THE REACTIVITY OF Me₃Si—NMe₂ TOWARDS AsF₅ AND BF₃

I. C. TORNIEPORTH-OETTING* and T. M. KLAPÖTKE*

Institut für Anorganische und Analytische Chemie, Technische Universität Berlin, W-1000 Berlin 12, F.R.G.

(Received 26 February 1992; accepted 12 May 1992)

Abstract—Trimethylsilyldimethylamine, Me₃Si—NMe₂ (1), reacts with AsF₅ to yield Me₃SiF, Me₂NF and AsF₃. The reaction of 1 in liquid sulphur dioxide with BF₃ afforded Me₃SiF, (Me₂N—BF₂)_n [n = 1 (2), 2 (3)] and the SO₂ adduct (Me₂N—BF₂·SO₂) (4), the latter of which is stable in solution only. The equilibrium between 2, 3 and 4 has been studied by means of temperature-dependent proton NMR spectroscopy.

Recently we studied the coordination behaviour of the Lewis acid AsF_5 towards nitriles and aminonitriles. ¹⁻⁴ Therefore, we also became interested in the reactivity of AsF_5 towards substituted amines and we chose Me_3Si-Me_2 (1) to investigate the reaction behaviour. Since we could show that 1 is readily oxidized by AsF_5 , it was thought worthwhile to undertake a re-investigation of the reaction of 1 with BF_3^{5-7} as, in contrast to AsF_5 , BF_3 does not represent a strong oxidizing agent. The present paper reports on the reaction of 1 and BF_3 in SO_2 solution and the formation of $(Me_2N-BF_2)_n[n=1$ (2), 2 (3)] and $(Me_2N-BF_2 \cdot SO_2)$ (4), the latter of which is stable only in solution.

EXPERIMENTAL

All techniques have been described previously. ⁸ Me₃Si—NMe₂ (Aldrich) was purified by distillation, SO₂ (Messer-Griesheim) dried over CaH₂ and BF₃ (T. J. Baker) used as supplied. AsF₅ was prepared in our own laboratory from As and excess F₂.

¹H NMR data were obtained in SO₂ solution (c^0 , AsF₅ = c^0 , BF₃ = 0.6 mol dm⁻³) using a Bruker WP 80 (80 MHz) or a Varian EM-360 (60 MHz) instrument and are referred to external TMS in SO₂ solution. The ¹⁹F NMR spectra have been obtained in SO₂ solution using a Bruker SXP4-100 instrument (84.7 MHz) and are (unlocked) referred to external CFCl₃. For all NMR measurements, 5 mm

NMR tubes with rotationally symmetrical PTFE J. Young valves were used.

Reaction of 1 with AsF₅

Onto a frozen solution of 1 (0.70 g, 6.00 mmol) in SO₂ (10 cm³) in an NMR tube, AsF₅ (1.02 g, 6.00 mmol) was condensed at -196° C. The reaction mixture was allowed to warm to room temperature. ¹H NMR (SO₂, 20°C, δ in ppm): 0.20 d, J = 9 Hz (Me₃SiF), 4.03 s, br (Me₂NF). ¹⁹F NMR (SO₂, 20°C, δ in ppm): -22.0 s (Me₂NF); cf. ref. 16, -35 to -41 s, br (AsF₃), -155.5 s (Me₃SiF); cf. ref. 17. When the experiment was finished the solvent and all volatile products were pumped off at 0°C and AsF₃ was identified by mass spectroscopy. MS (E.I., 70 eV, 25°C), m/z: 132 (AsF₃), 113 (AsF₂), 94 (AsF), 75 (As).

Reaction of 1 with BF₃

Onto a frozen solution of 1 (0.70 g, 6.00 mmol) in SO₂ (10 cm³) in an NMR tube, BF₃ (0.41 g, 6.00 mmol) was condensed at -196° C. The reaction mixture was allowed to warm to room temperature. ¹H NMR (SO₂, 20°C, δ in ppm): 0.20 d, J = 9 Hz (Me₃SiF), 2.36 m, br (3), 2.70 m, br (2), 3.95 m, br (4). Temperature-dependent ¹H NMR spectra have been recorded between $+60^{\circ}$ C and -50° C and are shown in Fig. 1.

The reaction of 1 with BF₃ in CFCl₃ as the solvent was done on the same scale. ¹H NMR (CFCl₃, 20°C, δ in ppm): 0.18 d, J = 12 Hz (Me₃SiF), 2.42

^{*} Authors to whom correspondence should be addressed.

