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Abstract: Free radical ring expansion of fused-cyclobutanones gives bicyclic ketones 
expanded by three and four carbons, with the carbonyl group ~ to the ring junction. 
Four-carbon ring expansion shows stereoselectivity favoring the trans-fused product 
6-trans. The radical precursor cyclobutanones are readily prepared by intramolecular 
[2 + 2] cycloaddition of ketenes or keteniminium salts to olefins. 

In our continuing exploration of ring expansion reactions, la we earlier reported an 

intermolecular [2 + 2] cycloaddition, followed by a cyclobutanone ring expansion sequence 

(eq 1). 2,3 Cyclobutanones with the exo side chain undergo smooth ring expansion to form 

Cl ~ ' / ~ B r  intermolecular ~ ~ 1  Or 5u3SnH ~ 
• 

[2 + 2] O AIBN 
O O 

(1) 

cis-fused bicyclic ketones. An extension of this strategy (eq 2), takes advantage of the higher yields 

~ C I ~ c ~ C  ~O intramolecular ~ O  Bu3SnH ~ (2) 
[2 + 2] X AIBN 

O 
X=CI "1 LiBr X=Br-,~-a 

of intramolecular [2 + 2] cycloadditions 4 compared with those of the intermolecular series, 

generating the cyclobutanone as a single isomer with the side chain at the fused carbon. 

Sequential ring expansion provides a new fused ring system with the ketone 13 to the ring 

junction, complementary to the earlier synthetic strategy, 2 where the carbonyl group is deployed 

o¢ to the ring junction. The intramolecular route provides a useful addition to the free radical 

synthesis of fused rings. 
Preparation of the radical precursors is straightforward (Scheme 1). In the first step of a 

one-pot dialkylation, the dianion of acetic acid is generated using 3.2 eq of LDA in THF and 
HMPA at 0 °C, then quenched by sequential addition of the appropriate bromides at -78 °C. The 

resulting dialkylation products are quantitatively transformed to the corresponding acid 

chlorides by treatment with oxalyl chloride in benzene at room temperature. Reaction of the acid 

chloride with triethylamine in CH2C12 at 40 °C leads to in situ formation of the ketene, which 
then undergoes intramolecular cycloaddition to the olefin to form the fused-cyclobutanone. 5 An 
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alternative method for preparing cyclobutanones makes use of the hydrolysis of [2 + 2] adducts 

from keteniminium salts. The keteniminium salt is generated by treatment of an amide with 

trifluoromethanesulfonic anhydride and 2,4,6-collidine in 1,2-dichloroethane. 6 Cycloaddition of 

keteniminium salts generally gives better yields than does cycloaddition of ketenes. 7 The 

difference is especially evident in the formation of the bicyclo[4.2.0] ring system (Table 1). 5 

Table 1. Dialkylation and Cycloaddition 

Dialkylation of Intramolecular 
acetic acid [2 + 2] cycloaddition 

o 

CI ~ v O CI 

61% 37% a 
40% b 

o 

° .  

o cI 

70% <5% a 
35% b 

o 

C ~ W ~  OH CI 

65% 30%a 
68% b 

51% 45% b 

Table  2. R i n g  Expans ion  of  C y c l o b u t a n o n e s  8 

Ring expansion and ratio (trans:cis) 
Cyclobutanone Bu3SnH/AIB N Bu3SnD/AIB N 

O x O O 
X=Br 88% (60:40) 
X=I 91% (64:36) 86% (63:37) 

O X O O 
X=Br 87% (56:44) 
X=I 86% (51:49) 73% (54:46) 

o O 
X=Br 43% (86:14) 
X=l 67% (88:12) 34% (80:20) 

x o O 

X=Br 57% (80:20) 46% (78:22) 
X=I 57% (77:23) 

a ketene cycloaddition, b keteniminium salt cycloaddition. 
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The intramolecular [2 + 2] cycloadducts are readily transformed to bromides or iodides by 

treatment of the chlorides with LiBr or NaI in refluxing acetone. Free radical ring expansion of 

bromoalkyl and iodoalkyl cyclobutanones is carried out in refluxing benzene solution by slow 

addition of 1.5 eq of tributyltin hydride with a catalytic amount of AIBN. Small amounts of direct 

reduction product are detected in the four-carbon ring expansion reaction. Examples in Table 2 

show the preparation of 5,7-, 6,7-, 5,8-, and 6,8-fused bicyclic ketones 9 by three- or four-carbon ring 

expansion. Stereochemical control over the ring-junction is lost because one of the ring-junction 

carbons becomes a radical center during the ring expansion. Three-carbon ring expansion (Table 

2, entries 1 and 2) gives a mixture of the two diastereomers in the ratio of 60:40 with little 

stereoselectivity. However, the four-carbon ring expansion (Table 2, entries 3 and 4) does exhibit 

stereoselectivity. The ratio of the diastereomers 6-trans and 6-cis (Scheme 2) is 85:15 favoring the 

trans isomer. 8 

In order to better understand the reaction sequence, tributyltin deuteride experiments were 

carried out. The deuterium labeling experiments show that in the three-carbon ring expansion 

(Scheme 2), the ring-expanded radical 2 from /J-scission of alkoxy radical 1 is reduced by 

Scheme 2 

Three-Carbon Ring Expansion ] 

° . 

O Br 00 
1 2 

Stereoselective Four-Carbon Ring Expansion J 

oo 
H 

4 

D 
Bu3SnD 

O 

3 

Ha, major  i Bu3SnD 

J • ~ D 
O O 

[ 1,5-H transfer ] 5-trans 6_trans.dl 

Hb, minor • D 
O O 

5-cis 6-cis-d I 

tributyltin deuteride to give bicyclic ketone 3 with the deuterium atom at the bridgehead carbon. 

Reduction of radical 2 by tributyltin deuteride has low selectivity forming a mixture of cis and 

trans isomers. However, the four-carbon ring-expanded radical 4 undergoes intramolecular 1,5- 

hydrogen transfer forming the stabilized ¢x-acyl radicals 5-trans and 5-cis, which are then reduced 

by tributyltin deuteride to give bicyclic ketones 6-trans-dl and 6-cis-dl with the deuterium atom 

adjacent to the carbonyl. A model of radical 4 shows that 1,5-hydrogen transfer of Ha to form the 

trans isomer is more favorable than Hb transfer to form the cis isomer. 8 That the deuterium 

atom is adjacent to the carbonyl was established by 1H NMR and 13C NMR. The deuterium at this 

position is readily exchanged upon treatment with H20 under basic conditions (DBU/ether). 
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