SYNTHESIS AND LIGAND CHEMISTRY OF BIS[(2-ARYLTELLURO)ETHYL]AMINE AND BIS[(2-ARYLTELLURO)ETHYL]METHYLAMINE— NOVEL (Te, N, Te) DONORS

AJAI K. SINGH,* VINOD SRIVASTAVA and B. L. KHANDELWAL

Department of Chemistry, Indian Institute of Technology, New Delhi-110 016, India

(Received 19 July 1989; accepted 20 October 1989)

Abstract—New tridentate ligands, bis[(2-aryltelluro)ethyl]amine (1 and 2) and bis[(2-aryltelluro)ethyl]methylamine (3 and 4) (aryl = 4-MeOC₆H₄ or 4-EtOC₆H₄) were synthesized by the reaction of sodium aryltellurolate with bis(2-chloroethyl)amine and bis(2-chloroethyl)methylamine, respectively, and characterized by molecular weight measurements, elemental analyses, IR, ¹H and ¹³C{¹H} NMR spectra. Complexes of the type MCl₂·L (L = 1 or 2; M = Hg, Pd or Pt) were synthesized by reacting the ligand with HgCl₂, (C₆H₅CN)₂PdCl₂ and K₂PtCl₄. Mercury complexes were found to be non-ionic and monomeric. ¹H and ¹³C{¹H} NMR spectra suggest that the ligands in these complexes coordinate only through two tellurium atoms. Palladium and platinum complexes of 1 and 2 were found to be diamagnetic, monomeric and non-ionic in nitrobenzene. However, they exhibit conductance in acetonitrile and methanol due to solvolysis. ¹H and ¹³C{¹H} (recorded for 1 only) NMR spectra suggest that 1 and 2 act as a tridentate ligand in palladium and platinum complexes. On considering their electronic and IR spectral data in conjunction with the various properties, a square pyramidal structure with two chlorine atoms *trans* to each other seems to be most plausible for palladium/platinum complexes.

Bidentate or polydentate hybrid telluride ligands are somewhat rare.¹⁻³ We have reported recently⁴ novel (Te, N) ligands, viz. 1-(NMe₂)-2-(TeAr)-4-MeC₆H₃ $(Ar = C_6H_5, 4-MeOC_6H_4,$ or 4- $EtOC_6H_4$), and their complexation with palladium(II) and platinum(II). They also behave as unidentate ligands (coordinating through tellurium only) in mercury(II) complexes.⁵ In continuation of our studies on the syntheses and ligation of (Te, N) donors we have synthesized bis[(2-aryltelluro) ethyl]amine and bis[(2-aryltelluro)ethyl]methylamine (1-4). It was thought worthwhile to explore their complexation with metal ions in detail because their phosphorus analogues have been found to give interesting structures⁶ and induce catalytic activities⁷ in platinum metal complexes. In the present paper the syntheses of 1-4 and the ligational behaviour of 1 and 2 with mercury(II), palladium(II) and platinum(II) are reported.

EXPERIMENTAL

Published methods were used to synthesize the ditellurides, $(4-\text{MeOC}_6\text{H}_4)_2\text{Te}_2$ and $(4-\text{EtOC}_6\text{H}_4)_2$ Te₂,⁸ bis(2-chloroethyl)amine and bis(2-chloroethyl)methylamine.9 Chloride, mercury and tellurium were estimated by standard methods.¹⁰ The C, H and N analyses were carried out with a Perkin-Elmer elemental analyser 240C. ¹H and ${}^{13}C{}^{1}H$ NMR spectra in CDCl₃ were recorded at 25°C on a JEOL FX100 FT-NMR spectrometer at 99.55 and 25 MHz, respectively. IR spectra (Nujol mulls between CsI windows or CsI/KBr discs) in the range 4000-200 cm⁻¹ were recorded on a Nicolet 5DX FT-IR spectrometer. Electronic spectra in chloroform were recorded on a Hitachi 300 UVvis spectrometer. The conductivity measurements were made on ca 1 mM solutions in acetonitrile. methanol and nitrobenzene with a Metrohm 660 conductometer. The molecular weights were determined in chloroform solution (~ 10 mmolal) with a Knauer vapour pressure osmometer.

^{*} Author to whom correspondence should be addressed.