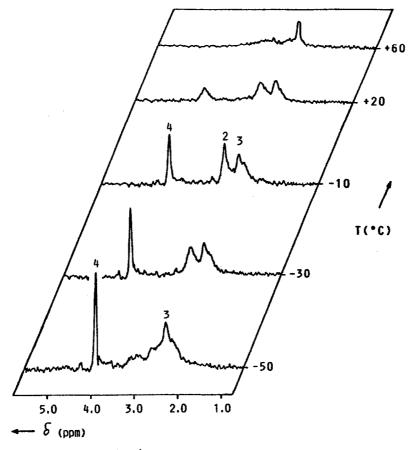
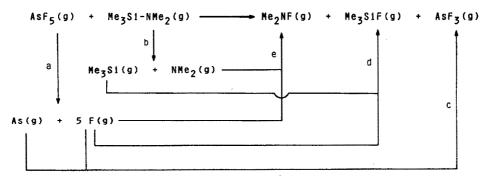


Fig. 1. Temperature-dependent ¹H NMR spectrum of a mixture of 2, 3 and 4 in SO₂ solution.

m, br (3). The temperature-dependent NMR spectrum of the CFCl₃ sample did not show any change in the range -50 to $+60^{\circ}$ C.

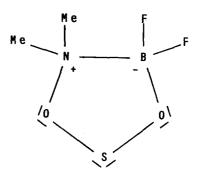

RESULTS AND DISCUSSION

Although the adduct formation between 1 and AsF, should be exothermic, 3 the oxidation of 1 by

AsF₅ [eq. (1)] seems to be even more thermodynamically favourable ($\Delta H = -1.3 \text{ kcal mol}^{-1}$, Scheme 1) and AsF₃, Me₂NF and Me₃SiF are the only products which have been identified.

$$1 + AsF_5 \longrightarrow Me_3SiF + Me_2NF + AsF_3$$
 (1)

In contrast to AsF₅, BF₃ does not represent a strong oxidizing agent and therefore we investigated

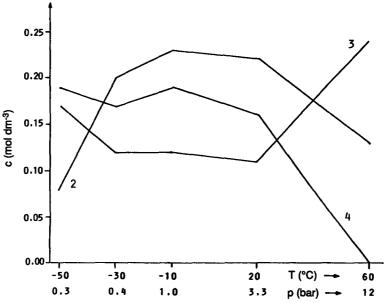

Scheme 1. Energy cycle to estimate the heat of reaction (1). (a) B.E.(As^V—F) = 97.1, (b) B.E.(Si—N) = 79.7, (c) B.E.(As^{III}—F) = 116.5, (d) B.E.(Si—F) = 142.8, (e) B.E.(N—F) \geq 74.2, calibrated on B.E.(N—F, NF₃) = 66.5 and B.E.(N—F, NF₂) = 70.3 (all values in kcal mol⁻¹; cal = 4.184 J).

its reaction behaviour in polar (SO₂) and non-polar (CFCl₃, Freon-11) solvents towards 1. Previously it has been reported^{6,7} that the neat reaction of 1 with BF₃ led to the formation of the four-membered planar heterocycle (Me₂N—BF₂)₂ (3). We found that in CFCl₃, 3 is the only boron-nitrogen species which had been formed according to eq. (2).

$$1 + BF_3 \xrightarrow{\text{Freon-11}} 1/2 (Me_2 N - BF_2)_2 + Me_3 SiF (2)$$

In the variable-temperature proton NMR spectrum (CFCl₃ solution) there was no evidence up to 60°C for the formation of significant amounts of the monomeric species Me₂N—BF₂ (2). This is in agreement with earlier thermodynamic studies which report the appearance of 2 (from 3) in the liquid state at a temperature of 160°C.¹¹

However, in SO₂ solution from the reaction of 1 with equimolar amounts of BF₃, besides Me₃SiF, three species had been formed. Two of these species have undoubtedly been identified as the monomer (Me₂N—BF₂) (2) and the dimer (Me₂N—BF₂)₂ (3).¹² The width of the band, which is attributed to 3 (2.36 ppm), and the absence of fine structure suggests that in addition to B—H coupling, further broadening occurs due to the F nuclei (Fig. 1).¹² The sharper peak at lower field (2.70 ppm) can be assigned to the monomer 2.¹² The rather low field resonance at 3.95 ppm has been assigned to the adduct species (Me₂N—BF₂·SO₂) (4) (cf. NMR data of AsF₅ adduct complexes).³ As according to the HSAB principle ^{13,14} both N and B on the one


Structure A. Proposed structure for 4.

hand and O on the other hand are hard, compared with the relatively soft S, the heterocyclic structure A might represent a likely resonance structure for species 4. Moreover, usually SO₂ coordinates via oxygen.¹⁵

However, despite several attempts so far we have been unable to isolate 4 in the solid state and 3 was the only product crystallizing from an evaporating SO_2 solution containing 2, 3 and 4.

