space H .  onto the subspace L. ,  which is the orthogonal 
complement (in the space H. )  of the subspace L -L. It is obvious that 

m 

.g (s ' ,  s) ~ p. 2 = II .~jll.. (18) 
j = l  

Thus, we have 

~ ( ~ ,  s) > ~g(s',  s/. 
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7.  T H E  L E A S T - S Q U A R E S  M E T H O D  IN T H E  ESTIMATION P R O B L E M  

The least-squares estimator s* is defined by the relation 

s* = arg sinL I ly [ ' ] -  ~[']11, 

It is easy to see that  

w h e r e  s = v s  a n d  Ilg[']ll = s u p  Ig[9~]l 
~ D ~  t l~l l  " 

s* -- P (L)  y, that  is, Ps- = P (L) ,  

where P (L)  is the operator of orthogonal projection in the space H onto a subspace L. In the general case, 
the least-squares estimator s* is not the best linear unbiased estimator. 

P r o p o s i t i o n  2. Assume that the subspaces L and L • are orthogonal in the metric of  the Hilbert space 
H . .  Then the least-squares estimator s* is the best linear unbiased estimator. 

Proof. In this case (see (14)) we have Ps- = P ( L )  = P ,  = Ps*; therefore s* = s*. 

8.  C O M P A R I S O N  OF THE A C C U R A C Y  OF A LINEAR UNBIASED E S T I M A T O R  

WITH THE ACCURACY OF T H E  BEST LINEAR UNBIASED E S T I M A T O R  

We compare the accuracy of an est imator g = Py ,  where P = P ( L ,  L*), with the accuracy of the best 
linear unbiased estimator s*. It was stated in Sec. 6 (see (17) and (18)) that  

m m 

o'~(~, s) = ~ IIP*~Jll2., ~(s*,  s) = ~ IIP**~5ll.,2 
5=1 

where {~5, J = 1, ..., m} is an orthonormal basis of L. Since 

~ 5 = g ' 5 + ~ 5 ,  where ~ J E L  • and 

it follows that 

Thus, we have 

Therefore, 

5=1 

~pj = P*~y, (j  = 1, ..., m), 

P*~ j  = P*[r  + ~ ]  = P*[~pj] = P*[P*~j]  ( j  = 1, . . . ,m).  

p *  ' ' ' ,  P*~j  = P*[ ,~ j ]  ( j = l ,  m). 

I IP*~j l l .  < IIP*l l . . l lP:~,51t.,  
where for an operator  A we denote by I IAI I. the uniform operator  norm in the space H*.  Finally, we obtain 

o-~(s*, s) _< o-~(~, s) < I IP*II . .  o-~.(s*, s). (19) 

Now we state and prove a simple geometric result. We assume that  L and M are subspaces of a Hilbert 
space H with inner product (-,-) and norm I1" ]1- Assume that  

L + M  = H and L ~ M  = 0. 

Denote 

cos(L, M; H)  = sup ](hi, h2) ] 
htEL,h2EM IIhxlt. I]h2ll" 

Let an operator P be defined by the relation 

h if h E L, 
P h  = 0 if h E M.  
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L e m m a .  The uniform operator norm []P[[ of the operator P in the space H satisfies the relation 

1 (20) 
[IPl[ 2 < I _ c o s 2 ( L , M ; H )  �9 

Proof. Assume that a linear set L + M is dense in H.  Therefore, 

IIPI[ = sup  IIhLII 
hLEL,hMEM [[hL - hMl[" 

It is clear that  
inf I lhL- -  hMII = [ [h=-  P(L)hLI[ and 

hMEM 

inf Ilh - P(L)hl]  2 = (1 - cos2(L,M;H))Ilhl[  2. 
hEL 

Thus, we obtain (20). 

P r o p o s i t i o n  3. For any linear unbiased estimator g = P(L,  L*) y, the following inequalities hold: 

1 -o-~(s*, s). (21) cr2(s *, s) _< vr2(g, s) _< l _ c o s 2 ( L , , L •  

Proof. The proposition follows from (19) and (21). 

9. THE SPECTRAL REPRESENTATION. THE REPRODUCING KERNEL G{(u, v) OF THE SPACE H T ( f )  

Now we consider the spectral representation of the process x (see [1] for details): 

x[:] = ~(u) Z(du), 
OO 

where Z(-) is an orthogonal measure such that  

EZ(A) . Z(B) = f f(u) du, EZ(A)  =O. 
J A  NB 

Denote by X b a subspace of the space L2(dp) such that  

Xba = ~pp{x[~] : suppq0 C [a,b]} 

(where by ~pp{M} we denote the closure of the linear manifold of M) and put X = X_~176 It is well known 
that  the relation U x[~] = q3 defines an isometry U : X --~ L}. 