Synthesis of bis[(2-aryltelluro)ethyl]amine and bis[(2-aryltelluro)ethyl]methylamine

Diaryl ditelluride (2.5 mmol) was refluxed in ethanol (30 cm³) under a nitrogen atmosphere. Sodium borohydride (0.2 g in 2 cm³ of 1 M NaOH) was added to it dropwise until the refluxing solution became colourless. Bis(2-chloroethyl)amine or bis(2-chloroethyl)methylamine (2.5 mmol) dissolved in ethanol (10 cm³) was added dropwise to this refluxing solution of sodium aryl tellurolate with vigorous stirring. The resulting pale yellow mixture was further refluxed for 1 h, cooled to room temperature and poured into 200 cm³ of water. The ligand (1-4) was extracted into chloroform (200 cm^{3}) from this aqueous mixture. The extract was washed with water, dried over anhydrous sodium sulphate and concentrated to $\sim 5 \text{ cm}^3$ under vacuum. The precipitated pale yellow-white crystalline solid was recrystallized from a chloroformhexane (70:30) mixture to give the white crystalline ligand (1-4). The yield, melting point, molecular weight, results of elemental analyses, characteristic IR bands, ¹H and ¹³C{¹H} NMR data for 1-4 are given below.

Ligand 1. Yield 75%; m.p. 78°C. Analysis: Found: C, 39.5; H, 4.1; N, 2.5; Te, 46.6. Calc. for $C_{18}H_{23}NO_2Te_2$: C, 40.0; H, 4.3; N, 2.6; Te, 47.2%. Mol. wt: Found: 522.8; Calc.: 540.2. IR (cm⁻¹): 1180m [v(C—N)]; 3261m [v(N—H)]; 268mb, 297mb [v(Te—C(Ar))]. NMR [¹H]: δ , 1.65 (bs, 1H, NH); 2.92 (bs, 8H, NCH₂CH₂Te); 3.78 (s, 6H, OMe); 6.69–6.78 (d, 4H, H^b of phenyl ring *-m* to Te); 7.62–7.71 (d, 4H, H^a of phenyl ring *-o* to Te); [¹³C{¹H}]: δ , 10.5 (TeCH₂); 49.5 (NCH₂); 55.1 (OMe); 100.4 (C₁); 115.0 (C₃); 140.8 (C₂); 159.6 (C₄).

Ligand 2. Yield 80%; m.p. 85°C. Analysis: Found: C, 41.7; H, 4.1; N, 2.4; Te, 43.8. Calc. for $C_{20}H_{27}NO_2Te_2$: C, 42.2; H, 4.8; N, 2.5; Te, 44.9%. Mol. wt: Found: 547.0; Calc.: 568.2. IR (cm⁻¹): 1180m [ν (C—N)]; 3261bm [ν (N—H)]; 270mb, 315mb [ν (Te—C(Ar))]. NMR [¹H]: δ , 1.65 (bs, 1H, NH); 2.83 (bs, 8H, NCH₂CH₂Te); 3.80–4.10 (q, 4H, OCH₂); 1.32–1.46 (t, 6H, CH₃); 6.67–6.76 (d, 4H, H^b of phenyl ring); 7.58–7.66 (d, 4H, H^a of phenyl ring); [¹³C{¹H}]: δ , 10.4 (TeCH₂); 14.7 (CH_3) ; 49.5 (NCH_2) ; 63.2 (OCH_2) ; 100.1 (C_1) ; 115.5 (C_3) ; 140.8 (C_2) ; 158.9 (C_4) .

Ligand 3. Yield 85%; m.p. 58°C. Analysis: Found: C, 40.2; H, 4.2; N, 2.7; Te, 45.7. Calc. for $C_{19}H_{25}NO_2Te_2$: C, 41.1; H, 4.5; N, 2.5; Te, 46.1%. Mol. wt: Found: 530.5; Calc.: 554.2. IR (cm⁻¹): 1180m [ν (C—N)]; 280m, 245m [ν (Te—C(Ar))]. NMR [¹H]: δ , 2.23 (s, 3H, NMe); 3.77 (s, 6H, OMe); 2.78–2.84 (unresolved triplet, 4H, TeCH₂); 2.91–2.97 (unresolved triplet, 4H, NCH₂); 6.69– 6.78 (d, 4H, H^b of phenyl ring); 7.61–7.69 (d, 4H, H^a of phenyl ring); [¹³C{¹H}]: δ , 8.6 (TeCH₂); 40.9 (NMe); 55.0 (OMe); 58.0 (NCH₂); 101.3 (C₁); 114.9 (C₃); 140.4 (C₂); 159.3 (C₄).

