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Enantioselective Synthesis of the C1-C9 Segment of Bryostatin by 

Kinetic Resolution of Racemic 13-Keto Esters 

M a r k u s  Ka le s se  * and  M a r c u s  Eh 

Institut fiir Organische Chemic der Universit~it Hannover, Schneiderberg lb, 30167 Hannover, Germany 

Abstract: The enantioselective synthesis of the C1-C9 segment of bryostatins is described. Racemic [3- 
keto ester 2 was subjected to kinetic resolution. Reduction with baker's yeast establishes two of the 
three chiral centers. Chemical transformation of the terminal acetylene moiety generates aldehyde 5 
which is transformed diastereoselectively to the corresponding alcohol 6 via Sakurai reaction. 

The bryostatins are a family of  17 macrolides antibiotics isolated from the marine bryozoan Bengula 

neritma Linnaeus, which exhibit exceptional antineoplastic activity against lymphocytic leukemia and ovarian 

carcinoma. ~ The first total synthesis was reported by Masamune 2 in 1990 and since then various groups have 

made contributions to the synthesis of  bryostatins. 3 We would like to thank Prof. H. M. R. Hoffmann and J. 

Weig for bringing this problem to our attention. ~ 
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Here we report on the synthesis of  the C1-C9 segment of  bryostatin utilizing the kinetic resolution of  

racemic 13-keto ester 2 with baker 's  yeast. Analysis of  the backbone of  the C1-C9 segment identifies the 

product derived from baker 's  yeast kinetic resolution to be identical with the desired stereochemistry of the 

natural product (Scheme 1). Baker 's  yeast reduction of  2 already establishes two asymmetric centers oftl ie C I- 

C9 segment and allows functionalization of  the terminal acetylene moiety. The overall strategy is to generate an 
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aldehyde at C7 which enables a chelation-controlled Sakurai reaction. This reaction establishes the third 

asymmetric center and additionally the geminal dimethyl group at C8. 
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" ~ 1  BnO O BnO OH a, 0, c j.j.  

H ~- CO'zEt ~ CO2Et 

TMS 2 3 
38%; de = 82 %; ee- 84 % 

a) Ethyl acetoacetate, 1 eq Nail, 0°C, 1 eq LDA, -78°C, THF, then 1, 83 %; b) C6H~CH2OC(=NH)CCI3, CH2C12, 77 %; 

c) KF, 18-crown-6, DMF, H20, 99 %; d) baker's yeast, H20, sucrose, 3 d, 38 %. 

Scheme 2 

Racemic 13-keto ester 2 was generated by addition of  ethyl acetoacetate to propargylic aldehyde 1. 

Protection with benzyt trichloracetimidate and desilylation established compound 2 suitable for baker's yeast 

reduction. Kinetic resolution of  2 yields 3 in very good enantiomeric and diastereomeric excess (de - 82 %; ee 

= 84 %) (Scheme 2). 5 Even though the kinetic resolution of  2 did not yield the excellent ee values observed for 

the kinetic resolution of  9 (Scheme 3), 6 we decided to use 3 as the precursor due to the greater stability of  the 

benzyl group under Sakurai conditions. 

BnO OH ~ CO2Et 

3 

38 %; d e = 8 2 % ; e e  84% 

Scheme 3 

MPMO OH ~ CO2Et 

9 

40 %; de > 98 %; ee = 93 % 

The diastereomeric ratio of  3 was determined by chiral GC analysis. 7 The enantiomeric purity was 

established by NMR-shit~ experiments with Eu(hfc)3 s as described by Meyer and Oet t ing .  9 However, 

hydroboration of  the triple bond did not yield the desired aldehyde but methyl ketone 8 instead (Scheme 4). 

BnO O'I-BDMS BnO OTBDMS 
- :_ ~ CO2Et BH3 ~-- ~ C O 2 E t  

7 O 8 

Scheme 4 

We therefore hydrogenated the acetylene moiety to the corresponding double bond with Lindlar catalyst (70 

%) and reduced the ester group with LiAIH4. Double protection with TBDMS tfiflate ~° generated the protected 

triol 4 in 43 yield (three steps). Hydroboration and successive oxidation with Dess-Martin periodinane 1~ gave 

aldehyde 5. The Sakurai reaction was performed under standard conditions t2 at -78 ° C in CH2C12 with TiCh as 

the Lewis acid and gave tetraol 6 j3 as a 6:1 mixture of  two diastereomers with the desired trans diol as the 

major isomer (Scheme 5). 
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a) Lindlar catalyst, H:, EtOH, 70 %; b) LiAII-t4, Et20, 67 %; c) 2 eq. TBDMS-triflate, THF, 92%; d) BH3xTHF, THF, 

41%; e) Dess-Martin periodinane, 88 %; f) TiCI4, CH2C12, l-Trimethylsilyl-3-methyl-2-butene, 82 %. 

Scheme 5 
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