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Abstract

The coumarin derivatives are though highly fluoeggclack in the absorption and emission in
the red region. Modifying them to red emission udgd the strategy of formylation of 7-(N,N-
diethyl amino) coumarin by Vilsmeier-Haak reactiéollowed by oxidative cyanation. The
aldehyde synthesized was reacted with cyanometbgkdxazole/benzothiazole to give target
compounds. All the compounds were characterisedpegtral analysis. The cyanated molecules
are found to be red shifted in absorption and aonsky 90 to 100 nm. There was an increase in
the quantum yield by about 10 times. The solveraniy plots revealed the charge transfer
process in the synthesized molecules and higheéteelxstate to ground state dipole moment ratio.
Density functional theory computations were perfednrio understand the nature of transitions

involved in absorption and emission process.
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I ntroduction:

The dyes with red emission are employed in the afe®LED [1-4], protein tracking [5],
multicolor imaging [6], far-field optical nanoscopy,8]. The red emitting dyes are attractive in
OLEDs to complement their blue [9,10] and greenI2] dye counterparts in the fabrication of
displays. In biological applications red emittinged stand high and apart due to their ability to
produce emission signals discrete from the autodsmence [13—-15] of biomolecules (195-600
nm), low energy excitation, emission in biologigahdow [16,17]. The coumarin molecules with

red emission are rarely synthesized and studiedsi@ering the structure of the coumarin the



absorption and emission can be enhanced by pldgirigjectron donor at 7-position [18,19] 2)
electron withdrawing group at 3 and 4 position 220 ,and 3) extension of conjugation [18,22].
This strategy ensures there is enough charge éramsfthe coumarin molecule to push the
absorption and emission in the red region. Synshesistyryl dyes is well documented in the
literature and has an easier protocol [23—26].

In the current study we have synthesized threea@)3-styryl coumarinsH{gure 1) and their
photophysical properties were studied with respgectarious solvent polarity parameters. The
photophysical properties were computed with DFT afdDFT to have an insight into their

photophysical behaviour.

M ethods

All commercial reagents were procured from SD Fdiemicals (Mumbai) and were used without
further purification. Laboratory reagent grade solg were purchased from Rankem, Mumbai.
The reactions were monitored by TLC using on 0.2% E-Merck silica gel 60,54 precoated
plates, which were visualized with UV light (254 rand 344 nm)'H NMR and**CNMR spectra
were recorded on Agilent 500MHz NMR. Mass specterenrecorded on FINNIGAN LCQ
ADVANTAGE MAX instrument from Thermo Electron Corpation (USA). The absorption
spectra of the compounds were recorded on a PeBtmer Lambda 25 UV-Visible
spectrophotometer; emission spectra were recorded \arian Inc. Cary Eclipse
spectrofluorometer. The ground statg) (feometry of the compour@9 was optimized in the gas
phase using Density Functional Theory (DFT) [27heTpopular hybrid functional B3LYP was
used, which combines Becke’s three parameter egeh&umctional (B3)[28] with the nonlocal
correlation functional by Lee, Yang, and Parr (LYP9]. All the atoms were treated with 6-31
G(d) basis set, which deems to be sufficient fag tholecules involved. The validity of the
structures as local minima on potential energyaserfwas verified with vibrational analysis and
was confirmed that they are with no imaginary freqeies. TD-DFT (Time Dependent Density
Functional Theory) with same hybrid functional abdsis set was used to estimate vertical
excitation and their oscillator strength.The lowsisiglet excited state {Bwas relaxed using TD-
DFT to get optimised geometry of the excited st&missions were obtained by calculating
vertical excitations of excited state geometry l@ugd state. Frequency computations were also

carried out on the optimized geometry of the lowmdyvibronically relaxed first excited state of



conformers. Computations in solvents were carriedusing the Polarizable Continuum Model

(PCM). Gaussian 09 program [30] was used for allghantum mechanical computations.

