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The manganese(II1)-induced oxidative addition of carbonyl 
compounds to alkenes' has attracted renewed attention in recent 
years. The work of Corey,ZB Fristad,zb Snider,zc and their co- 
workers is noteworthy, since they have expanded the synthetic 
scope of this chemistry to include intramolecular cyclization 
processes. It is presumed that the reaction begins with a one- 
electron oxidation to produce a free radical, which adds to an 
alkene. The free-radical process is probably terminated via a 
one-electron oxidation. However, the relatively inefficient ox- 
idation step permits hydrogen transfer and polymerization to 
compete. Copper(I1) salts have been frequently used to assist in 
the termination step,lcJ resulting in effective oxidation to give 
olefins as the final  product^.^^^ 

In conjunction with our research program concerning the 
development of new carbonylation systems, we were intrigued 
with the possibility of achieving carbonylation in a manganese- 
induced oxidation system. At the start of this work, we were 
uncertain if Mn3+ would oxidize carbon monoxide more rapidly 
than the enol substrate, giving carbon dioxide and manganese- 
(11) acetate and/or manganese(0) carbonyl. We were pleased 
to find that this oxidation of CO did not hinder the desired reaction, 
and we report herein the first carbon monoxide trapping reaction 
in a Mn3+-induced oxidation system. 

The first substrate we examined for the carbonylation was 
dimethyl (4-penteny1)malonate ( 1 ) .  Thecyclizationandoxidation 
of 1 with Mn(OAc), has been pursued by Snider and co-workers.68 
They reported that,in theabsenceofacupricsalt, 5-exocyclization 
products were obtained in very low yields. This is primarily due 
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to the very slow oxidation of the resulting primary radical 
(cyclopentylmethyl radical) by Mn3+, which allows time for 
abstraction of hydrogen atoms from solvent and/or starting 
substrate or undesirable polymerization.68 We believed that if 
the intermediate radical in the Mn3+ system trapped carbon 
monoxide,' the termination step should occur smoothly by 
oxidation to an acyl cation as outlined in Scheme I. As anticipated, 
the reaction of 1 with manganese triacetate (2.5 mol equiv) in 
acetic acid under 600 psi of carbon monoxide gave the desired 
carboxylic acid 2 in 50% yield (eq 1).* 

C02Me ACOzMe + CO + Mn(OAc)s.ZHzO 

1 

600 ACOH psi, 70% 10 h * M e o ' ~ o o "  (1)  

2 50 % 

Wenext examined the keto ester 3 and found that it also worked 
well. Thus, when 3 was treated with manganese triacetate (2.3 
mol equiv) and C O  under similar reaction conditions, the 
carboxylic acid 4, having a six-membered ring enol structure, 
was obtained in 55% yield (eq 2).9J0 Careful examination of the 
crude NMR suggested the presence of trace quantities of the 
aromatic product 5, which is presumably produced by the further 
oxidation of 4.11 
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+ CO + Mn(0Ac)sZHzO 

OH QH 
3 

bo0 psi, 70"C, 13 h 

AcOH 
- 

bOOH bOOH 
4 55% 5 trace 

The intermolecular alkeneaddition/carbonylation reaction was 
also examined with dimethyl malonate (6) and 1-octene (7a) as 
the starting substrates (molar ratio, 6/7a/Mn(III) = 2/ 1/2.4). 
The expected carboxylic acid 8a was obtained in 43% yield (based 
on 7a) after purification by flash chromatography (eq 3). Thus, 

Meoto+ - + CO + Mn(OAc),.2Hz0 

Me0 7a 
6 

0 

600 psi, 70"C, 10 h - 

the addition to a terminal alkene and subsequent CO-trapping 
had been realized.12 The reaction of ethyl acetoacetate (9) and 
1-dodecene (7b) was also examined. When 9 and 7b were 
subjected to the intermolecular addition/carbonylation sequence, 
the carbonylated product was obtained as a five-membered ring 
lactone 10 (44%, diastereomeric ratio = 56:44) (eq 4).13 This is 
produced by a second oxidative cyclization of the initially formed 
carboxylic acid.I4 

(1 2) The attempted carbonylation of 2,2-dialkyl-substituted 1-alkenes was 
unsuccessful, presumably due to the very rapid oxidation of tertiary radicals 
prior to CO trapping. 

(13) This yield was obtained with 3.3 mol equiv of manganese triacetate 
(9/7b/Mn(III) = 1/1/1.3). Even with 2 mol equiv of manganese triacetate, 
the cycllzed compound 10 was the major product, suggesting that theoxidation 
of the initial product is a very rapid process. It should be noted that further 
cyclization also occurred in the case of dimethyl malonate (6). For example, 
the reaction of 1-dodecene (7b) (1.5 mmol) with 6 (1.5 mmol) and manganese 
triacetae (6 mmol) under similar carbonylation conditions gave the y-lactone 
12 in 30% yield after isolation by HPLC. 

L O i L  O 12 

(14) The tertiary a,a'-diketesubtituted radical, generated by theoxidation 
of the initially produced carboxylic acid, could cyclize reversibly to yield a 
five-membered ring radical stabilized by two a-oxygen atoms. This radical 
could beeasilyoxidized togive 10. Ananalogousmffihanismhasbecnsuggested 
in a similar lactonization with a Mn(III)/Cu(II) system, see ref 6a. 

+ CO + Mn(OAc)s4HI0  

7b 

C02Et 

$o+ ' 

600 AcOH psi, 7O0C,1O h -L (4) 

10 44 Yo (56 : 44) 

In the reaction with dimethyl malonate (6)  and allylbenzene 
(7c) in the presence of 4 mol equiv of manganese triacetate, we 
anticipated that two consecutive processes should occur: (i) the 
oxidative addition of 6 to 7c and subsequent carbonylation to 
give8b and (ii) the oxidative addition of 8b to the internal aromatic 
ring to produce a fused aromatic compound.15 When an equimolar 
amount of 6 and IC was heated with manganese triacetate a t  70 
OC for 15 h, under 600 psi of CO, the expected tetrahydronaph- 
thalenederivative 11 was obtained in 37% yield (eq 5). Therefore 
the radical obtained from 8b adds to the aromatic ring in 
preference to the carboxyl group. 

6 7c [do;*]- $& OOH (5) 

8b 11 37% 

In summary, we have demonstrated the first example of carbon 
monoxide trapping in a Mn3+ oxidation system. An inefficient 
termination step has been bypassed via carbon monoxide trapping. 
Subsequent efficient termination leads to acyl cations and finally 
carboxylic acids. Theoverall transformation involves theoxidative 
carbonylation of organic compounds. 
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