Preliminary communication

Synthesis of "dihydroacarbose", a potent α -D-glucosidase inhibitor

MITSUO HAYASHIDA, NOBUO SAKAIRI, AND HIROYOSHI KUZUHARA*

RIKEN (The Institute of Physical and Chemical Research), Wako-shi, Saitama 351-01 (Japan)
(Received September 22nd, 1986; accepted for publication, October 20th, 1986)

Acarbose (1), having a pseudotetrasaccharide structure, is one of the microbial secondary metabolites that exhibit strong inhibitory activity against such α -D-glucosidases as sucrase, found in the wall of the small intestine¹. The Bayer AG group also isolated², in only 2% yield, "dihydroacarbose" (2) from the hydrogenation mixture of 1, and found that it exhibited potent enzyme inhibitory activities³ like those of 1. Despite many efforts directed toward total synthesis of this type of enzyme inhibitor, the successful results so far reported⁴, were confined to homologous pseudotrisaccharides, which are less potent inhibitors than 1 (ref. 1). We now describe the synthesis of 2; this can be regarded as the first example of chemical construction of a pseudotetrasaccharide skeleton. A characteristic feature of this total synthesis of 2 was employment of a polysaccharide, namely pullulan (3)¹, as the actual starting material for preparation of the trisaccharide synthon, 4"-amino-1,6-anhydro-2,3,2',3',6',2",3"-hepta-O-benzyl-4",6"-dideoxy- β -maltotriose (13).

Crystalline pentachlorophenyl 2,3,6,2',3',6',2",3",4",6"-deca-O-acetyl- β -maltotrioside (4), m.p. 109–112°, $[\alpha]_D^{23}$ +114° (c 0.63, CHCl₃); δ ⁸ 5.26 (d, 1 H, $J_{1,2}$ 9.9 Hz, H-1) was prepared in 53% overall yield from 3 by a series of successive reactions with (i) 1% (w/w) equivalent of pullulanase (Hayashibara, Inc., 2000 units/g), (ii) Ac₂O-AcONa, (iii) HBr-AcOH, and (iv) sodium pentachlorophenolate-acetone. Similarly to our previous experiments with disaccharides⁵, 4 was treated with aq. KOH, and the resulting 1,6-anhydromaltotriose (5) was per-O-acetylated for isolation of 6, m.p. 159–161° (lit.6 m.p. 156.5–157°). Basic treatment of 6 regenerated 5 as an amorphous powder which underwent benzylidenation at O-4" and -6" with PhCH(OMe)₂-TsOH-DMF, and per-O-benzylation of the product with BnBr-NaH-DMF gave 7 (67% from 5), $[\alpha]_D^{23}$ +18° (c 0.28, CHCl₃).

^{*}To whom correspondence should be addressed.

[†]This term is proposed as a trivial name for compound 2.

¹Pullulan is extremely low-priced in comparison with its repeating unit, maltotriose.

[§]All ¹H-n.m.r. spectra were recorded at 400 MHz for solutions in CDCl₃, with Me₄Si as an internal standard unless otherwise specified.