Synthesis
Figure 1 Synthesis of 4-Cyano coumarin 3-styryls (Compoé:&)

The compoun@® was prepared by cyclisation of 5-(diethylamino)jzitoxybenzaldehyde with
diethyl malonate in presence of piperidne and ethimiowed by decarboxylation with conc. HCI
and glacial acetic acid using the reported proaef8i]. Compound3 was subjected to Vilsmeier-
Haack reaction using DMF/POgb give 7-(diethylamino)-2-oxok2-chromene-3-carbaldehyde
(4) according to the procedure has been describedibgt @. [32]

Synthesis of 7-(diethylamino)-3-for myl-2-oxo-2H-chr omene-4-car bonitrile (5)

7-(Diethylamino)-2-oxo-Bl-chromene-3-carbaldehyd4) (1.5 g, 6.9 mmol) was dissolved in

DMF (10 mL) and mixture was cooled to 5°C in icéhba solution of sodium cyanide (0.374,
7.6mmol) in water (4 mL) was added drop wise todbeled mixture. The reaction mixture turns
pale yellow from yellow. The reaction mixture wasred and allowed to attain room temperature
(~27°C) over a period of 1.5 h. It was cooled t€ @hd bromine liquid (0.548 mL, 10.3mmol)

was added to it dropwise. The solution turns remsor. The solid separated after 30 min. was then

filtered and dried under vacuum to give brown cetbproduct (0.98 g).

'HNMR (CDCls, 500MHz, & ppm): 1.25-1.30 (tJ= 7.2 Hz, 6H), 3.50-3.54 (d= 7.2 Hz, 4H),
6.48-6.49 (d,J)= 2.5 Hz, 1H), 6.74-6.76 (dd= 2.5 & 7.5 Hz, 1H), 7.76-7.78 (d= 9.3 Hz, 1H),
10.16 (s, 1H)

3CNMR (CDCl3, 125 MHz, & ppm): 12.5, 46.5, 97.4, 107.9, 111.6, 112.8, 114.3, 12838.3,
154.1, 158.0, 160.0, 185.5

HRMS: 271.1087 (M+H) (Calculated folC1sH1sN,05 : 271.1083)

General procedurefor synthesisof styryl derivativesof 4 and 5



2-(Benzo[d]azol-2-yl)acetonitrile (1.2 mmol) wassiblved in ethanol (10 mL) and the reaction
mixture was cooled to 5°C and 7-(diethylamino)-8aigl-2-0x0-2H-chromene-4-carbonitrild or
7-(diethylamino)-2-oxo-B-chromene-3-carbaldehydq1.2 mmol) was added to it in a single
portion, piperidine (0.1 mL) was added to it. Thixtare was stirred at 5°C for an hour and
allowed to attain room temperature (~26°C). Thetiea was monitored by TLC and was
completed in 12 h. The reaction mass was then gddoree-water (25 mL) and extracted with
chloroform. The organic layer was washed with wated brine, dried with sodium sulphate and

evaporated under reduced pressure to give thd sigriyative.
2-(Benzo[d]oxazol-2-yl)-3-(7-(diethylamino)-2-oxo-2H- chromen-3-yl)acrylonitrile (6)

'HNMR (CDCls, 500MHz, & ppm): 1.19-1.21 (tJ= 7.5 Hz, 6H), 3.39-3.344 (d= 7.5 Hz, 4H),
6.42 (s, 1H), 6.59-6.60 (d; 5 Hz, 1H), 7.29-7.31 (m, 2H), 7.36-7.380&, 10 Hz, 1H), 7.46-7.49
(t, = 5 Hz, 1H), 7.70-7.72 (= 5 Hz, 1H), 8.54 (s, 1H), 8.88 (s, 1H).

BCNMR (CDCl3, 125 MHz, 8 ppm): 12.4, 45.5, 96.2, 97.5, 109.1, 110.5, 110.6, 11216,9,
120.5, 125.0, 125.9, 131.8, 141.7, 143.0, 150.3,Q18.57.6, 159.5, 161.1.

HRMS: 386.1470 (M‘l‘H) (Calculated fOngHzoNgOgZ 3861460)
2-(Benzo[d]thiazol-2-yl)-3-(7-(diethylamino)-2-oxo-2H-chromen-3-yl)acrylonitrile (7)

'HNMR (CDCl3, 500MHz, & ppm): 1.24-1.28 (tJ= 7.2 Hz 6H), 3.45-3.50 (g= 7.2 Hz 4H),
6.49-6.50 (d,)= 5 Hz), 6.64-6.67 (q}= 5 Hz, 1H), 7.40-7.50 (m, 3H), 7.87-7.88 J&,5 Hz, 1H),
8.07-8.09 (d,)= 10 Hz, 1H), 8.40 (s, 1H), 8.90 (s, 1H)

3CNMR (CDCl3, 125 MHz, 8 ppm): 12.5, 45.4, 97.4, 103.5, 109.0, 110.3, 112.3, 1128.5,
123.7, 125.9, 126.7, 131.6, 134.7, 140.4, 142.2,818.53.7, 157.4, 161.2, 163.4.

