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Abstract: The concept of carbocycle-heterocycle equivalency has been
utilised to assemble the framework of fawcettimine-serratinine group of
alkaloids from 1,5-cyclooctadiene through a common tricarbocyclic inter-
mediate 3.

Lycopodium alkaloids exhibit a fascinating spectrum of structural
variation and bioclogical activity and have, therefore, emerged as
challenging and popular targets of synthesis in recent years. Among
them, fawcettimine 1 from Lycopodium fawgetti?® and serratinine 2 from
Lycopodium serratum THUNB.,2P having close structural and biogenetic
kinship, are prototypes of a growing family.2¢,4 The synthetic appenl of
these alkaloids emanates from their unusual framework, embellished with
stereochemical intricacies and considerable functionalisation.2 Herein we
describe the attainment of the complete framework present in 1 and 2, witk
desired stereochemical disposition and adeguate level of functiocnatisa-
tion, following an approach based on carbocycle-heterocycle equivalency.

From a retrosynthetic perspective, the key element was the recogni-
tion that the indelizidine moiety in 2 was edquivalent to the azacyclo-
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nonane molety (ring €) in 1, which in turn was considered eguivalent to
cyalooctene (ring C) in 3, Thus, the tricarbocyclic framework 3 was
identified as the advanced commen intermediate for 1, 2 and other alka-
loids of this group. Further bond disconnections in 3 led te bicyclic
dienone 4 (BC rings) and then to 1,5-cyclooctadiene 5(f), Scheme 1.
Dienone 4 is readily available from 5 through a cyclopentencone annulation
methodology that we developed some years age? and our first cobjective was
to elaborate it to the ‘common core’ 3.

Conjugate 1,4-additien of the Grignard reagent prepared from 4-brcmo-~
1-butene to 4 in the presence of Cu(I) complex and BFs-etherate furnished

a 5 : 1 mixture of cis-6 and trans-6 in good yield. The cis- 6 could be
readily and completely converted to the desired trans-6 on exposure to
hase. The trans-6 was transformed to enone 7 via phenylselenylation-

zelenecoxide elimination sequence and the butenyl side chain was then s=ub-
jected to regicselective Wacker-type oxidation® with Pd*2 to furnish
diene-dione 8, Scheme 2. On exposure to base, 8 underwent the contemplated
intramolecular Michael addition to furnish the key tricarbocyclic diane
2.5 The cyclooctenas —» azacyclononane equivalency in 3 was established
through conversion to big-acetal 9, reductive ozeonolysis to diol and
double (inter- and intramolecular) displacement with N-tosylamide in the

(1} R1R2 =0CH,CH0

1—2R1R2=0
Reagents anpd Yield: (i) #~~"“MyBr, CuBr-Me,;S, BF30Et,, Me,S, THF, -

78°C —= 0°C, 75%; (ii) 2% KOH/MeOH, RT, 91%: (iii) Li-hexamethyl:si-
silazide, PhSeCl, THF, -78°C =~ RT; 30% H;0;, pyridine-DCM, 0°C —» uT,
60%; (iv) PdClp-0Op, CuCl,qqDMF, RT, 86%; (v) NaH, THF, 50°C, 78%: (vi)
HOCH,CHyOH, camphorsulphonic acid, benzene, 20°C, 88%; (vii) 03, MeOH, -
78°C, NaBH4, -78°C — RT; (viii) MeS0,Cl, Et3N, DCM, -23°C = RT, 0%
fI"OIn 91 (ix) TsNHp, n-BuyNI, NaOH, bensene, H,0, 60°C, 48%; (x) Pyrici-
nium-p-toluenesulphonate, acetone, 65°C, B89%.

Scheme 2

: |



derived dimesylate 10 to furnish 11.% Sterecostructure of 11 was secured
through a single crystal X-ray structure determination.? Deprotection in
11 led to the diketone 12, which has the fawcettimine framework.

For elaboration into serratinine framework, the common intermediate 3
was chemoselectively monoprotected, reduced with sodium borohydride and
converted into the t-butyldimethylsilylether 13. Cyclooctene ring in 13
was now elaborated to the N-tosylazacyclononane moiety in a three step
sequence (vide supra) to furnish 14, Scheme 3. Brief exposure of 14 to
BFy-etherate resulted in carbonyl deprotection as well as the unexpected
but desirable hydroxyl elimination to furnish the tricyclie enone 1%.6
The indolizidine moiety was now generated to complete the serratinine
framework. The carbonyl group in 15 was protected and the resulting
acetal was epoxidised to furnish a mixture of epoxides 16. The crude
cpoxide mixture was treated with sodium-naphthalenide to remove N-tosyl
group and simultaneously effect transannular cyclisation to the contempia-

g
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Reagents and Yield: (i) HOCH,CH,0H, PPTS, benzene, 80°C; (iiT-NaBH4, MeCH,
RT; (iii) TBDMSCl, DBU, DMAP, DCM, RT, 64% from 3; (iv) Oz, MeOH, -78-°C,
NaBHy, -78°C = RT; (v) MeSo;Cl, Et;N, DCM, -23°C — RT, 73% from 13;
(vi) TsNHp, n-BugNI, NaOH, benzene, H,0, 50%; (vii) BF30Et,, CHCljy, RT,
82%; (viii) HOCH,C(CHs),CHo0H, PPTS, benzene, 90°C; (ix) MCPBA, DCM,
0°"C — RT; (x) Na-naphthalene, DME, -78°C, (18% from 15).

Scheme 3

ted tetracyclic framework 17, Scheme 3. The stereochemical assignment at
the newly generated gquaternary centre follows largely from the previcus
precedence for such cyclisation.3b

Having accomplished the construction of the tri- and tetracyclic
systems 12 and 17, representing the frameworks of 1 and 2, respectively,
we hope to exploit the carbonyl handle present in ring A to generate the
requisite functionalisation of the natural products of this lycopodium
family.
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