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Summary: An effective approach for introducing vineornycin-fridarnycin-type side chain was

developed. Tin-lithium exchange of arylstannane 5followed by the reaction with chiral aldehyde 6

gave the desired adduct 7. Total synthesis of (R)-(+)-fridamycin E was accomplished.

Vineomycinl)-fridamycin2) antibiotics constitute a novel class of antitumor compounds with synthetically

attractive structures: Three dissimilar components, i.e., the anthraquinone, the C-glycosidated sugar, and the

characteristic aliphatic side chain, are connected together through two C-C bonds (A and B, Figure 1). For

the formation of aryl C-glycoside bond A, we developed a new method which proved to be effective in

synthesizing the C-glycoside sector of these compounds.3) In order to accomplish the total synthesis, we

elected to investigate the approach for forming the bond B, that is, the connection of the chiral, non-racemic

side chain to the aromatic moiety in regioselective manner.

In this communication, we wish to report an effective approach for the side chain connection and its

successful application to the total synthesis of (R)-(+)-fridamycin E (1), one of the components of fridamycin

antibiotics lacking the C-glycoside portion.4, 5)

Figure 1
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MOM-Ether 4, prepared from 1,5-dihydroxy-9,10-anthraquinone (anthrarufin) in 4 steps,3b) was treated

with t-BuOK - n-BuLi (2.0 equiv, each / THF / -78 °C) for 10 min to effect the regioselective ortho-metallation

at C(2).6,7) Since excess base was required to complete the metallation, it was impractical to use this

metallation mixture for the reaction with the electrophilic partner. Therefore, the reaction was once quenched

with Me3SnC1 to afford arylstannane 5 in 86% yield.8) It should be noted here that use of the magic base was
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essential for the clean ortho-metallation, since the conventional conditions (e.g. n-BuLi-TMEDA) 9) were totally

ineffective for this purpose.7)

MeO OMOM MeO OMOM

2 2) Me3SnCI SnMe3

THF, -78°C

MeO OMe MeO OMe

4 5

Arylstannane 5, thus obtained, served as an equivalent of nucleophilic anthraquinone derivative. Tin-

lithium exchange of 5 was carried out in toluene by adding MeLi (-78 --~ 0 °C)10) and subsequent reaction

with (S)-aldehyde 611) at 0 °C for 15 min afforded the adduct 7 as a mixture of diastereomers. After

benzoylation of 7, the resulting anthracene 8 was oxidized with cerium(IV) ammonium nitrate to give the

corresponding anthraquinone, the crude product of which was further subjected to acidic conditions to give 9.

Oxidative removal of the benzyl group was then effected by treatment with DDQ in two-phase system

(CH2C12 - H20) 12) to afford tert-alcohol 10. At this stage the two diastereomers were easily separated with

silica-gel chromatography to give the less polar isomer 10a (Rf: 0.40, CHC13 / Et20 = 9/1) and the more polar

isomer 10b (Rf: 0.30).

Double bond of 10a was cleaved with ozone (MeOH / -78 °C) and subsequent treatment with acetic

anhydride and triethylamine gave methyl ester l l a in 71% yield. 13) Similarly, 10b was converted to the

diastereomeric ester l i b in 75% yield. Configurational assignment of these diastereomers was not attempted.

Catalytic hydrogenation of 11 with Lindlar catalyst in the presence of HUnig base in ethyl acetate quickly

gave the desired methylene compound 12 in excellent yield from each diastereomers, l l a and l i b . The

reaction proceeds most probably via the initial formation of the corresponding hydroquinone followed by the

1,6-elimination of the benzoyloxy group. 14) Other catalysts such as 10% Pd-C gave lower yield of 12 along

with undefined over-reduction products. Treatment of 12 with boron tribromide effected clean deprotection of

methyl ether to give triol 13.15) Finally, hydrolysis of methyl ester with t-BuOK - H20 in 1,4-dioxane 16)

cleanly furnished fridamycin E (I) as a yellow solid in 86% yield after recrystallization from methanol. All the

physical data were in agreement with those reported.2,17)

In summary, an effective approach for introducing vineomycin-fridamycin-type side chain was

developed, which was applied to the total synthesis of fridamycin E. Total synthesis of vineomycins will be

reported elsewhere.
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S c h e m e 17)

MeO OMOM~ SnMe3 MeLi / THF, -78---)0 °C

then O H C ~ # ,
MeO OMe Me_~.OBn

6

r

MeO OR OR'

MeO OMe

7 R = MOM, R ' = H
8 R MOM, R' Bz ~" ~(92%)

O OH OBz

b)C) ~ ~ ~

99%
(2 steps) MeO O

9 R = B n
10 g H "~~'~d'

(10a 51"/o, 10b 47%)

e) f)

O OH OBz~ C02Me

MeO O

11a 71% (2 steps)
11b 75% (2 steps)

O OH

g) CO2R

92% from 11a
96% from 1 lb RO O

12 R = R' - Me- • h) (81%)
13 R H, R' = M e ~ i) (87%)
1 R = R ' = H

Keys: a) BzCI, DMAP / Pyr, 10 hr; b) CAN / MeCN-H20, -20 °C -~ rt, 15 min; c) 3 N HCI / dioxane,

rt, 4 hr; d) DDQ / CH2C12 - H20, rt, 22 hr; e) 03 / CH2Cl2 - MeOH, -78 °C; f) Ac20, Et3N / CH2Cl2,

0 °C, 1 hr; g) H2, Pd-CaCO3, ipr2NEt / EtOAc, rt, 5 min; h) BBr3 / CH2C12, -78 ---) -20 °C, 40 min; i)

t-BuOK - H20 / dioxane, rt, 10 hr.
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