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Abstract 

Marine bacteria produce highly cytotoxic polyheterocyclic cyclopeptide natural products by 

ribosomal peptide biosynthesis. Among them, urukthapelstatin A features a chain of five 2,4’-

connected azole rings within an cyclooctapeptide framework. We report on a novel synthesis design 

that uses only -amino acids as starting materials and has led to an efficient and stereoselective total 

synthesis of urukthapelstatin A. A kinetically favored macrothiolactonizations and a high-yielding 

Aza-Wittig heterocyclization for contracting the macrocyle were crucial for success. These investi-

gations have additionally uncovered the unsuspected configurational lability of the embedded 

enamide substructure in solution.  
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 Polyheterocyclic, macrocyclic natural products enjoy continued interest both in biosynthesis 

research as well as unique hit compounds for drug design.
[1]

 Among them, purely amino acid 

derived polyazole cyclopeptides have been identified that are produced by Actinomycetes from 

marine environments. Three compounds, urukthapelstatin A (1, Figure 1),
[2]

 mechercharstatin (2, 

also known as mechercharmycin or IB-01211),
[3]

 and YM-216391 (3)
[4]

 are derived from eight 

amino acids and share very similar structures with five contiguously catenated azoles linked via their 

2 and 4’-positions, all closed by a lipophilic tripeptide section. They are produced by different 

species but show all high cytotoxicity in cancer cell line growth inhibition in the 10 nM range, 

potentially indicating a common ecological purpose or similar molecular target that remains unclear 

to date. The related but smaller marthiapeptide (4) contains four catenated thiazol(in)es and displays 

reduced cytotoxicity (sub-M).
[5]

 In contrast, telomestatin (5) features eight cyclocatenated azoles 

and is considerably less toxic (M).
[6]

 It however displays interesting selectivity that is attributed to 

high affinity of the almost planar polyazole 5 to G-quadruplex structures in telomeres and its 

resulting interference with telomere signaling in sensitive cell lines.
[7] 

The biosynthesis of polyazole cyclopeptides can be assumed to proceed by ribosomal peptide 

biosynthesis and posttranslational modification (RiPPs), as it was clearly shown in the case of YM-

216391.
[8]

 This pathway is shared by the structurally related bacteriocins, a large class of metabolites 

from marine cyanobacteria that is rich in cyclopeptide congeners containing azole rings.
[9]

 

Bacteriocins with directly connected azole rings have not (yet) been described, however. 

Due to their remarkable bioactivity which seems to be linked to the polyazole fragments embedded 

in a ring structure, total syntheses have been pursued for urukthapelstatin A (1),
[10]

 mechercharstatin 

(2),
[11]

 YM-216391 (3),
[12]

 telomestatin (4),
[13]

 and marthiapeptide (5).
[14]

 These reports differ 

conceptually in the methods employed for closing the macrocycle and for azole formation in late 

stage intermediates. However, most of these works report either a problematic macrocycle formation 

event or difficulties when creating the ultimate azole ring in the macrocycle.  

These issues likely relate to the molecular structure of oxazole and thiazole-containing scaffolds 

(Figure 2). Gas phase measurements report opening angles of 146° for oxazole
[15]

 and 134° for 

thiazole
[16]

 for substituents attached on a 2,4-disubstituted azole 11. While more elaborate analyses 

are certainly possible, simple geometry suggests that a ring of such azoles should suffer from angle 

strain when it is composed from less than ten oxazoles or less than eight thiazoles (12, average 

corner angle  for a decagon: 144°; octagon: 135°). Likewise, enthalpic and/or entropic strain may 

increase when an azole ring is constructed within a macrocycle already formed. Either a change in 
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 angle occurs when side-chain functionalized peptides are employed (path A) or the chain length is 

shortened when the chain is formed via the heteroatom (path B). However, path B features a larger 

ring size than A, and hence could be more easily accessed by initial macrocyclization. In terms of 

this analysis an Aza-Wittig reaction should be suited very well for azole formation as it’s precursor 

topology conforms to path B and azole formation will be induced under neutral conditions in an 

intramolecular fashion via an iminophosphorane intermediate.
[17]

  

In order to probe this hypothesis we designed a novel synthesis of urukthapelstatin A based on the 

considerations above (Figure 1). As Aza-Wittig reactions perform especially well for thiazole 

formation, retrosynthetic dehydration (a) and Aza-Wittig disconnection (b) led us to the azido-

macrothiolactone 6, that should be easily prepared by thiolactonization (c) from -mercapto ester 7. 