Ligand 4. Yield 87%; m.p. 62° C. Analysis: Found: C, 42.5; H, 4.7; N, 2.3; Te, 42.6. Calc. for C₂₁H₂₉NO₂Te₂: C, 43.3; H, 5.0; N, 2.4; Te, 43.8%. Mol. wt: Found: 562.4; Calc.: 582.2. IR (cm⁻¹): 1180m [ν (C—N)]; 250w, 280m [ν (Te—C(Ar))]. NMR [¹H]: δ , 2.23 (s, 3H, NMe); 2.78–2.84 (unresolved triplet, 4H, TeCH₂); 2.91–2.98 (unresolved triplet, 4H, NCH₂); 1.32–1.46 (t, 6H, CH₃); 3.89– 4.10 (q, 4H, OCH₂); 7.60–7.69 (d, 4H, H^a of phenyl ring); 6.81–6.90 (d, 4H, H^b of phenyl ring); [¹³C{¹H}]: δ , 8.13 (TeCH₂); 14.7 (CH₃); 41.0 (NMe); 58.2 (NCH₂); 63.3 (OCH₂); 101.1 (C₁); 115.6 (C₃); 140.5 (C₂); 158.9 (C₄).

Synthesis of mercury complexes (5 and 6)

To a solution of $HgCl_2$ (0.3 mmol) in acetone (5 cm³) was added the solution of the ligand (1, 2) (0.3 mmol) in acetone (5 cm³) with stirring at room temperature. Hexane was added to precipitate the complex (5 or 6) as a pale yellow solid which was filtered, washed with acetone (2 cm³) and dried *in vacuo*. These complexes are soluble in CHCl₃, CH₂Cl₂ and CH₃CN. The physical and spectral data are recorded below.

HgCl₂·1 (5). Yield 67%; m.p. 70°C. Analysis: Found: C, 26.6; H, 2.8; N, 1.7; Cl, 8.7; Te, 31.4; Hg, 24.7. Calc. for $C_{18}H_{23}NO_2Te_2$ ·HgCl₂: C, 26.0; H, 2.7; N, 1.7; Cl, 8.1; Te, 30.5; Hg, 24.1%. Mol. wt: Found: 830.8; Calc.: 811.7. IR (cm⁻¹): 1180m [ν (C—N]; 250m, 290w [ν (Te—C(Ar))]; 3261bw [ν (N—H)]; 325wb (ν (Hg—Cl)]. NMR [¹H]: δ, 3.76 (s, 6H, OMe); 3.12 (bs, 4H, TeCH₂); 3.40 (bs, 4H, NCH₂); 1.67 (bs, 1H, NH); 7.79–7.87 (d, 4H, H^a of phenyl ring); 6.78–6.87 (d, 4H, H^b of phenyl ring); [¹³C{¹H}]: δ, 24.8 (TeCH₂); 46.1 (NCH₂); 55.2 (OMe); 103.2 (C₁); 115.8 (C₃); 139.6 (C₂); 161.0 (C₄).

HgCl₂·**2** (6). Yield 63%; m.p. 80°C. Analysis: Found: C, 28.5; H, 3.2; N, 1.7; Cl, 8.5; Te, 30.4; Hg, 23.9. Calc. for C₂₀H₂₇NO₂Te₂·HgCl₂: C, 27.7; H, 3.2; N, 1.6; Cl, 7.9; Te, 29.4; Hg, 23.0%. Mol. wt: Found: 855.0; Calc.: 839.7. IR (cm⁻¹): 1180m [ν (C—N)]; 3282bw [ν (N—H)]; 265m, 290w [ν (Te—C(Ar))]; 315m [ν (Hg—Cl)]. NMR [¹H]: δ , 2.00 (bs, 1H, NH); 3.14 (bs, 4H, TeCH₂); 3.37 (bs, 4H, NCH₂); 1.30–1.43 (t, 6H, CH₃); 3.84–3.98 (q, 4H, OCH₂); 7.73–7.82 (d, 4H, H^a of phenyl ring); 6.73–6.82 (d, 4H, H^b of phenyl ring); [¹³C{¹H}]: δ , 14.6 (CH₃); 24.5 (TeCH₂); 46.2 (NCH₂); 63.4 (OCH₂); 103.1 (C₁); 116.3 (C₃); 139.5 (C₂); 160.3 (C₄).