HRMS: 402.1255 (M+H) (Calculated f(@ngzoNgOzS: 4021276)

3-(2-(Benzo[d] oxazol-2-yl)-2-cyanovinyl)-7-(diethylamino)-2-oxo-2H-chr omene-4-

carbonitrile (8)



'HNMR (CDCl3, 500MHz, & ppm): 1.28-130 (tJ= 7.2 Hz, 6H), 3.50-3.54 (d= 7.2 Hz, 4H),
6.59-6.60 (dJ)= 2.3 Hz, 1H), 6.72-6.74 (ddz 2.2 & 5 Hz, 1H), 7.40-7.42 (dd, 2.5 & 3.5 Hz, 2H)
8.33-8.34 (d,J= 9.2 Hz, 1H), 11.79 (s, 1H).

BCNMR (CDCl3, 125 MHz, & ppm): 12.6, 45.5, 97.6, 104.8, 108.3, 109.6, 111.3,9,125.53,
126.3, 127.7, 140.6, 148.7, 149.6, 153.8, 154.8,813.60.4, 165.9

HRMS: 427.1384 (M+OH) (Calculated folCasH 19N4O4: 427.1406)

3-(2-(Benzo[d]thiazol-2-yl)-2-cyanovinyl)-7-(diethylamino)-2-oxo-2H-chr omene-4-
carbonitrile (9)

'HNMR (CDCl3, 500MHz, & ppm): 1.24-1.30 (tJ= 7.3 Hz, 6H), 3.50-3.54 (d= 7.3 Hz, 4H),
6.65-6.67 (d,J= 10 Hz, 1H), 6.72-6.74 (d= 10 Hz, 1H), 7.45-7.46 (m, 1H), 7.54-7.56 (m, 1H),
7.92-7.94 (dJ=10 Hz, 1H), 8.04-8.05 (d= 5 Hz 1H), 8.35-8.37 (m, 1H) 12.26 (s, 1H)

3CNMR (CDCl3, 125 MHz, 6 ppm): 12.5, 45.7, 97.6, 104.5, 110.7, 116.5, 121.7, 1228.6,
127.2, 134.3, 140.3, 153.3, 155.3, 159.5, 164.6,3L6

HRMS: 443.1178 (M+H) (Calculated folC24H19N4O,S: 443.1149)

Results and discussion

Photophysical study

The compounds synthesized were studied for theraltion characteristics in solvents of
different polarity. The compounds without 4-cyamoup i.e. compoun@ and7 absorbed in the
region of 500 nm to 529 nnT éble 1) in various solvents. There is very little effe€fpresence of
benzoxazole or benzothiazole acceptors on absarptmperty as the compoun@snd7 absorb

at 500 nm and 501 nm in toluene respectively. Hawvéve compound was expected to be red
shifted as compared to the compondlue to presence of benzothiazole acceptor. Absaorpt
maxima for the compoundsand? are sensitive to the solvent polarity and showeardrend of
positive solvatochromism. The molar extinction diméfnt ranges 25795 and 53900 L mol-1 cm-
1. The polar solvents have consistently shown lawalar extinction coefficient value whereas the
chlorinated solvent dichloromethane shows highaktev{T able 1)



The 4-cyanated styryl compoundsand9) absorbed at lower energy by 215ttn 3279 crit
around as compared to their non-cyanated countsrdre compoundéand8 show single peaks
in the absorption spectrum which mainly consistthefabsorption arising from a single
chromophoric unit. It consists of the donor (7-(NjKthylamino)-coumarin)-acceptor
(cyanomethyl benzoxazole/benzothiazole unit) systérareas the compoun8snd9 show two
peaks in the absorption spectrum originating fraendual chromophoric units, the additional
chromophoric unit consisting of (N,N-diethylaminmumarin-acceptor (cyano) system. The
longer and shorter wavelength absorptions are pngdmnt in non-polar and polar solvents

respectively.

Compared to absorption the emission is more seadii the solvent polarity and shows a positive
solvatochromism in the compoun@and9. In toluene, compoun8 and9 emit at 634 nm and 637
nm, whereas in ethanol they emit at 692 nm andnm@espectively{able 1). The 4-cyanated
compounds§ and9) are found to be non-fluorescent in polar aprstitvents, this may be due to
the interaction of more polar cyano coumarin stymgllecules8 and9 with polar solvents at the
excited state. In the case of the non-cyanated oangs6 and7, theyshow highest intensity of
fluorescence emission in DMF and DMSO and thermiguenching of fluorescence like cyanated
molecules. However there is a clear red shift ése the absorption and emission of the cyanated
molecules  and9), Stokes shifts are lower than those of non-cyathatoleculesq and7). The
presence of 4-cyano group is responsible for tleedse in Stokes shift by interacting with the

solvent at excited state.