Precursor 7 features a turn-inducing DLL-configured tripeptide in its center procting two semi-rigid 

appendages that should facilitate ring closure.
[18]

 It disconnects favorably into bis-azole fragment 8, 

regular tripeptide 9, and aminoalcohol 10 by peptide coupling (d) and condensing oxazole formation 

(e). Bis-azole 8 should be similarly accessed from a mono-thioazole acid (f). Overall, all building 

blocks can such be assembled from natural amino acid, leading to a biomimetic synthesis design.
[1c] 

The synthesis began with the construction of the azole building blocks (Scheme 1). Two charges of 

serine (13) were divergently protected as allyl ester 14 (85%) or by installing TBS- and Boc-

protecting groups (→ 15, 95%)
[26]

 and then united to dipeptide 16 by using EDC (76% yield). 

Oxazole formation mediated by DAST
[19a]

 followed by BrCCl3/DBU oxidation
[20]

 performed 

reproducibly to deliver oxazole 17 in 68% yield. Deprotection to amino alcohol 10 was then 

quantitatively achieved with aqueous TFA. 

For the N-terminus cysteine derivative 18 was converted to azide 20 by azide transfer
[17]

 and used to 

construct thiazole 21 by high yielding one-pot Tr-deprotection - thioesterification - Aza-Wittig - 

oxidation sequence employing acid 19 (4 steps, 87% yield). Its NHBoc group was swiftly exchanged 

for an azide group (→ 22, 95%).
[17]

 Attempts to hydrolyze methyl ester 22 were characterized by 

side reactions, notably STr-elimination and degradation. After considerable experimentation it was 

found that NaOH buffered with TFE created conditions that would cleanly deliver acid 23 (99% 

yield) and could circumvent the usage of toxic tin reagents.
[21]

 Coupling to H--OH-Phe-Me 

(mixture of stereoisomers) then proceeded smoothly and gave dipeptide 24 in 85% yield. For 

oxazoline formation DOF was then favorably used,
[19b]

 but the following oxidation had to be 

performed with limiting reagent and at low temperature to avoid overoxidation (36% over two 

steps). Methyl ester deprotection by using Me3SnOH
[22]

 then cleanly delivered acid 8. 
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 In order to assemble the backbone structure, manual peptide synthesis on Tr-resin was employed 

after loading with protected Thr (0.7 mmol/g, Scheme 2). Regular Fmoc/tBu chemistry and 

terminally Boc-protected D-allo-Ile delivered tripeptide acid 9 in 96% isolated yield overall. 

Coupling of acid 9 to amino alcohol 10 by using HBTU succeeded in > 90% yield. However, 

significant epimerization of the Thr residue in amide 26 occurred under these conditions (*d.r. 2:1). 

Careful optimization (PyAOP, EtN(iPr)2, -3 °C → 20 °C) reduced diastereomer formation (*d.r. 

> 9:1), at the expense of yield (50%). Anyhow, the minor R-isomer(*) was easily separated by 

chromatography and its solubility in EtOAc.
1
 Hydroxymethyl peptide 26 was then transformed into 

bis-oxazole 27 by using DAST,
[19]

 followed by oxidation with DBU and excess CCl4
[13]

 in a solvent 

mixture containing pyridine, which was crucial to minimize side product formation. After acid-

mediated tBu- and Boc-deprotection of bis-oxazole 27 bis-azole acid 8 was attached to give 

octapeptide precursor 7 (82% yield). Deallylation proceeded cleanly with morpholine as allyl 

scavenger,
[23]

 and acid-mediated detritylation furnished cyclization precursor 28 (97% yield). 

The crucial macrocyclization performed excellently by using PyBOP (88% yield, Scheme 3) when 

slow addition of the precursor to the reagent was employed (syringe pump).
[24]

 Interestingly, macro-

thiolactone 6 was stable to isolation and chromatography, suggesting low residual ring strain. 