The temperature-dependent ¹H NMR spectrum of an SO₂ solution containing 2, 3 and 4 revealed that these three species are in equilibrium with each other (Fig. 1, Table 1, Scheme 2).

Expectedly, increasing the temperature from -50 to -10° C increases the concentration of the monomer 2, whereas the concentrations of the dimer 3 and the adduct 4 decrease. At higher temperatures (above 20° C), however, the dimer seems to be far more favourable again and at 60° C 3

Scheme 2. Concentrations of 2, 3 and 4 in a sealed NMR tube in SO₂ solution at various temperatures and pressures, starting from an equimolar mixture of 1 (0.6 mmol) and BF₃.

Table 1. Concentrations of 2, 3 and 4 in a sealed NMR tube in SO₂ solution at various temperatures and pressures, starting from an equimolar mixture of 1 (0.6 mmol) and BF₃

T (°C)	p/bar (psi)	$c \pmod{\mathrm{dm}^{-3}}$		
		. 2	3	4
+60	12.0 (168)	0.13	0.24	0.00
+20	3.3 (46)	0.22	0.11	0.16
-10	1.0 (14)	0.23	0.12	0.15
-30	0.4 (5.6)	0.20	0.12	0.17
-50	0.3 (4.2)	0.08	0.17	0.19

represents the major product, while the concentration of 4 decreased to almost zero. This behaviour can be explained by the exothermic dimerization of 2 yielding 3¹¹ and the weak but still exothermic adduct formation between 2 and SO₂ (yielding 4). Therefore, at high temperatures 2 should be favoured rather than 3. However, the SO₂-containing NMR tube was sealed and the increasing pressure (cf. Fig. 1) strongly favours the formation of the dimer.

REFERENCES

 I. C. Tornieporth-Oetting, T. M. Klapötke, T. S. Cameron, J. Valkonen, P. Rademacher and K. Kowski, J. Chem. Soc., Dalton Trans. 1992, 537.

- I. C. Tornieporth-Oetting, U. Behrens, T. M. Klapötke and P. S. White, J. Chem. Soc., Dalton Trans. in press.
- 3. I. C. Tornieporth-Oetting and T. M. Klapötke, *Chem. Ber.* 1992, 125, 407.
- I. C. Tornieporth-Oetting, T. M. Klapötke and P. S. White, to be submitted.
- K. Beeker, J. J. Lagowski and K. Niedenzu, Gmelin, Handbuch der Anorganischen Chemie, Vol. 22, p. 111. Borverbindungen, F.R.G. (1975).
- E. A. Ebsworth and H. J. Emeléus, J. Chem. Soc. 1958, 2150.
- S. Sujishi and S. Witz, J. Am. Chem. Soc. 1957, 79, 2447.
- P. K. Gowik and T. M. Klapötke, J. Organomet. Chem. 1989, 368, 35.
- 9. J. E. Huheey, *Anorganische Chemie*. Walter de Gruyter, Berlin, New York (1988) appendix.
- D. A. Johnson, Some Thermodynamic Aspects of Inorganic Chemistry, p. 202. Cambridge University Press, Cambridge (1982).
- H. Nöth and H. Vahrenkamp, Chem. Ber. 1967, 100, 3353.
- A. J. Banister and N. N. Greenwood, J. Chem. Soc. 1965, 1534.
- R. G. Parr and R. G. Pearson, J. Am. Chem. Soc. 1983, 105, 7512.
- 14. R. G. Pearson, Inorg. Chem. 1988, 27, 734.
- R. Minkwitz, W. Molsbeck and H. Preut, Z. Naturforsch. 1989, 44b, 1581.
- R. A. Wiesboeck and J. K. Ruff, *Inorg. Chem.* 1966, 5, 1629.
- 17. R. Schmutzler, J. Chem. Soc. 1964, 4551.