However the Stokes shifts are lower for compouhdsd9 as compared to the compour&iand

7 in all the solvents, the quantum yields have imptbmany folds. This may be attributed to the
restriction of conformations around the styryl dieubond. There is about a 10 fold increase in the
guantum yield, when compared to the non-cyanatethoonds and7. Only exception is
compound$ and8 which are benzoxazole derivatives in methanolethdnol show a reverse
trend. This observation can be attributed to theebéydrogen bonding ability of the benzoxazole
oxygen with the protic solvents. The compoufdnd7 tend to show a lower quantum yield in

non-polar solvents and the trend is reversed im theyano derivatives (compou@and9 )

Table 1 Photophysical Data of compoufed



To understand the nature of the transitions anthaee more insights into the photophysical
properties of the dyes studied, quantum chemicalptations were performed. The excitation
energies and their oscillator strengths are tabdlah Table 1. The red shift induced by
introducing —CN group at 4-position is also welleghcted by TD-DFT computations. The
predicted values for compouedand? lies between 466 nm to 480 nm in all the solvehiere is

a difference of 18-50 nm in all the computationthvaxperimental measurements. The red shift in
absorption with increase in the polarity is preglicbut is not consistent with experiments. There is

a decrease in the oscillator strength value whpasition is substituted by —CN group.

To understand the red shift induced by the intréidncof the —CN group at 4-position, energy of

frontier molecular orbitals were plotted againg slolventsKigure 2).

Figure 2 Lowering of LUMO in compoun@® and9 as compared to compoucnd?

It is clear from the energy profile diagram givarFigure that there is a lowering of both HOMO
and LUMO energies after substitution by —CN groBpt the extent of lowering of energy in
LUMO is more as compared to HOMO. This lead to dase in band gap between HOMO and

LUMO, which is part of important transition dueabsorption.

The emission calculated by considering ground sestergy at excited state geometry gives
overestimated energies of de-excitations and atrengn Table 1. These values also predict a red
shifted emission shown by the compouand9 when compared to the compourgignd 7

respectively. The paercent deviation of the catedlavalues of de-excitation energies from the

experimental ones ranges from 2.4 to 11.4%

Solvent polarity function plots

The solvatochromic behaviour of the molecuée8 was studied with the help of Lippert [33],
Weller[34] and Rettig's [34] plots. Lippert's plig the plot of stokes shift in ¢fus orientation
polarizability. The Lippert function is constituted the polarity functiorf(e) and polarizability
function f(n). The Wellers and Rettigs plots were also scredoedhe linearity, which are the
plots of emission wave numbers of emission verdes respective polarity functions. For

convenience the solvents were choosen which dbana specific interaction with the solute. The

7



polar solvents were not used to plot these funstidihere is very less correlation was found in the
Lippert plot, however the constituent functiér(n) (polarizability function) shows very good
correlation. It is clear from these plots that #wvatochromic behaviour of these molecules is
polarizability dependent and independent of polgrdrameter defined dy(e).

The Weller and Rettig plots show good linear betiavand is indicative of CT (Charge transfer)
at excited state in these molecules. In the chaegesfer process, though absorption spectrum is
not solvent polarity dependent but the emissiomighly sensitive to the solvent. As there is
change in the polarity of the solute at excitedesthe solvent polarity has greater effect on the
emission properties. The solvent polarity funcipbots are given in supporting information.

The deviations from the above plots observed irctHse of alcohols may be attributed to the
specific solvent effects arising from specific geksolvent interactions (hydrogen bonding, etc.).
The carbonyl Oxygen (>C=0) and the lactone Oxygén)(are the sources of hydrogen bonding
sites in these molecules.

Oscillator strength and transition dipole moment of the dyes

In addition to this the dipole moments betweenakeated and ground states the charge transfer
character of the fluorophore can be understood traroscillator strengthf() (Table 1) and
transition dipole moment of the dy@dd). The effective number of electrons transitianfrthe
ground to excited state is usually described byotetllator strength, which provides the
absorption area in the electronic spectrum. Thélatr strength §) can be calculated using the

following Equation 1 [35].

f =432 x107° [ e(?) dv Equation 1
Wheree is the extinction coefficient (L mdlcm ™), andv represents the numerical value of

wavenumber (cif).