Furthermore, ring contraction of azidothioester 6 by Aza-Wittig reaction in 2,6-lutidine as solvent
[17]

 

followed by oxidation delivered the penta-azole macrocycle 29 in gratifying 79% yield. E2-type anti 

elimination then proceeded cleanly via the stable mesylate that was eliminated smoothly by 

employing DBU to give Z-configured urukthapelstatin A (1, 61%). Analytical data (
1
H, 

13
C, HRMS, 

TLC) of the final product were identical to data reported for the natural product.
[2,10]

 As a control, 

syn elimination conditions (CuCl/EDC)
[25]

 gave an isomer distinct of 1 to which E-configuration 

was assigned by NOESY-NMR. The stereoisomeric purity was high in both cases (d.r. >95:5). 

While performing these studies and in contrast to an earlier report,
[10]

 we found the Z- and E-isomers 

of 1 to be distinct and separable by TLC and HPLC (Figure 3 and supporting info). To our surprise, 

apparent isomer “contaminations” appeared even after stringent separation by prep. HPLC. Closer 

inspection and monitoring revealed that isomers of 1 slowly interconvert between Z and E forms 

when dissolved in aqueous acetonitrile (pH 3) or SDS buffer (pH 7.4) (d.r. 95:5 → 75:25 during 

96 h at 20°C, Figure 3). Hence, although the compound seems to be configurationally stable in the 

solid state and can be crystallized,
[2]

 it is not fully stable in solution. This observation will be 

important for future biological testing and compound design. 

                                                           

1
 The minor isomer R-26 was converted to the final product 1 as well by using the synthesis described and an 

interchange of final elimination conditions, thereby confirming independently the stereochemical assignments. 
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 In summary, we report the first stereoselective synthesis of urukthapelstatin A (1) that proceeds 

reproducibly in satisfactory yield. Critical steps were optimized by judicious synthesis design, most 

notably the macrocyclization via a novel macrothiolactone and the azole formation via Aza-Wittig 

ring contraction. In extension, the chemistry developed here should allow for a permutation of 

individual building blocks, in order to prepare derivatives with improved stability for structural and 

biological investigations. Such studies are currently underway in our laboratory. 
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Figure 1. Polyazole cyclopeptide natural products originating from RiPPs and synthesis planning 

for urukthapelstatin A with crucial azole rings highlighted. Abbreviations: All = Allyl; Alloc = 

Allyloxycarbonyl; Boc = tert-Butyloxycarbonyl; DBU = 1,8-Diazabicyclo[5.4.0]undec-7-en; DAST 

= Diethylaminosulfur trifluoride; DMAP = 4-Dimethylaminopyridine; DOF = Bis(2-

methoxyethyl)aminosulfur trifluoride (“Deoxo-Fluor”); HBTU = O-(Benzotriazol-1’-yl)-1,1,3,3-

tetramethyluronium hexafluorophosphate; HOBt = 1-Hydroxybenzotriazole; PyBOP = 

(Benzotriazol-1-yloxy)tripyrrolidinophosphonium hexafluorophosphate; Ms = Methylsulfonyl; TBS 

= tert-Butyldimethylsilyl; TFE = 2,2,2-Trifluoroethanol; Tr = Triphenylmethyl. 
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Figure 2. Considerations for azole-forming reactions within macrocycles. 
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Scheme 1. Synthesis of azole building blocks. Reagents and conditions: a) SOCl2 (2.2 equiv.), allyl 

alcohol, 0 °C → 60 °C, 20 h; b) Boc2O (1.2 equiv., 2.5 M in 1.4-dioxane), Na2CO3 (1 equiv.), sat. 

NaHCO3/H2O (1:1), 0 °C → 20 °C, 24 h; c) TBSCl (1.3 equiv.), imidazole (3 equiv.), DMF, 0 °C → 

20 °C, 14 h; d) 13 (1.2 equiv.), EDC (1.1 equiv.), HOBt (1.1 equiv.), NEt3 (2 equiv.), CH2Cl2/DMF 

(50:1), 20 °C, 19 h; e) DAST (1.1 equiv.), K2CO3 (2.1 equiv.), CH2Cl2, -78 °C → 20 °C, 3.5 h; f) 

BrCCl3 (1.4 equiv.), DBU (2.4 equiv.), CH2Cl2, -30 °C → 20 °C, 5 h; g) TFA/H2O (17:2), 20 °C, 

14 h; h) TFN3 (3 equiv.), ZnSO4 (0.05 equiv.), CH2Cl2/MeOH/H2O (2:5:1), 0 °C → 20 °C, 2 h; i) 

TFA (5vol%), Et3SiH (5vol%), CH2Cl2, 20 °C, 1 h; j) 19 (1.2 equiv.), EDC x HCl (1.2 equiv.), 