Let HT (f)  be a linear set of all entire functions of degree less than T that  belongs to the space L}. 

M. Krein's alternative states that if HT(f )  # L}, then H T ( f )  is a closed subspace of the space L} and 
the functional Iz: lz(qO) = ~(z) is bounded on H T ( f ) .  It should be mentioned that  

uXT_T = H T ( f ) .  

Denote by G:T(u,v ) the reproducing kernel of the space H T ( f ) :  

( ~(.), G~(z, .)) = ~(z). 
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It is clear that 

a~(u, ~) = ~ ~ ( ~ ) .  ~ ( . ) ,  Ilaf(v,.),,} = a f ( v ,  . ) ,  
j----I 

where {~j, j = 1,2,...} is an orthonormal basis of the space HT( f )  and 

for any function h e HT( f ) .  (22) Ih(v)l  2 < GSr(v, v ) .  I Ih(.) l l }  
For example, if the function f ( t )  - I we have 

G~(u,v) - s i n T ( u -  v) 
~ ( ~ - ~ )  , IIG-~(~, ")1121 = a [ ( ~ ,  ~) = --,T (23) 

where l(t)  - 1. We denote by O T ( V , U )  the Fej6r kernel: 

sin 2 T(u  - v) 
�9 T(V,U) = 

7rT (u - v) 2 " 

P r o p o s i t i o n  4. Suppose that f,  ~ E L 2 i . Then 

)1 , ?  
--" ~T(V,u)" f ( u ) d u  < GfT(v,v) < --" ~T(V,U)" 1 7r o~ . _ _ ~ ~ ~ - ~  du. (24) 

Proof. The function G~(v, .) is the reproducing kernel of the space HT(1),  therefore 

(~( : ) ,9 ( . ) ) /  = p(v) ( ~ E H T ( f )  N H T ( 1 )  ) 

for the function g(u) -- G~r(v' u) 
f(~) 

Since the linear set H T ( / )  N HT(1) is dense in HT( f ) ,  we have 

GfT(v, ") ---- P T ( / ) g ,  where P T ( / )  

is the orthoprojector in L} onto HT(I ) .  Thus, we conclude that 

/: GfT(v, v) = liGfT(v, ")ll} < l lPT(f)gl l}  r OT(V,U). 1 _ = - ~  ~ ~ - ~  du. (25) 

Now we apply (22) to the function h(u) - 1 sinT(v-u) -- ~ (v-u) , which belongs to HT( f ) ,  and, therefore, 

/: T = ih(v)l 2 _< afT(V, v ) .  IIh(.)]l} = afT(v, v) .  (~T(U,U)" f (u)du .  (26) 
7~ oo 

Relation (24) follows from (25) and (26). 

We put 

~s(v)  = sup ~r (v ,  ~ ) f (~ )  d~ .  ~ ( v ,  ~ d~. (27) 
T_>0 

It is clear that #i(v) > 1. Proposition 4 implies the following proposition. 

P r o p o s i t i o n  5. Assume that f ,  ~ E L 2 ~ .  Then 

T . @T(V,U) du < GfT(v, v) < Z. ~2T(V, du (28) 
~ , s ( ~ )  ~ - - ~ ~ f ( ~ )  

< GfT(v, v ) . G ~  (v, v) <_ T# f (v )  
7r 

and )1 T#f (v )  --" ~T(V ,u ) f (u )du  < GfT(v, v) < 
7~ ~ - -  7r 

P r o p o s i t i o n  6. Assume that f ,  ~ E L 2 1 . Then 

T 

--1 
(29) 

(30) 
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10.  T H E  ESTIMATION PROBLEM FOR A SIGNAL WHOSE FOURIER TRANSFORM IS A FINITE MEASURE 

Now we consider the case where the unknown signal s(t) may be represented in the form 

m 

s(t) = E Oj.exp{i tuj} ,  (31) 
j = l  

where A = {uj (j = 1, 2, ..., m)}. We assume that A is a known finite subset of the real line. Denote by L 
the linear set of all functions s(t) that can be represented in the form (31) and put 

LT = I[-T,T](t) " L. 

We assume that H is an L 2 space on the interval [-T,  T] and 

= s ) .  

Assume that we observe the random variables 

= + e D T .  

T h e o r e m .  Assume that the spectral density f of  the process x satisfies the condition 

lim CPT(U ,u)f(u) du .  ~T(V,U du = 1 for v E h. 
T ~ o o  oo 

Then 
s) 

1 as T-~. 
o'~, (s*, S) 

Proof. It is easy to note that the theorem follows from Propositions 3-5 (for details, see [4]). 
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