Synthesis of α -Hydroxy-Tetradehydrocularines

Alberto García, Luis Castedo* and Domingo Domínguez

Departamento de Química Orgánica, Facultad de Química y Sección de Alcaloides del C.S.I.C. 15706, Santiago de Compostela. Spain

Abstract: The first total synthesis of an α -hydroxytetradehydrocularine is described. The synthesis was based on the construction of a dibenzoxepinone followed by assembly of the isoquinoline heteroring. As a result, the structure of the alkaloid linaresine should be revised.

Recently, the α -hydroxy-tetradehydrocularine structures 1 and 2 were respectively proposed for the alkaloids linaresine¹ and sauvagnine² on the basis of spectroscopic evidence. They not only have an anomalous substitution pattern, but also originate from different plant sources than current cularines.³ Furthermore, a unique biogenetic origin from protoberberines (and thus differing from that of the usual cularines) was proposed for linaresine.¹

In view of these novelties, we undertook the total synthesis of 1 using the dibenzoxepinone 4 as the key intermediate upon which the isoquinoline heteroring can be constructed.

The ketone 4⁴ was prepared in 29% overall yield using our recently reported method⁵ based on the benzylation of the anion derived from dithiane **3**, followed by deprotection of the methoxymethyl ether, Ullmann reaction and hydrolysis of the dithiane. The assembly of the isoquinoline heteroring on dibenzoxepinones has been previously carried out by a Pomerantz-Fritsch cyclisation, which takes place in very low yield (8%).⁶ We have overcome this difficulty by preparing the ketal 5 by an alternative procedure based on the Mitsunobu reaction of the alcohol derived from 4 with HN(Ts)CH₂CH(OMe)₂.⁷ Acid cyclisation of compound 5 (6N HCl/dioxane, reflux 1h) followed by basic treatment (*t*-BuOK/*t*-BuOH, reflux 3h) afforded 6 (33%) along with a large amount of the oxepine derived from elimination of the side chain (45%). Product 6 was refluxed for 23h in dry pyridine under O₂ to yield the oxoderivative 7 in 67% yield. Finally, compound 1⁸ was obtained by NaBH₄ reduction of 7 in anhydrous CHCl₃.

Comparision of the spectra of 1 (¹H NMR, MS, IR, UV) with those of linaresine⁹ showed notable differences, thus proving that the proposed structure of linaresine should be revised. Furthermore, our synthetic α -hydroxy derivative 1 is rather unstable, being easily oxidized by air to the oxocompound 7, which suggests that any α -hydroxy-tetradehydrocularines present in natural sources might not survive the isolation process. These findings also strongly suggest the necessity of revising the structure 2 proposed for sauvagnine.

Acknowledgements: We thank the Xunta de Galicia for a grant to A. G., and also the DGICYT for financial support under proyect PB90-0764.

REFERENCES AND NOTES

- 1. Firdous, S.; Freyer, A.J.; Shamma, M.; Urzúa, A. J. Am. Chem. Soc., 1984, 106, 6099.
- 2. Allais, D.; Guinaudeau, H. J. Nat. Products, 1990, 53, 1280.
- 3. Castedo, L. " The Chemistry and Pharmacology of Cularine Alkaloids ", in " The Chemistry and Biology of Isoquinoline Alkaloids", Ed. Philipson et al., Springer-Verlag, 1985.

Castedo, L.; Suau, R. "The Cularine Alkaloids", in "The Alkaloids", vol. 29, Ed. A. Brossi, Academic Press, 1986.

- 4. All new compounds were fully characterized spectroscopically and had satisfactory elemental analyses or HRMS.
- 5. Lamas, C.; García, A.; Castedo, L.; Domínguez, D. Tetrahedron Letters, 1989, 30, 6927.
- 6. Kametani, T; Fukumoto, K. J. Chem. Soc., 1963, 4289.
- 7. 0.5 gr of Ø₃P and 0.41 gr of HN(Ts)CH₂CH(OMe)₂ are dissolved in 10 ml of dry THF under Ar; to this solution are sequentially added 0.2 g of the alcohol and 0.24 mL of DEAD, and the resulting mixture is stirred for 3h; then the solvent is concentrated and the residue is washed with 10% NaOH (5 x 15 mL) and water; the crude so obtained is chromatographed (SiO₂; 2:3, AcOEt: hexane), affording 0.21 g (60%) of compound 5.
- 8. 1: ¹H NMR (250 MHz, CD₃CN): 3.81 (s, 3H, OMe), 3.87 (s, 3H, OMe), 6.13 (s, 1H), 6.24 (s, 2H, O-CH₂-O), 6.47 (s, 1H), 6.88 (d, J= 8.6, 1H, Ar-H), 7.07 (s 1H, ArH), 7.32 (d, J= 8.6, 1H, Ar-H), 7.53 (d, J= 5.7, 1H, ArH), 8.20 (d, J= 5.7, 1H, ArH). ¹³C NMR (62.83 Mz, CDCl₃): 56.3 (CH₃), 61.8 (CH₃), 69.2 (CH-OH), 99.6 (CH), 102.6 (CH₂), 109.3 (CH), 117.6 (C), 118.6 (CH), 120.5 (CH), 130.3 (C), 135.5 (C), 135.8 (C), 138.9 (CH), 141.3 (C), 142.7 (C), 147.7 (C), 152.3 (C), 152.9 (C), 154.6 (C). IR (CHCl₃), v_{max} : 3300, 3010, 2940, 1500, 1455, 1275, 1200. UV (CHCl₃), λ_{max} : 284, 320, 332 nm. MS (m/z, %): 353 (M⁺, 37), 352 (36), 324 (100), 322 (31), 308 (26), 280 (14).
- 9. We thank Prof. M. Shamma and Prof. H. Guinaudeau, who kindly supplied copies of the spectra of linaresine.