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AbstractÐNew DOTA-based bifunctional prochelators, e.g., 1-(1-carboxy-3-carbotertbutoxypropyl)-4,7,10-(carbotertbutoxymethyl)-
1,4,7,10-tetraazacyclodode-cane (DOTAGA(tBu)4), (6d) for a broad application in the modi®cation of biomolecules with metal ions
were prepared. The ®ve-step synthesis of 6d has an overall yield of about 20%. The coupling of 6d to a bioactive peptide on solid-
phase was exempli®ed with use of a CCK-B (cholecystokinin) analogue. # 2000 Elsevier Science Ltd. All rights reserved.

DOTA (1,4,7,10-tetrakis(carboxymethyl)-1,4,7,10 tetra-
azacyclododecane) and its derivatives constitute an
important class of chelators for biomedical applications as
they accomodate very stably a variety of di- and trivalent
metal ions. Gd(DOTA)1 is an important MRI (Mag-
netic Resonance Imaging) contrast agent and as bifunc-
tional versions DOTA is used in radioimmunotherapy.2

An emerging area is the use of chelator conjugated
bioactive peptides for labeling with radiometals in dif-
ferent ®elds of diagnostic and therapeutic nuclear oncol-
ogy.3 For their convenient and high yield synthesis
prochelators (compounds which become chelators upon
deprotection) are necessary which are compatible with the
solid and solution phase peptide synthethic procedures.

We describe herein the synthetic steps towards bifunc-
tional orthogonally protected prochelators for coupling
to the N-terminus of bioactive peptides or other useful
amino functions in biomedical applications. The DOTA-
derived chelator should provide four intact carboxylic
acid functions besides the macrocyclic tetraazacyclo-
dodecane ring for a stable and e�cient binding of metal
ions and a function for biomolecule coupling.

The strategy included the synthesis of an orthogonally
protected bromo-alkyl-dicarboxylic acid diester for
the monoalkylation of cyclen (1,4,7,10-tetraazacyclo-
dodecane). High yield monoalkylation of cyclen was
demonstrated before.3ÿ5 The synthesis of 6 (n=1,2) is a

®ve-step procedure starting from the commercially
available aspartic (1b) or glutamic acid-4-(5) benzyl
ester (1d) (Scheme 1) using a method analogeous to
Holmberg6 followed by tert-butylation using tert-butyl-
trichloroacetimidate (TBTA) as reagent.7,8

The monoalkylation of cyclen, the crucial step, showed
strongly di�ering yields depending on the bromo-alkyl-
dicarboxylic acid diester (3a±d) used (Table 1). In earlier
studies our strategy was to use metals as protecting
groups.9 In that work we attempted to introduce succi-
nic acid-di-tert-butylester (3c) and found yields below
5% for the monoalkylation with the elimination pro-
duct fumaric acid-di-tert-butylester as the main product.
Interestingly the corresponding diphenylmethyl diester
(3a) gave high monoalkylation yields and negligible
elimination. With the homologous 2-bromoglutaric-1-
tertbutyl-5-benzylester (3d), no elimination product was
found, obviously because no conjugated p-system could
be formed. The remaining nitrogens were alkylated by
use of three equivalents of bromoacetic acid-tert-butyl
ester in CHCl3/K2CO3. Deprotection of the benzyl ester
group was performed with H2/Pd/C (Scheme 2).

The overall yield of 1-(1-carboxy-3-carbotertbutoxy-
propyl)-4,7,10-(carbotertbutoxymethyl)-1,4,7,10-tetraaza-
cyclododecane (DOTAGA(tBu)4) (6d) over ®ve-steps
was about 20%10 and of 1-(1-carboxy-2-carbotertbut-
oxyethyl)-4,7,10-(carbotertbutoxymethyl)-1,4,7,10-tetra-
aza-cyclododecane (DOTASA(tBu)4) (6b) only about
2%. The convenient use of 6d is exempli®ed by its cou-
pling to the CCK-B analogue d-Asp-Tyr-Nle-Gly-Trp-
Nle-Asp-Phe-NH2 (7) attached to Rink-amide resin using
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HATU (O-(7-azabenzotriazol-1-yl)-N,N,N0,N0-tetrame-
thyluroniumhexa¯uoro-phosphate) as coupling reagent.
After deprotection, (18h, rt, TFA:phenol:thioanisol:
water 85:5:5:5) DOTAGA-7 was obtained in high
yield11 and showed superior properties in comparison to
other radiolabelled CCK-B analogues.

We conclude that the new prochelator 6d has wide-
spread utility in the ®eld of metallo-radiopeptides, other
radiolabeled biomolecules and for the synthesis of
Gd3+ based MRI contrast agents.9 DOTAGA will
allow to label with di�erent radiometals for both diag-
nostic (111In, 67/68Ga) and internal radiotherapeutic
applications (90Y, 177Lu).
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