The benzylidene group was removed with aq. CF₃CO₂H, and the resulting diol **8**, $[\alpha]_D^{23} + 25^\circ$ (c 0.83, CHCl₃), was selectively iodinated with N-iodosuccinimide—Ph₃P-DMF, giving the 6"-iodide **9**, $[\alpha]_D^{18} + 25^\circ$ (c 0.83, CHCl₃); $\nu_{\text{max}}^{\text{film}}$ 3450 cm⁻¹ (OH). Reduction of **9** with LiAlH₄ gave the 6"-deoxy compound **10** (72%), $[\alpha]_D^{24} + 23^\circ$ (c 1.1, CHCl₃); δ 1.15 (d, 3 H, $J_{6'',5''}$ 6.1 Hz, H-6"). Compound **10** underwent Garegg halogenation⁷ with Ph₃P-triiodoimidazole-imidazole, to give **11** (82%), $[\alpha]_D^{20} + 59^\circ$ (c 1.2, CHCl₃); δ 4.36 (dd, 1 H, $J_{3'',4''}$ 3.7, $J_{4'',5''}$ 1.3 Hz, H-4") with configurational inversion. Further SN2 replacement of the iodide with azido anion was conducted, giving **12**, $[\alpha]_D^{21} + 63^\circ$ (c 0.50, CHCl₃); $\nu_{\text{max}}^{\text{film}}$ 2100 cm⁻¹ (N₃); δ 3.03 (t, 1 H, $J_{3'',4''} = J_{4'',5''} = 9.8$ Hz, H-4"). LiAlH₄ reduction of **12** resulted in **13** (60%), $[\alpha]_D^{23} + 27^\circ$ (c 0.60, CHCl₃); $\nu_{\text{max}}^{\text{film}}$ 3450 cm⁻¹ (NH₂).

The other synthon of 2, 2D-(2,4/3,5)-2,3,4-tri(benzyloxy)-5-(trityloxymethyl)-cyclohexanone (19) was prepared as follows. Catalytic hydrogenation of

1D-(1,2,4/3)-2,3,4-tri-O-benzyl-5-(trityloxymethyl)-5-cyclohexene-1,2,3,4-tetrol⁸ (14) with PtO₂ afforded an inseparable mixture of 1D-(1,2,4/3,5) and 1D-(1,2,4,5/3) isomers (15 and 17) of pentasubstituted cyclohexane. Chromatographic separation of their 1-benzoates (16 and 18, 1:1 ratio) was achieved, and the isolated 16, $[\alpha]_D^{2^2}$ +46° (c 1.70, CHCl₃); δ 1.96 (dt, 1 H, $J_{6a,1}$ 2.0, $J_{6a,6e} = J_{6a,5}$ 11 Hz, H-6a), was treated with base, to regenerate 15, $[\alpha]_D^{2^3}$ +17° (c 0.46, CHCl₃); $\nu_{\text{max}}^{\text{film}}$ 3500 cm⁻¹ (OH). The hydroxyl group of 15 was oxidized in CH₂Cl₂ with Me₂SO-(CF₃CO)₂O-Et₃N, giving 19, $[\alpha]_D^{2^3}$ +33° (c 1.1, CHCl₃); $\nu_{\text{max}}^{\text{film}}$ 1730 cm⁻¹ (C=O).

As reductive amination of 19 with 13 competed with simple carbonyl reduction of 19, a mixture of 13 and 2 mol. equiv. of 19 was treated in MeOH-CH₂Cl₂-AcOH at pH 6.2 with NaBH₃CN in the presence of molecular sieves 3Å, following the model reaction of Köhn and Schmidt⁹. After chromatographic separation, the desired pseudotetrasaccharide (20); $[\alpha]_D^{22} + 39^\circ$ (c 1.6, CHCl₃); $\nu_{\text{max}}^{\text{KBr}}$ 3350 cm⁻¹ (NH); δ 1.36 (dt, 1 H, $J_{6^{\prime\prime}a,5^{\prime\prime}} = J_{6^{\prime\prime}a,6^{\prime\prime}e} = 13$, $J_{1^{\prime\prime},6^{\prime\prime}a} < 1$ Hz, H-6"a), was obtained in 30% yield, together with a 4% yield of 1"- β isomer (22). The simple reduction products, 15 and its 1- β isomer, obtained in 50% yield, were oxidized, to regenerate 19 (vide supra). Compound 13 remaining in excess was also recovered, and could

