Synthesis Of Fluorinated Biaryl Derivatives via S_{RN}1 Reactions¹

René Beugelmans* and Jacqueline Chastanet

Institut de Chimie des Substances Naturelles, C.N R.S., 91198 Gif-sur-Yvette, France

Summary. Fluorinated biaryl derivatives $Y-C_6H_4$ -ArOH (Y = F, CF_3 , OCF_3) are obtained by coupling $Y-C_6H_4$ -Br(p) with anions derived from ArOH via a photostimulated S_{RN} 1 reaction

J.F. Bunnett et al. have shown that halofluorobenzenes $F-C_6H_4$ -X treated under S_{RN}^{-1} conditions by nucleophiles Nu- $(CH_2=C(O-)R;^{2a} -SR;^{2b} -PO(OEt)_2)^{2c}$ give substitution products $F-\Lambda r$ -Nu where fluorine is retained. The CF_3 group was reported to be compatible³ but no mention of the effect of OCF_3 group on the S_{RN}^{-1} mechanism was found in the literature. Recently electrochemically^{4a,d} or photochemically^{4b-8} stimulated S_{RN}^{-1} reactions between Ar_1X and Ar_2O - were found to give biphenyl⁴⁻⁶, phenyl-naphthyl^{7,8} or binaphthyl^{7,8} derivatives.

We report now the first examples of S_{RN}^{-1} reactions between phenolates A-D and naphtholate E and various fluorinated aromatic substrates $Y-C_6H_4Br(1, Y = F; 2, Y = CF_3; 3, Y = OCF_3)$ leading to fluorinated biaryl derivatives $Y-C_6H_4$ -ArOH Results are summarized on Table.

Reacting *p*-Bromo-fluorobenzene 1 with the anion from 2,4-di-*tert*-butylphenol A or from 2,6-di*tert*-butylphenol B gives the biphenyl derivatives 4a or 5a expected from the radical attack of FC_6H_4 on the only nucleophilic carbon site available. The anion from C is unexpectedly less reactive than that from D which carries the OCF₃ group, but both give biphenyl derivatives 6a or 7a, respectively.

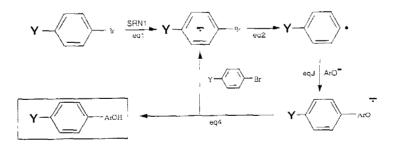
p-Bromo α, α, α -trifluorotoluene 2 yields biphenyl derivatives 4b or 6b when treated with the anions from A or C, while the outcome of the reaction is more complex when the anions from B and D are involved (Scheme 1).


- 5b is obviously derived from the initial biphenyl derivative which behaves as a nucleophile, and undergoes a second S_{RN} attack by CF_3 - C_6H_4 · on para position; such double substitution is unprecedented with phenolates.

- 5'b is also derived from the initial S_{RN}^{-1} product, which undergoes an ionic attack of CF_3 under base conditions of the medium. Similar defluorination reaction is known to occur when CF_3 is activated by an electron releasing group in the para position⁹ as found on the precursor of 5'b [P]. This compound (m.p. 155°C) is identical to that obtained in the laboratory in 96% yield from the photostimulated S_{RN}^{-1} reaction between **B** and *p*-Br-C₆H-4-CN (Scheme 1).

The anion from **D** gives rise to the biphenyl 7b together with the terphenyl 7'b which is formed by a second S_{RN}^{1} reaction of the radical $CF_3^{-}C_6H_4$ on the other nucleophilic site available on 7b as previously observed.⁶

Nucléophiles	Substrates	Products (yield %)
+СХ-он	yBr	Y-O-
A	1 Y-F 2 Y=CF ₃ 3 Y=OCF ₃	4a (18) 4b (27) 4c (63)
СКон		YОН
B	1 $Y=F$ 2 $Y=CF_3$ 3 $Y=OCF_3$	5a (30) 5b*, 5'b* 5c*
ко- ()-он		Y-O-OR
C R= CH ₃	1 Y= F 2 Y= CF ₃ 3 Y= OCF ₃	6# (15) 6b (20) 6c+ 6'c* (45)
\mathbf{D} R=CF ₃	1 Y= F 2 Y= CF ₃ 3 Y= OCF ₃	7∎ (47) 7h (29) ; 7'b+ (37) 7c (47)
ОН		С С С ОН
E	1 Y=F 2 Y=CF ₃ 3 Y=OCF ₃	8a (31) 8b (55) 8c (40)
Y Y Y ;	CN Y	$\begin{array}{c} OH \\ \downarrow \\ \downarrow \\ OR \end{array}, \begin{array}{c} OH \\ \downarrow \\ \downarrow \\ OCF_{5} \end{array}, \begin{array}{c} OH \\ \downarrow \\ \downarrow \\ OCF_{5} \end{array}$
$5b^*$ Y= CF ₃ (16) $5c^*$ Y= OCF ₃ (10)	5'b* (38)	6'c* Y= OCF ₃ , R= CH ₃ 9 (86) 7'b* Y= R = CF ₃