Synthesis of palladium complexes (7 and 8)

Bis(benzonitrile)palladium dichloride (0.5 mmol) dissolved in chloroform (20 cm³) was stirred at room temperature with 1 or 2 (0.5 mmol) (added as solid) for 2 h. The resulting orange-yellow solution was mixed with hexane (50 cm³) with stirring. The orange coloured precipitate of the complex (7 or 8) was filtered, washed with hexane, dried *in vacuo* and recrystallized from a chloroform-hexane (75:25) mixture. These complexes are soluble in a wide range of polar organic solvents, vis. CH₂Cl₂, CHCl₃, CH₃CN, MeOH, EtOH, DMF and DMSO, as well as in H₂O. The physical and spectral data for 7 and 8 are recorded below.

PdCl₂·1 (7). Yield 75%; m.p. 125°C. Analysis: Found: C, 30.6; H, 3.4; N, 1.8. Calc. for C₁₈H₂₃NO₂Te₂·PdCl₂: C, 30.1; H, 3.2; N, 2.0%. Mol. wt: Found: 698.2; Calc.: 717.6. IR (cm⁻¹): 3028.8 [ν (N—H)]; 1112m [ν (C—N)]; 270w, 240w [ν (Te—C(Ar))]; 320bw [ν (Pd—Cl)]. NMR [¹H]: δ , 3.83 (s, 6H, OMe); 5.39 (bs, 1H, NH); 2.60–3.70 (broad unresolved multiplet, 8H, NCH₂CH₂Te); 6.90–6.98 (d, 4H, H^b of phenyl ring); 7.97–8.06 (unresolved doublet, 4H, H^a of phenyl ring); [¹³C{¹H}]: δ , 16.1 (TeCH₂); 55.4 (OMe); 59.1 (NCH₂); 105.6 (C₁); 116.2 (C₃); 138.6 (C₂); 161.6 (C₄).

PdCl₂·**2** (8). Yield 80%; m.p. 155°C. Analysis: Found: C, 31.3; H, 4.1; N, 1.7. Calc. for $C_{20}H_{27}NO_2Te_2$ ·PdCl₂: C, 32.2; H, 4.2; N, 1.9%. Mol. wt: Found: 730.4; Calc.: 754.6. IR (cm⁻¹): 3071bw [ν (N—H)]; 1112m [ν (C—N)]; 275w, 243w [ν (Te—C(Ar))]; 320bw [ν (Pd—Cl)]. NMR [¹H]: δ , 5.39 (bs, 1H, NH); 3.95–4.15 (q, 4H, OCH₂); 1.36– 1.50 (t, 6H, CH₃); 2.67–3.75 (broad unresolved multiplet, 8H, NCH₂CH₂Te); 7.95–8.01 (unresolved doublet, 4H, H^a of phenyl ring); 6.88–6.96 (d, 4H, H^b of phenyl ring).

Synthesis of platinum complexes (9 and 10)

To a solution of K₂PtCl₄ (0.5 mmol) in water (15 cm³) was added 1 or 2 (0.5 mmol) in acetone (10 cm³). The resulting solution was stirred for 3 h at room temperature and poured into water (100 cm^3) . From an aqueous mixture the complex (9 or 10) was extracted into chloroform (150 cm³). The chloroform extract was dried over anhydrous sodium sulphate and the solvent was reduced under vacuum to $\sim 5 \text{ cm}^3$. The platinum complex 9 or 10 crystallized as pale yellow crystals on keeping the concentrated solution for 4-5 h at room temperature. They were recrystallized from a chloroformhexane (80:20 mixture). In CH_2Cl_2 , $CHCl_3$, CH₃CN, MeOH, EtOH, DMF and DMSO the platinum complexes are fairly soluble and sparingly in H₂O. The analytical and spectral data for these complexes are given below.

