A Simple and Direct Synthesis of α -Hydroxy Unsaturated Aldehydes from α -Cyano- α -Hydroxymethyl Epoxides

Layachi Khamliche and Albert Robert*

Laboratoire de Chimie Structurale, U.A. C.N.R.S. 704, Université de Rennes I, Campus de Beaulieu, Rennes, France

The ring opening of α -cyano- α -hydroxymethyl epoxides by a solution of the complex Li₂NiBr₄ in tetrahydrofuran leads to α -bromo- α' -hydroxy ketones which in treatment with pyridine give good yields of α -hydroxy unsaturated aldehydes.

 α -Dicarbonyl compounds are important synthetic intermediates; there is also substantial interest in their antiviral properties. I—3 α -Hydroxy unsaturated aldehydes are tautomeric forms of α -dicarbonyl compounds. However, despite two recent interesting reports describing multistage syntheses of α -hydroxy unsaturated aldehydes from 2,2-dimethyl-1,3-dioxole³ or from dioxolanones,⁴ the preparation of derivatives of this series remains difficult, and such compounds are poorly represented in the literature.

 α -Cyano- α -carboxyethyl epoxides are readily accessible starting materials⁵ which are reduced by sodium borohydride within 5 min into the corresponding α -cyano- α -hydroxymethyl epoxides (1).⁶ We describe here a one-pot synthesis of the α -hydroxy unsaturated aldehydes (4) starting from the epoxides (1).

As dilithium tetrabromonickel(II) in tetrahydrofuran (THF) is known to be a mild reagent for the ring opening of epoxides, 7.8 we treated the epoxides (1) with this complex and obtained the α -bromo- α' -hydroxy ketone derivatives (3) contaminated by about 20% of the cyanohydrin (2). The mixture of (2) and (3) was characterized by 1 H n.m.r. spectroscopy and directly treated with pyridine to give moderate yields of the α -hydroxy unsaturated aldehydes (4) (Scheme 1; Table 1).

R C
$$CN$$
 CN CN CN CH_2OH CH_2

Scheme 1. Reagents and conditions: i, epoxide (1) (5.7 mmol), Li_2NiBr_4 (2.85 mmol), THF (27 ml), room temp., 6 h under N_2 ; ii, $H_2\text{O}$; iii, pyridine (5.7 mmol), reflux, 2 h.

Table 1. Preparation of the unsaturated aldehydes (4).†

R	Ph^{a}	p-ClC ₆ H ₄	p-MeC ₆ H ₄	p-O ₂ NC ₆ H ₄	Etd
M.p., t/°C	119	162	176	173175	
(3)/(2)b	85/15	90/10	80/20	65/35	
% Yield ^c	70	68	50	57	44

^a Lit.^{3,4,9,10} m.p. 119 °C. The ¹H n.m.r. and i.r. spectra of compound (4; R = Ph) are representative: $\delta_{\rm H}$ (CDCl₃) 9.22 (1H, d, $^4J_{\rm OH}$ 1.4 Hz, CHO), 7.87—7.27 (5H, m, Ph), 6.71 (1H, t, $^4J_{\rm OH}$ = $^4J_{\rm CH}$ = 1.4 Hz, OH), and 6.14 (1H, d, $^4J_{\rm OH}$ 1.4 Hz, PhCH); the coupling constants could only be measured for a very pure sublimed sample and were assigned using spin decoupling; i.r. (CCl₄, cm⁻¹) 3446, 1672, 1648 cm⁻¹. ^b Ratio determinated by n.m.r. spectroscopy before elimination of HBr from (3). ^c Yield of the pure isolated aldehyde (4). ^d Compound (4; R = Et) was not stable and was characterized as its acetate (Z)-EtCH=C(OAc)CHO.

Their n.m.r. and i.r. spectra show that these compounds exist in the enol form. The reaction leads to only one isomer, probably the *Z*-isomer (4). This *cis*-relationship between *CH* and *CHO* is consistent with the ¹H n.m.r. spectra (no coupling

observed between these two protons) and also with the 13 C n.m.r. spectra: $\delta_{C=0}$ 190.8, ^{1}J 185, ^{3}J 6 Hz.‡

Received, 13th July 1987; Com. 992

References

- 1 B. D. Tiffany, J. B. Wright, R. B. Moffett, R. V. Heinzelman, R. E. Strube, B. D. Aspergren, E. H. Lincoln, and J. L. White, J. Am. Chem. Soc., 1957, 79, 1682.
- 2 R. B. Moffett, B. D. Tiffany, B. D. Aspergren, and R. V. Heinzelman, J. Am. Chem. Soc., 1957, 79, 1687.
- 3 D. L. Flynn, L. A. Mitscher, T. Veysoglu, and Z. Wielogoski, *Heterocycles*, 1982, 18, 83.
- 4 R. Ramage, G. J. Griffiths, F. E. Shutt, and J. N. A. Sweeney, J. Chem. Soc., Perkin Trans. 1, 1984, 1531.
- 5 A. Robert and A. Foucaud, Bull. Soc. Chim. Fr., 1969, 2531.
- 6 J. Mauger and A. Robert, J. Chem. Soc., Chem. Commun., 1986, 395.
- 7 R. D. Dawe, T. F. Molinski, and J. V. Turner, *Tetrahedron Lett.*, 1984, 2061.
- 8 L. Khamliche and A. Robert, Tetrahedron Lett., 1986, 5491.
- 9 F. Weygand and H. J. Bestmann, Chem. Ber., 1957, 90, 1230
- 10 F. Weygand, H. Simon, and H. G. Floss, Chem. Ber., 1961, 94, 3135.

[†] The α -hydroxyaldehydes (4) gave satisfactory elemental analyses.

 $[\]ddagger$ 3J for the *E*-isomer would be expected to be larger (ca. 12—14 Hz): V. Vogeli and W. Von Philipsborn, *Org. Magn. Reson.*, 1975, 7, 617.