be recycled. Removal of all protecting groups from 20 by treatment with Na-liquid NH₃, and acetylation of the product with Ac₂O-pyridine at room temperature gave 21; $[\alpha]_D^{24} + 81^\circ$ (c 0.60, CHCl₃); ν_{max}^{KBr} 3400 cm⁻¹ (NH); δ 1.44 (dt, 1 H, $J_{6'''a,5'''} = J_{6'''a,6'''e} = 14$, $J_{1''',6'''a} = \sim 2$ Hz, H-6'''a), and 4.89 (dd, 1 H, $J_{2''',3'''}$ 10.3, $J_{1''',2'''}$ 4.4 Hz, H-2'''). The imino group was never acetylated under these reaction conditions^{4a,10}. Acetolysis of 21 was conducted at room temperature with 40:40:1 (v/v) Ac₂O-AcOH-conc. H₂SO₄, giving an anomeric mixture of per-O-acetylated 2 (84%, α : β = 9:1); δ 5.75 (d, 0.1 H, $J_{1,2}$ 8 Hz, β -H-1) and 6.25 (d, 0.9 H, $J_{1,2}$ 3.7 Hz, α -H-1). After deacetylation of the mixture by the Zemplén procedure, the product was desalted with CM-Sephadex C-25 (NH₄⁺), giving 2 (87%); $[\alpha]_D^{25} + 121^\circ$ (c 0.17, H₂O, equilibrium) (lit.² $[\alpha]_D^{25} + 141.3^\circ$ (c 0.3, H₂O); δ ⁹ (D₂O) 3.36 (dd, 1 H, $J_{1''',2'''}$ 4.0, $J_{2''',3'''}$ 10.0 Hz, H-2'''), 4.49 (d, 0.5 H, $J_{1,2}$ 8.05 Hz, H-1 β), and 5.07 (d, 0.5 H, $J_{1,2}$ 4.15 Hz, H-1 α); s.i.m.s. m/z 648 (M⁺ + H). The ¹H-n.m.r. spectrum of synthetic 2 was in good conformity with that² of the hydrogenated products of natural 1, except for their anomeric ratio.

⁹Chemical shifts were referenced to the HOD peak as 4.67 p.p.m. at 20°.

This preparation exhibited strong inhibition (IC₅₀ 1.2×10^{-6} M) of sucrase activity in the mucosa of small intestines obtained from rats.

REFERENCES

- 1 E. TRUSCHEIT, W. FROMMER, B. JUNGE, L. MÜLLER, D. D. SCHMIDT, AND W. WINGENDER, Angew. Chem., Int. Ed. Engl., 20 (1981) 744-761, and references cited therein.
- 2 B. JUNGE, F.-R. HEIKER, J. KURZ, L. MÜLLER, D. D. SCHMIDT, AND C. WUNSCHE, Carbohydr. Res., 128 (1984) 235-268.
- 3 B. JUNGE AND L. MÜLLER, Ger. Offen. DE 3123520 (1982): Chem. Abstr., 98 (1983) 198,655g.
- 4 (a) N. SAKAIRI AND H. KUZUHARA, Tetrahedron Lett., (1982) 5327–5330; (b) S. OGAWA, H. SUGIZAKI, Y. IWASAWA, AND T. SUAMI, Carbohydr. Res., 140 (1985) 325–331; (c) S. OGAWA, Y. IWASAWA, T. TOYOKUNI, AND T. SUAMI, ibid., 141 (1985) 29–40.
- 5 I. FUJIMAKI, Y. ICHIKAWA, AND H. KUZUHARA, Carbohydr. Res., 101 (1982) 148-151.
- 6 K. TAKEO AND T. KUGE, Carbohydr. Res., 48 (1976) 282–289.
- 7 P. J. GAREGG, Pure Appl. Chem., 56 (1984) 845-858, and references cited therein.
- 8 M. HAYASHIDA, N. SAKAIRI, AND H. KUZUHARA, Carbohydr. Res., 154 (1986) 115-126.
- 9 A. KÖHN AND R. R. SCHMIDT, Justus Liebigs Ann. Chem., (1985) 775-784.
- S. OMOTO, J. ITOH, H. OGINO, K. IWAMATSU, N. NISHIZAWA, AND S. INOUYE, J. Antibiot., 34 (1981) 1429–1433.