PtCl₂·1 (9). Yield 80%; m.p. 75°C. Analysis: Found: C, 25.8; H, 2.4; N, 1.7. Calc. for $C_{18}H_{23}NO_2Te_2$ ·PtCl₂: C, 26.8; H, 2.9; N, 1.8%. Mol. wt: Found: 830.4; Calc.: 806.3. IR (cm⁻¹): 1110w [ν (C--N)]; 270m, 245m [ν (Te--C(Ar))]; 325m [ν (Pt--Cl)]; 2965.5bw [ν (N--H)]. NMR [¹H]: δ , 3.84 (s, 6H, OMe); 4.93 (bs, 1H, NH); 2.34–3.66 (broad unresolved multiplet, 8H, NCH₂CH₂Te); 6.88–9.97 (d, 4H, H^b of phenyl ring); 7.88–7.96 (d, 4H, H^a of phenyl ring).

PtCl₂·**2** (10). Yield 95%; m.p. 105°C. Analysis: Found: C, 27.6; H, 3.0; N, 1.4. Calc. for $C_{20}H_{27}NO_2Te_2$ ·PtCl₂: C, 28.7; H, 3.2; N, 1.7%. Mol. wt: Found: 856.4; Calc.: 834.3. IR (cm⁻¹): 1100m [ν (C—N)]; 285w, 250w [ν (Te—C(Ar))]; 330bm [ν (Pt—Cl)]; 2944.4bw [ν (N—H)]. NMR [¹H]: δ , 4.96 (bs, 1H, NH); 2.26–3.61 (broad unresolved multiplet, 8H, NCH₂CH₂Te); 3.95–4.15 (q, 4H, OCH₂); 1.34–1.48 (t, 6H, CH₃); 6.86–6.95 (d, 4H, H^b of phenyl ring); 7.98–8.15 (bd, 4H, H^a of phenyl ring).

The ${}^{13}C{}^{1}H$ NMR spectra of 8, 9 and 10 could not be recorded due to an inadequate solubility problem.

RESULTS AND DISCUSSION

The ligands, bis[(2-aryltelluro)ethyl]amine and bis[(2-aryltelluro)ethyl]methylamine were synthesized by the reactions given in eqs (1)-(3):

$$RN(C_{2}H_{4}OH)_{2} \xrightarrow{SOCl_{2}} RN(C_{2}H_{4}Cl)_{2} \cdot HCl$$

$$\xrightarrow{10\% \text{ NaOH}} RN(C_{2}H_{4}Cl)_{2} \cdot HCl$$

$$(4-R'OC_{6}H_{4})_{2}Te_{2} \xrightarrow{\text{NaBH}_{4}/\text{EtOH}} 4-R'OC_{6}H_{4}TeNa$$

$$(2)$$

$$4-R'OC_{6}H_{4}TeNa + RN(C_{2}H_{4}Cl)_{2} \xrightarrow{\text{EtOH}/\text{Reflux}} NaOH/N_{2} atm. 1h$$

$$RN(C_{2}H_{4}Cl)_{2} \xrightarrow{\text{EtOH}/\text{Reflux}} (3)$$

$$(\mathbf{R} = \mathbf{H} \text{ or } \mathbf{M}\mathbf{e}; \mathbf{R}' = \mathbf{M}\mathbf{e} \text{ or } \mathbf{E}\mathbf{t}).$$

(1-4)

The ligands, 1-4, are white crystalline solids with low melting points. They are more soluble in CHCl₃, CH₂Cl₂ and Me₂CO than in MeOH and EtOH. Like other tellurides they also behave as non-electrolytes in solution. ¹H NMR spectra of 1-4 exhibit some interesting features. In the spectra of 1 and 2 a broad resonance at 1.65 ppm attributable to the NH group appears, whereas ligands 3 and 4 show a sharp singlet at 2.23 ppm due to the NMe group, concurring with earlier reported values.¹¹ In 1 and 2 the protons of the "NCH₂ CH_2Te " bridge appear as a broad singlet at 2.92 and 2.83 ppm, respectively [Fig. 1(a)], contrary to the expected triplets for the TeCH2 and NCH2 protons. But in the spectra of 3 and 4 these CH₂ protons give two partly resolved triplets [Fig. 1(b)], centred at 2.94 and 2.81 ppm for the NCH₂ and TeCH₂ groups, respectively. The appearance of a broad singlet for the protons of the "NCH₂CH₂Te" bridge may be explained by considering the ¹H NMR spectrum of diethanolamine (precursor of these ligands) in which the NCH₂ and OCH₂ appear as triplets centred at 2.80 and 3.69 ppm, respectively. When oxygen is replaced by a less electronegative tellurium, the protons of the CH₂ group attached to it experience shielding and their signal probably merges with the NCH₂ signal, thereby giving a broad singlet. In 3 and 4 the protons of the NCH_2 group are shielded with respect to the similar protons of 1 and 2 due to the presence of the methyl group on nitrogen and, therefore, partly resolved signals [Fig. 1(b)] for the NCH₂ and TeCH₂ groups were observed. The ¹H NMR spectra of 1-4 were also recorded in CF3COOD in which the ligands may exist as $D(R)N(C_2H_4TeAr)_2^+$. The "NCH₂ CH₂Te" bridge in this medium has two magnetically non-equivalent groups of CH₂ protons, i.e. $CH_2(N)$ and $CH_2(Te)$, thereby showing the expected coupling of these protons in the spectra [Fig. 1(c)]. The merging of two CH_2 signals may be partly as a result of the weak $N \rightarrow Te$ interaction