Transition dipole moments for absorptidvig) which is a measure of the probability of radiati
transitions have been calculated for the dyesdiffiesolvent environments using the equation 6
[36].

f

2 .
M, “ = Equation 2
a 4.72x10~7 X¥ q




The values of oscillator strengtf) &nd transition dipole momeriti@) for compound-9 for each

solvent is given iMable 2.

Table 2 Transition dipole moment&Aa) obtained from absorption properties of compogH®dn
various solvents.

The transition dipole moments obtained for the 4-gDNstituted compound@sand9 shows a
decline in value as compared to the non-cyanatedtegart compoun@l and7. The molar
extinction co-efficientseg) and apparently the transition dipole momeMms)( are lower for cyano

compounds and9.

Dipole Moment Ratio
The compounds§-9 responds well to the solvent polarity functigiasn), the similar equations are
introduced by Bilot-Kawski [37], Bakhshiev [38] andptay [39] for the estimation of ratio of

excited state dipole moment and ground state dipabenent i.e.%. The dipole moments
g

calculated with the above equations is givemable 3.

Table 3 Dipole moment ratio of compour&d9 by various methods

The compound$ and7 hasl’;—e ratio less than unity and implies that the excitate is less polar
g

for these molecules, on the contrary their 4-cyasha@nalogues hafté‘l ratio more than unity and
g
suggests the more polar excited state. This lemadspositive solvatochromism. The Bilot-Kawski

equation has consistently estimated Ioﬁﬁénratio as compared to the Bakhshiev and Liptay
g

equations.

Excited State Geometry

The styryl molecules 6-8 are observed to have st twidihedral angle at ground state which takes

the withdrawing groups out of plafeégure 3. This dihedral angle is important to unsderstdred t



charge transfer from the donor part to acceptowdrdhe twist from planarity more the overlap of

molecular orbitals and in result more the chargadfer.

Figure 3 Twist of dihedral angle and the atoms involvediimedral angle in compour@i9

The dihedral angles from the optimized structuteth@ ground and excited states for all the four

molecules in various solvents are gived able 4.

Table 4 Dihedral angles calculated with B3LYP/6-31G(d) hoet and various solvents for

compounds-9

The dihedral angles optimized at the ground staf) @nd excited state (ES) suggests that there is
an increase in planarity at the excited state. &ttent of attaining planarity is solvent dependent
in case of compoun@ and7, whereas there is very less solvent dependencempa@ond8 and9.
The change in dihedral angle from GS to ES is hidbe 4-cyanated compound8 é@nd9) as
compared to compourland?.

Molecular orbitals

The molecular orbital shapes and density illustregican throw some light on how the donor-
acceptor relationship is established in a molectie. MOs involved in excitation and de-
excitation (emission) are HOMO and LUMO for all tm@lecules. The FMO diagrams show that
the —NE% group constitutes the major density in HOMO forlecales6-9. In the case LUMOs of
the molecule$ and7 the electron density is located on the styryl deldond and around,

whereas in LUMOs of the molecul8sand9 the electron density is clearly located on 4-cyano
substitution. This suggests the role of -CN grasipraefficient acceptor and helps in lowering the

energy of LUMO in molecul® and9.
Conclusion

In conclusion, the styryl compourgland9 from 7-(diethylamino)-3-formyl-2-oxo42-chromene-

4-carbonitrile §) were synthesized and their photophysical properivere compared with the
compounds and7. All the compounds synthesized were confirmed bRNspectral analysis and
HRMS. The photophysical study revealed that therenat only a red shift imparted by the

introduction of cyano group at the 4-position bloére is a many fold increase in the quantum

10



yields of these molecules. The study of chargesteancharacteristics of the dyes by various
solvent polarity parameter plots shows the evidesfceharge transfer at excited state. The DFT
computations of the dyes also supports the red stdiiced by —CN group at 4-position. The
geometrical change occurring at the excited staethie decrease in dihedral angle which brings
the donor and acceptor in a single plane.) alspatp the charge transfer at excited state. The
dipole moment ratios calculated with different swit/polarity parameter plots suggests more polar
excited states for the compoud@nd9. The molecule8 and9 can be used as a basic structures to
the dyes or probes requiring emission in red regiwh moderate quantum yields.
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Table 1 Photophysical Data of compound 6-9

Experimental

Theoretical*

Stokes Vertical Emission
Solvent (ﬁ‘rbls) (L moll§1 oni?) f (:]“‘;;]“) Shift ® Excitation f (nm)
(cm™) (nm)