 $S_{_{RN}}l$ Reactions between substrates 1, 2, 3 and Amons from A-E.

p-Br-C₆H₄-OCF₃ **3** reacts efficiently with amons from **A** or **D** to give the biphenyl derivatives **4c** or **7c**, but a surprisingly sluggish reaction with **B** yields the disubstituted derivative **5c**, analogous to **5b**. The reaction with the anion **C** gives a mixture of biphenyl and terphenyl derivatives **6c** + **6'c**. There is to notice that **D** behaves excellently as a nuclophile as evidenced by the exploratory reaction with *o*-Br-C₆H₄-CN which gives **9** in 86% yield

The naphtholate anion from E reacts with $Br-C_6H-4-Y$ to give variously fluorinated phenyl-1naphthyl derivatives 8a, 8b, 8c.

All the above substitution reactions proceed via the classical four-step S_{RN}^{-1} mechanism depicted on Scheme 2 as evidenced by the reaction leading to **8b** taken as a model. The reaction did not start in the absence of photostimulation and was significantly slowered by addition of 1) *p*-dinitrobenzene which is an electron trap for the radical anions, $CF_3-C_6H_4-Br^{-*}$ (Eq. 1) or $CF_3-C_6H_4-Ar^{-*}$, (Eq. 3), ii) galvinoxyl which scavenges the radical $CF_3-C_6H_4^{-*}$ (Eq. 2)

 \mathbf{Y} =F, CF3 OCF3 , ArO' = anions from A-E (see table)

Scheme 2

The straighforward coupling between $Br-C_6H_4$ -Y and ArO- provides thus an access to a new group of fluorinated biphenyl or phenyl-1-naphthyl derivatives¹⁰, and extends the scope of the S_{RN}1 reaction.

REFERENCES

- S_{RN}1 Studies n°27 Previous paper (n° 26): Beugelmans, R.; Bois-Choussy, M. J. Org. Chem., 1991, 56, 2518.
- a) Bunnett, J.F.; Sundberg, J.E. Chem. Pharm. Bull. 1975, 23, 2620.
 b) Bunnett, J.F.; Creary, X. J Org Chem., 1974, 39, 3611.
- 3 Bunnett, I.F.; Galli, C. J. Chem. Soc., Perkin I, 1985, 2515.
- a) Alam, N.; Amatore, C.; Combellas, C., Pinson, J.; Saveant, J.M.; Thiebault, A.; Verpeaux, J.N J Org Chem. 1988, 53, 1496.
 b) Amatore, C.; Combellas, C., Pinson, J., Saveant, J.M.; Thiebault, A. J Chem. Soc Chem Comm. 1988, 7.
- 5. Combellas, C.; Gauthier, H.; Simon, J.; Thiebault, A.; Tournilhac, F., Barzoukas, M; Josse, D; Lepoux, I.; Amatore, C.; Verpeaux, J.N. J. Chem. Soc. Chem Comm., 1988, 203.
- 6. Beugelmans, R., Bois-Choussy, M. Tetrahedron Lett. 1988, 29, 1289.
- 7. Beugelmans, R.; Bois-Choussy, M.; Tang, Q. Tetrahedron Lett. 1988, 29, 1705.
- 8. Pierini, A.B., Baumgartner, M T; Rossi, A Tetrahedron Lett. 1988, 29, 3429.
- Kobayashi, Y.; Kumadaki, I.; Hanzawa, Y.; Himura, M. Chem. Pharm. Bull. 1975, 23, 636. Review: Kobayashi, Y. and Kumadaki, E. Acc. Chem. Res 1978, 11, 197.
- 10. All reactions were carried out in liquid ammonia at -33°C (20 ml) in which ArOH (A-E) (4 mmol) and t-BuOK (4 mmol), and then the substrate (1, 2, 3; 1 mmol) were successively introduced. The solution was irradiated by UV light through Pyrex until consumption of the substrate (1 to 2 hours). Products were purified by preparative thin layer chromatography and the yields (calculated upon substrates Y-C₆H₄Br) are those of pure products. All products, except 5'b are new and have spectroscopic data (MS, NMR) consistent with the structures.

(Received in France 1 March 1991)