which is possible in ligands 1-4. In acid solution such an interaction breaks down resulting in the expected ¹H NMR spectrum for the methylene groups. Moreover, the two tellurium atoms seem to be involved in a dynamic process fast enough on the ¹H NMR time scale, in which they interact alternatively with the nitrogen, otherwise protons of the CH₂ groups would have become magnetically non-equivalent, resulting in a complex ¹H NMR spectrum. The ring protons H^a and H^b appear as doublets, as expected for a 1,4-substituted phenyl ring. The ${}^{13}C{}^{1}H$ NMR spectra of 1-4 have been found to be in agreement with 'H NMR spectra as the $CH_2(Te)$ resonances appear between 8 and 10.5 ppm in 1-4, consistent with the earlier reported values,¹² supporting the shielding of carbon linked to tellurium. The carbon of $CH_2(N)$ in the spectra of these ligands appears between 50 and 58 ppm as reported for such carbons.¹¹ The carbons of the pethoxyphenyl and p-methoxyphenyl groups linked to tellurium also exhibit signals in agreement with the reported values for such moieties.¹³ The two v[Te-C(Ar)] vibrations in the IR spectra of 1-4 at 280-315 and 250-270 cm⁻¹ are consistent with the earlier reports on tellurides.14

Complexation of 1 and 2 with mercury(II), palladium(II) and platinum(II)

The ligands 1 and 2 form complexes with bivalent mercury, palladium and platinum according to eqs

Δ

(4)-(6):

$$L + HgCl_2 \xrightarrow[r.t.]{acetone} HgCl_2 \cdot L$$
(4)
(5, 6)

$$L + (C_6H_5CN)_2PdCl_2 \xrightarrow{CHCl_3} [PdCl_2 \cdot L]$$
(5)

$$L + K_2 PtCl_4 \xrightarrow[r.t., 3h]{aq.-acetone} [PtCl_2 \cdot L]$$
(6)
(9.10)

(L = 1 or 2).

Molecular weights of mercury complexes indicate that they are monomeric. Their molar conductance values in acetonitrile indicate that they are nonionic in nature. In the IR spectra of 5 and 6, two v[Te-C(Ar)] bands have been found at lower frequency (~ $15-30 \text{ cm}^{-1}$) in comparison to the similar bands of 1 and 2. On coordination, v(C-N)remains unaffected and the shift of v(N-H) is too insignificant to conclude coordination of the NH group. Thus, probably two tellurium atoms are the only ligating site of 1 and 2 in the mercury complexes. The ¹H NMR spectra of 5 and 6 have two broad singlets due to NCH₂ and TeCH₂. This suggests that on coordination, these protons (almost similar in 1 and 2) become magnetically non-equivalent and therefore appear as two broad singlets. The signal of the NH protons does not show any change in 5 and 6 when compared with that of free ligand, indicating the presence of an uncoordinated NH group in the mercury complexes. The H^a protons of the phenyl ring undergo a greater downfield shift (~ 0.15 ppm) than the H^b protons (~ 0.10 ppm). In the ${}^{13}C{}^{1}H{}$ NMR spectra of these mercury complexes, carbon signals of $CH_2(Te)$ and $C_1(Te)$ were found to be deshielded by ~ 14.3 and ~ 3.0 ppm, respectively, with respect to the corresponding signals of the free ligands. However, the carbon signal of $CH_2(N)$ appears around 3.5 ppm upfield relative to the free ligand, which supports the possibility of a weak $N \rightarrow Te$ interaction in 1 and 2. If these spectral observations are considered together they indicate that 1 and 2 probably coordinate with mercury through their two tellurium atoms. On consideration of the spectral data in conjunction with molecular weight and molar conductance values, it is reasonable to presume that structure A is most plausible for 5 and 6.