Acetonitrile 510 37345 0.672 585 2514 0.0071 471 1.6364 526
Dichloromethane 511 53900 0552 576 2208 0.0066 473 1.6464 532
1,4-dioxane 497 30415 0.464 560 2264 0.0097 466 1.6177 534
N,N-dimethylformamide 529 40810 0.697 594 2069 0.0307 475 1.6582 532
Dimethyl sulphoxide 519 36575 0.800 589 2290 0.0263 474 1.6561 531
Ethyl acetate 506 33880 0.552 570 2219 0.0068 470 1.6122 530
Ethanol 516 32340 0509 584 2257 0.0158 472 1.6391 528
Methanol 509 25795 0413 584 2523 0.0157 470 1.6317 526
Toluene 500 34265 0.586 560 2143 0.0061 469 1.6360 537
Acetonitrile 506 27669 0.528 596 2984 0.0027 476 1.6404 530
Dichloromethane 509 42350 0.582 580 2405 0.0033 477 1.6499 536
1,4-dioxane 498 38656 0.726 570 2536 0.0043 470 1.6247 535
N,N-dimethylformamide 528 40425 0.715 605 2410 0.0122 480 1.6628 534
Dimethylsulphoxide 525 35288 0.659 613 2734 0.0104 479 1.6612 535
Ethyl acetate 504 31647 0582 576 2480 0.0035 474 1.6617 533
Ethanol 511 30596 0541 594 2734 0.0048 477 1.6426 532
Methanol 512 40810 0.785 598 2809 0.0061 475 1.6354 530
Toluene 501 31679 0.583 567 2323 0.0036 473 1.6426 539
Acetonitrile 602 12952 0.178 676 1818 0.0658 546 1.3212 620
Dichloromethane 611 17672 0.289 666 1352 0.1048 548 1.3281 625
1,4-dioxane 563 15908 0.208 641 2161 0.0328 537 1.2923 617
N,N-dimethylformamide 594 10819 0191 - - -- 551 1.3435 --

Dimethylsulphoxide 585 9307 0137 - - -- 551 1.3413 --

Ethyl acetate 573 19366 0.289 658 2254 0.0434 547 1.3142 620
Ethanol 607 12628 0.180 700 2189 0.0144 547 1.3236 621
Methanol 599 10665 0.129 695 2306 0.0121 545 1.3164 619
Toluene 561 13079 0.164 634 2052 01011 541 1.3111 622
Acetonitrile 597 28840 0.315 679 2023 0.0336 549 1.3432 621
Dichloromethane 611 28298 0.187 666 1352 0.1034 549 1.3431 626
1,4-dioxane 561 23174 0.199 647 2369 0.0371 538 1.3067 616
N,N-dimethylformamide 525 27516 0.168  -- - -- 554 1.3658 --

Dimethylsulphoxide 531 22067 0123 - - -- 553 1.3637 --

Ethyl acetate 568 21991 0.187 664 2545 0.0676 542 1.3502 620
Ethanol 602 30246 0.340 692 2160 0.0213 549 1.3455 622
Methanol 591 27720 0.353 701 2655 0.0157 548 1.3381 620
Toluene 560 28755 0.263 637 2159 0.0969 542 1.3253 622

*TD-B3LY P/6-31G(d)




Table 2 Transition dipole moments (Ma) obtained from absorption properties of compound 6-9

in various solvents.

Compound € Compound 7 Compound ¢ Compound ¢
Acetonitrile 8.92 7.94 5.01 6.64
Dichloromethane 8.09 8.35 6.43 5.17
Dioxane 7.42 9.19 5.24 511
DMF 9.09 9.41 5.15 4.54
DMSO 9.74 8.95 4.33 391
Ethyl acetate 8.09 8.30 6.23 4.99
Ethanol 7.77 8.09 5.06 6.92
Methanol 7.00 9.67 4.25 6.99

Toluene 8.33 8.26 4.64 5.87




Table 3 Dipole moment ratio of compound 6-9 by various methods.

6 8 7 9
Bilot-Kawski  0.852 1.036 0.715 1.029
Bakhshiev 0.844 1.039 0.699 1.031
Liptay 0.823 1.027 0.682 1.014




Table 4 Dihedral angles calculated with B3LY P/6-31G(d) method and various solvents for

compound 6-9.