HOBt (1.1 equiv.), EtN(iPr)2 (1.3 equiv.), CH2Cl2/DMF (9:1), -10 °C → 20 °C, 15 min; k) PPh3 

(1.35 equiv.), CH2Cl2/DMF (10:1), -10 °C → 20 °C, 15 h; l) 4 M HCl in 1,4-dioxane, 20 °C , 20 h; 

m) 5 M NaOH/CH2Cl2/MeOH/TFE (0.1:2:1:1), 20 °C , 3 d; n) Ph-(CHOH)-(CHNH2)-COOMe 

(1.2 equiv.), HBTU (1.2 equiv.), EtN(iPr)2 (2 equiv.), CH2Cl2/DMF (1:1), 0 °C → 20 °C, 3.5 h; o) 

DOF (1.2 equiv.), pyridine (2 equiv.), THF, -65 °C → 20 °C, 4 h; p) BrCCl3 (0.9 equiv.), DBU 

(1 equiv.), CH2Cl2, -50 °C → -25 °C, 30 h; q) Me3SnOH (2 equiv.), 1,2-dichloroethane, 80 °C, 22 h. 
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Scheme 2. Peptide chain assembly and azole appendage. Reagents and conditions: a) trityl chloride 

resin, Fmoc-L-Thr(tBu)-OH (1 equiv.), EtN(iPr)2 (3 equiv.), CH2Cl2/DMF (1:1), 20 °C, 5.5 h; resin 

loading 0.7 mmol/g; b) piperidine/DMF (1:4), 20 °C , 22 min; c) Fmoc-L-Ala-OH (4equiv.), HOBt 

(4 equiv.), HBTU (4equiv.), EtN(iPr)2 (8 equiv.), DMF, 20 °C, 7 h; d) Boc-D-allo-Ile-OH (1.5 

equiv.), HOBt (1.5 equiv.), HBTU (1.5 equiv.), EtN(iPr)2 (2.5 equiv.), DMF, 20 °C, 6 h; e) 

HFIP/CH2Cl2 (3:7), 20 °C, 30 min; f) 10 (0.9 equiv.), PyAOP (1.1 equiv.), EtN(iPr)2 (1.8 equiv.), 

CH2Cl2/DMF (1:1), -5 °C → 20 °C, 22 h; g) DAST (1.1 equiv.), K2CO3 (2 equiv.), CH2Cl2, -78 °C 

→ 20 °C, 5.5 h; h) DBU (10 equiv.), CCl4/pyridine/MeCN (2:3:3), -60 °C → 20 °C, 3 d; i) Anisole 

(2.3 equiv.), TFA/CH2Cl2 (1:1), 0 °C → 20 °C, 3 h; j) 8 (1.2 equiv.), HBTU (1.6 equiv.), EtN(iPr)2 

(3 equiv.), CH2Cl2/DMF (1:1), 0 °C → 20 °C, 2 d; k) Pd(dba)2 (0.2 equiv.), morpholine (20 equiv.), 

CH2Cl2, 20 °C, 4 h; l) Et3SiH (5 vol%), TFA (3 vol%), CH2Cl2, 20 °C, 1 h. 
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Scheme 3. Macrocyclization and synthesis of urukthapelstatin A (1) and its E-isomer. Reagents and 

conditions: a) PyBOP (1.2 equiv.), EtN(iPr)2 (2 equiv.), CH2Cl2/DMF (6:1), 20 °C, 24 h; b) PPh3 

(1.5 equiv.), 2,6-lutidine, 20 °C → 60 °C, 7 h; c) BrCCl3 (1.2 equiv.), DBU (1.5 equiv.), CH2Cl2,      

-50 °C → 20 °C, 8 h; d) MsCl (2 equiv.), NEt3 (3 equiv.), CH2Cl2¸ 20 °C, 2.5 h; e) DBU (3 equiv.), 

CH2Cl2, 20 °C, 1.5 h; f) CuCl (12.5 equiv.), EDC x HCl (3 equiv.), CH2Cl2/DMF (96:4), 20 °C, 

30 h. 
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Figure 3. E/Z-Isomerization of the enamide 1 monitored by HPLC. Z-Isomer after isolation (black, 

Z/E = 95:5) and after 96 h (grey, Z/E = 72:28, normalized; see supp. info for details). 
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