The molar conductances of the solutions of 7–10 in acetonitrile (~ 1 mM) were found in the range 30–40 Ω^{-1} cm² mol⁻¹. These values are lower than those expected for a 1:1 electrolyte.¹⁵ The conductances ($\Lambda_{\rm M} = \sim 100 \ \Omega^{-1} \ {\rm cm}^2 \ {\rm mol}^{-1}$) of 7–10 in methanol (~ 0.1 mM solution) are very close to

 $\begin{array}{c|c}
HN \\
\hline
HN \\
\hline
Hn \\
Te \\
\hline
Cl \\
Cl \\
\hline
Cl$

that of a 1:1 electrolyte and decrease on increasing the concentration ($\Lambda_{\rm M}$ for 1 mM solution is ~ 60 Ω^{-1} cm² mol⁻¹). In nitrobenzene the conductance is very low ($\Lambda_M = \sim 4 \ \Omega^{-1} \ \text{cm}^2 \ \text{mol}^{-1}$ at 1 mM concentration) compared to the value expected for a 1:1 electrolyte and does not change much on dilution ($\Lambda_M = \sim 10 \ \Omega^{-1} \ cm^2 \ mol^{-1}$ at 0.1 mM concentration). These observations suggest that conductance probably arises from solvolysis of $MCl_2 \cdot 1/2$ (M = Pt or Pd), and to assume that these complexes are non-ionic is reasonable. Molecular weights of these complexes (7-10) in chloroform favour their monomeric and non-ionic nature. In the IR spectra of 7 and 8, the v(Te-C) consists of two bands with a red shift of the order of 27-35 cm^{-1} . The v(C—N) and v(N—H) are also red shifted by an order of ~ 70 and ~ 200 cm⁻¹, respectively, in comparison to the free ligand, which suggests that 1 and 2 coordinate with palladium through the nitrogen and tellurium atoms. A broad peak at 320 cm⁻¹ in the IR spectra of 7 and 8 may be assigned to the v(Pd-Cl) vibrations.^{6,16} The assignment of v(Pd--Cl) was confirmed by examining the IR spectra of $PdBr_2 \cdot 1/2$ prepared by the metathetical reaction of $PdCl_2 \cdot 1/2$ with KBr. The band assigned to v(Pd-Cl) was absent in the spectra of $PdBr_2 \cdot 1/2$. In the ¹H NMR spectra of 7 and 8, the NH signal was observed ~ 4.7 ppm downfield from its position in the spectra of the free ligand, indicating strong coordination of the NH group with palladium. The H^a protons of the phenyl ring were found to be more deshielded (0.35 ppm) than the H^B protons (0.20 ppm), on formation of palladium complexes. Only the ${}^{13}C{}^{1}H$ NMR spectrum of 7 could be recorded due to the low solubility of the other complexes. Complex 7 displays carbon signals for the $CH_2(Te)$ and $CH_2(N)$ groups at 5.6 and 9.5 ppm downfield, respectively, relative to the free ligand. The signal of $C_1(Te)$ also moves 5.2 ppm downfield on coordination. On considering the information derived from the IR and NMR spectra together, it appears that in palladium complexes (7) and 8) the ligands most probably coordinate through the nitrogen and two tellurium atoms. The

electronic spectra of the palladium complexes which are found to be diamagnetic have three bands at 33.3, 29.4 and 23.8 kK. The first band probably originates from intra-ligand transitions (the electronic spectra of 1 and 2 show only one band at 41.6 kK). The second and third bands suggest that palladium complexes have either square-planar or pyramidal geometry. The bands may be assigned to ${}^{1}A_{1g} \rightarrow {}^{1}E_{g}$ and ${}^{1}A_{1g} \rightarrow {}^{1}B_{1g}$ transitions. 17 In view of the non-ionic nature of the palladium complexes, the square-planar ionic structure **B** is ruled out. Of the two structures C and D, the value of v(Pd-Cl)being somewhat lower than expected for a Cl trans to N, favours the *trans* structure **D**.¹⁶ The trigonal bipyramidal geometry around palladium does not seem possible due to steric reasons also.