6 7 8 9

GS ES ~ GS ES &~ GS ES &~ GS Es ~
Acetonitrile 215 178 36 214 189 26 26.6 175 91 251 179 7.2
Dichloromethane 22.3 17.6 4.7 224 190 34 273 177 9.6 274 182 92
Dioxane 240 176 64 237 187 51 203 210 83 293 195 98
DMF 215 179 36 214 189 25 26.6 175 91 251 179 7.2
DMSO 214 179 34 212 189 23 265 175 91 250 178 7.2
Ethyl acetate 219 178 4.1 227 190 37 277 189 8.8 279 184 94
Ethanol 217 178 3.9 217 189 28 267 175 9.2 252 179 73
Methanol 215 179 36 215 189 26 26.6 175 9.2 251 179 7.2
Toluene 238 176 6.3 236 187 4.9 2091 209 8.2 291 194 98

All the angles expressed in °




Synthesis and combined experimental and computational investigations on
spectroscopic and photophysical properties of red emitting 3-styryl coumarins
Abhinav B. Tathe, Vinod D. Gupta, Nagaiyan Sekar *

Figures

List of Figures

Figure 1 Synthesis of 4-Cyano coumarin 3-styryls (Compound 6-9)
Figure 2 Lowering of LUMO in compound 8 and 9 as compared to compound 6 and 7

Figure 3 Twist of dihedral angle and the atoms involved in dihedral angle in compound 6-9



L J@: (CHIC00)CH,

OH Piperidine, Ethanol
Reflux, 6hr

N
4 CN
Piperidine, Ethanol
Reflux

N
5 CN
Piperidine, Ethanol
Reflux

120°C, 16hr
2

L AR N
N (0] OCN
8 X=0
9 X=$

«COOEt
L m ASOH:Cone. HEI (1:1) [ /@\/l DMF-POCI,
_AcOH:Conc. HCI (- _DMFPOCl,
NK 0" SNo

[

RT->65°C, 12hr 8}

L L,
o

i) NaCN, H,0, DMF
ii) Bry

Figure 1 Synthesis of 4-Cyano coumarin 3-styryls (Compound 6-9)




ACCEPTED MANUSCRIPT

-0.05 -0.05
-0.07 -0.07
-0.09 -0.09
a a
£o1B —6HOMO £ o013 —7 HOMO
3015 ~6LUMO | Z-015 «~7LUMO
2017 =8 HOMO @ g -017 =9 HOMO
“ 019 =8LUMO ™ 019 =9 LUMO
-0.21 — -0.21 —
-0.23 -0.23
=z = %X &= 9 T T = zZ = xX = ¢ ©r © =2
2§gz2gd8§c¢ 2382828¢¢°

Figure 2 Lowering of LUMO in compound 8 and 9 as compared to compound 6 and 7



D

N
§ CN

N o "0

-

R=H, -CN
X=0,S

Figure 3 Twist of dihedral angle and the atoms involved in dihedral angle in compound 6-9



Highlights of Manuscript

1. Synthesisof novel red emitting coumarins.
2. DFT studies on the 4-cyano 3-styryl coumarins .

3. Photophysical and spectroscopic studies of 4-cyano 3-styryl coumarins.



Supporting Information
Synthesis and combined experimental and computational investigations on
spectroscopic and photophysical propertiesof red emitting 3-styryl coumarins
Abhinav B. Tathe, Vinod D. Gupta, Nagaiyan Sekar *

List of tables

Table 1 Absorption properties of compound 6
Table 2 Absorption properties of compound 7
Table 3 Absorption properties of compound 8
Table 4 Absorption properties of compound 9

Table 5 FMO diagrams for compound 6-9 calculated with B3LY P/6-31G(d) method in acetonitrile
(iso=0.002)



List of figures

Figure 1 Absorption spectrum of the compound 6-9 in various solvents
Figure2 Emission spectrum of the compound 6-9 in various solvents
Figure 3 Quantum yield of compound 6-9 in various solvents