The IR spectra of 9 and 10 show two v(Te-C)bands which are red shifted by the order of 20-30 cm^{-1} . The v(C-N) and v(N-H) are also red shifted by the order of ~ 70 and ~ 300 cm⁻¹. respectively. The v(Pt-Cl) bond appears^{6,16} around 330 cm^{-1} in the spectra of 9 and 10, which is supported by the IR spectrum of $PtBr_2 \cdot 1/2$ (prepared by metathesis) as for the palladium complexes. In the ¹H NMR spectra of the platinum complexes (9 and 10) the "NCH₂CH₂Te" bridge protons appear as a broad unresolved multiplet compared to a broad singlet for the free ligands, indicating a strong involvement of the nitrogen and both the tellurium atoms of 1 and 2 in coordination to platinum. The signal for H^a protons also undergoes a downfield shift, 0.26 and 0.44 ppm for 9 and 10, respectively. Similarly, H^b protons undergo a downfield shift of the order 0.20 ppm in 9 as well as in 10. These trends in the "shifts" indicate that in platinum complexes 1 and 2 probably also coordinate through the nitrogen and two tellurium atoms. The electronic spectra of diamagnetic 9 and 10 show only one band at 29.8 kK which indicates that the platinum complexes are either squareplanar or pyramidal. The band may be due to an ${}^{1}A_{1g} \rightarrow {}^{1}E_{g}$ transition.¹⁷ On considering the above mentioned spectral data and the fact that the conductance behaviour of platinum complexes 9 and 10 is similar to that of palladium complexes, and that they are monomeric, it seems reasonable to presume that the platinum complexes also have a square-pyramidal structure **D** as proposed for palladium complexes (7 and 8).

Preliminary investigations have revealed that the palladium complexes (7 and 8) have good activity for the homogeneous catalytic hydrogenation of simple olefins, e.g. cyclohexene, which is like the palladium complexes of (P, N, P) ligands.⁶

Acknowledgement—Financial support from CSIR (India) for this work is gratefully acknowledged.

REFERENCES

- 1. H. J. Gysling and H. R. Luss, Organometallics 1984, 3, 596.
- N. I. Al-Salim, T. A. Hamor and W. R. McWhinnie, J. Chem. Soc., Chem. Commun. 1986, 453; T. Kemmitt and W. Levason, Organometallics 1989, 8, 1303.
- 3. H. J. Gysling, *The Chemistry of Organic Selenium* and *Tellurium Compounds* (Edited by S. Patai and Z. Rappoport), Ch. 18, p. 815. John Wiley, New York (1986).
- 4. A. K. Singh, V. Srivastava and B. L. Khandelwal, Polyhedron 1990, 9, 495.

- 5. A. K. Singh, V. Srivastava and B. L. Khandelwal, *Polyhedron*, communicated.
- 6. M. M. Taqui Khan and E. Rama Rao, *Polyhedron* 1987, 6, 1727.
- M. M. Taqui Khan, B. T. Khan and S. Begum, J. Molec. Catal. 1988, 45, 305.
- K. J. Irgolic and R. A. Zingaro, Organomet. React. 1971, 2, 117.
- J. P. Mason and D. J. Gosch, J. Am. Chem. Soc. 1938, 60, 2816.
- F. H. Kruse, R. E. Sanftner and J. F. Suttle, Analyt. Chem. 1953, 25, 500; A. I. Vogel, A Text Book of Quantitative Inorganic Analysis, 3rd edn. Longmans, London (1961).
- 11. R. M. Silverstein and G. C. Bassler, Spectrometric

Identification of Organic Compounds, 4th edn. John Wiley, New York (1980).

- E. G. Hope, T. Kemmitt and W. Levason, Organometallics 1988, 7, 78.
- 13. R. K. Chadha and J. M. Miller, J. Chem. Soc., Dalton Trans. 1982, 117.
- 14. W. R. McWhinnie and M. G. Patel, J. Chem. Soc., Dalton Trans. 1972, 199.
- 15. W. J. Geary, Coord. Chem. Rev. 1971, 7, 81.
- K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th edn, pp. 199, 324. John Wiley, New York (1986).
- A. B. P. Lever, *Inorganic Electronic Spectroscopy*, p. 524. Elsevier, Amsterdam (1984).