Figure 4 Solvent polarity function plots of Compound 6

Figure 5 "HNMR spectrum of compound 5

Figure 6 “*CNMR spectrum of compound 5

Figure 7 "HNMR spectrum of compound 6

Figure 8 > CNMR spectrum of compound 6

Figure 9 *"HNMR spectrum of compound 7

Figure 10 **CNMR spectrum of compound 7

Figure 11 "HNMR spectrum of compound 8

Figure 12 **CNMR spectrum of compound 8

Figure 13 tHNMR spectrum of compound 9

Figure 14 “*CNMR spectrum of compound 9

Figure 15 HRMS of compound 5

Figure 16 HRMS of compound 6

Figure 17 HRMS of compound 7

Figure 188 HRMS of compound 8

Figure 199 HRMS of compound 9



Table 1 Absorption properties of compound 6

max

AT FWHM | ¢ IAC f c M
x 108 x 10%° a
Acetonitrile 506 98 27669 1.56 | 0.672 1.05 8.92
Dichloromethane | 509 92 42350 1.28 | 0.552 1.62 8.09
Dioxane 498 85 38656 1.07 | 0.464 1.48 7.42
DMF 528 93 40425 1.61 | 0.697 1.54 9.09
DMSO 525 118 35288 1.85 | 0.800 1.35 9.74
Ethyl acetate 504 90 31647 1.28 | 0.552 1.21 8.09
Ethanol 511 89 30596 1.18 | 0.509 1.17 7.77
Methanol 512 84 40810 0.96 | 0.413 1.56 7.00
Toluene 501 89 31679 1.36 | 0.586 1.21 8.33
Table 2 Absorption properties of compound 7
AT FWHM | ™ IAC f c M
x 10° x 101 a

Acetonitrile 510 107 37345 1.22 | 0.528 1.43 7.94
Dichloromethane | 511 98 53900 1.35( 0.582 2.06 8.35
Dioxane 497 103 30415 1.68 | 0.726 1.16 9.19
DMF 529 96 40810 1.65( 0.715 1.56 9.41
DMSO 519 110 36575 1.53 | 0.659 1.40 8.95
Ethyl acetate 506 99 33880 1.35( 0.582 1.29 8.30
Ethanol 516 99 32340 1.25( 0.541 1.24 8.09
Methanol 509 101 25795 1.82 | 0.785 0.99 9.67
Toluene 500 98 34265 1.35( 0.583 1.31 8.26




Table 3 Absorption properties of compound 8

max

AT FWHM | € IAC f c M
x 10° x 10%° a
Acetonitrile 602 | 110 12952 0.41]0.178 0.49 5.01
Dichloromethane | 611 | 102 17672 0.67 | 0.289 0.68 6.43
Dioxane 563 | 109 15908 0.48 | 0.208 0.61 5.24
DMF 594 | 249 10819 0.44 ] 0.191 0.42 5.15
DMSO 585 | 114 9307 0.32 | 0.137 0.36 4.33
Ethyl acetate 573 | 100 19366 0.67 | 0.289 0.74 6.23
Ethanol 607 | 113 12628 0.47 | 0.180 0.48 5.06
Methanol 509 |91 10665 0.30 | 0.129 0.41 4.25
Toluene 561 | 102 13079 0.38 | 0.164 0.50 4.64
Table 4 Absorption properties of compound 9
AT FWHM | g™ IAC f c M
x 10° x 1019 a
Acetonitrile 597 | 112 28840 0.73 | 0.315 1.10 6.64
Dichloromethane | 611 | 101 28298 0.43 | 0.187 1.08 5.17
Dioxane 561 | 108 23174 0.46 | 0.199 0.89 511
DMF 525 | 126 27516 0.39 | 0.168 1.05 454
DMSO 531 | 110 22067 0.28 | 0.123 0.84 391
Ethyl acetate 568 | 114 21991 0.43 | 0.187 0.84 4.99
Ethanol 602 | 116 30246 0.79 | 0.340 1.15 6.92
Methanol 591 | 123 27720 0.82 | 0.353 1.05 6.99
Toluene 560 | 120 28755 0.61 | 0.263 1.09 5.87




Table 5 FMO diagrams for compound 6-9 calculated with B3LY P/6-31G(d) method in acetonitrile

(iso= 0.002)
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Figure 13'HNMR spectrum of compound 9
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Figure 14 *CNMR spectrum of compound 9



HRMS

x10 3
3.5

3
2.5+

1.5
1
0.5

Cpd 1: C15 H14 N2 O3: + FBF Spectrum {0.445-0.662 min} ABCN-MS.d Subtract

271.1087
([C15HT14N203]+H)+ 293.0904
([C15H14N203]+Na)+

268 270 272 274 276 278 280 282 284 286 288 290 292 294 296
Counts vs. Mass-to-Charge (m/fz)

MS Spectrum Peak List

m/z z |Abund Formula Ion
271.1087] 1 3283.06|C15H14N203 (M+H)+
272.1128] 1 719.71|C15H14N203 (M+H)+
293.0004| 1 2754.92|C15H14N203 (M+Na)+
294.0946| 1 654.48|C15H14N203 (M+Na)+

Figure 15HRMS of compound 5
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Figure 16 HRMS of compound 6
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Figure 17 HRMS of compound 7
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Figure 18 HRMS of compound 8



ACCEPTED MANUSCRIPT
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Figure 19 HRMS of compound 9



