ISSN 1070-4280, Russian Journal of Organic Chemistry, 2016, Vol. 52, No. 3, pp. 343–348. © Pleiades Publishing, Ltd., 2016. Original Russian Text © A.O. Panchenko, S.A. Shipilovskikh, A.E. Rubtsov, 2016, published in Zhurnal Organicheskoi Khimii, 2016, Vol. 52, No. 3, pp. 364–369.

Chemistry of Iminofurans: X.* Synthesis and Hydrolysis of 5-Aryl(hetaryl)-2-[(4,5,6,7-tetrahydro-1-benzothiophen-2-yl)imino]furan-3(2*H*)-ones

A. O. Panchenko, S. A. Shipilovskikh, and A. E. Rubtsov

Perm State National Research University, ul. Bukireva 15, Perm, 614990 Russia e-mail: rubtsov@psu.ru

Received November 24, 2015

Abstract—5-Aryl(hetaryl)furan-2,3-diones reacted with *N*-(triphenyl- λ^5 -phosphanylidene)-4,5,6,7-tetrahydro-1-benzothiophen-2-amines to give 5-aryl(hetaryl)-2-[(4,5,6,7-tetrahydro-1-benzothiophen-2-yl)imino]furan-3(2*H*)-ones whose acid hydrolysis afforded 4-aryl(hetaryl)-2-hydroxy-4-oxo-*N*-(4,5,6,7-tetrahydro-1-benzothiophen-2-yl)but-2-enamides.

DOI: 10.1134/S107042801603009X

Two methods are presently known to obtain 2-iminofuran-3(2H)-ones in high yields. The first method is based on [4+1]-cycloaddition of aroylketenes (generated by thermal decomposition of furan-2,3-diones [2, 3] or 2-diazo-1,3-diketones [3]) to isonitriles. The second method implies the reaction of substituted furan-2,3-diones with N-(triphenyl- λ^5 -phosphanylidene)anilines, which has been represented by only two examples [4, 5]. 2-Iminofuran-3(2H)-one derivatives constitute a poorly explored class of compounds; however, even scarce published data on their reactivity demonstrate their high synthetic potential as starting materials for the preparation of biologically active compounds [6]. In order to extend the synthetic potential of 2-iminofuran-3(2H)-ones and obtain new biologically active compounds in the present work we made an attempt to introduce a pharmacophoric Gewald thiophene fragment [7–9] to the imino nitrogen atom.

It is known that furan-2,3-diones react with 2-amino-4,5,6,7-tetrahydro-1-benzothiophene-3-carbonitrile to give not 2(3)-iminofuran-3(2)-ones but *N*-(3-cyano-4,5,6,7-tetrahydro-1-benzothiophen-2-yl)-4-aryl-2,4-dioxobutanamides as a result of furan ring opening [10]. The most general and widely studied procedure allowing introduction of various substituents to the imino nitrogen atom and avoidance of undesirable reaction pathway is Staudinger imination (aza-Wittig reaction of carbonyl compounds with triphenylphosphine imines [11–13]).

We examined the potential of this procedure with the goal of extending the series of substituted 2-iminofuran-3(2*H*)-ones. For this purpose, we have synthesized *N*-(triphenyl- λ^5 -phosphanylidene)thiophen-2amines **1a** and **1b** from the corresponding thiophen-2-amines according to the procedures reported in [14–17] for the preparation of phosphine imines from primary amines and dibromo(triphenyl)- λ^5 -phosphane.

1, R = CN (a), COOEt (b); 2, Ar = Ph (a), $4-ClC_6H_4$ (b), $4-MeC_6H_4$ (c), thiophen-2-yl (d); 3, R = CN, Ar = Ph (a), $4-ClC_6H_4$ (b), $4-MeC_6H_4$ (c), thiophen-2-yl (d); R = COOEt, Ar = Ph (e), $4-ClC_6H_4$ (f), $4-MeC_6H_4$ (g), thiophen-2-yl (h).

^{*} For communication IX, see [1].

 $R = CN, Ar = Ph (a), 4-ClC_6H_4 (b), 4-MeC_6H_4 (c), thiophen-2-yl (d); R = COOEt, Ar = Ph (e), 4-ClC_6H_4 (f), 4-MeC_6H_4 (g), thiophen-2-yl (h).$

Compounds **1a** and **1b** reacted with 5-substituted furan-2,3-diones **2a–2d** to afford a series of 5-aryl-(hetaryl)-2-[(4,5,6,7-tetrahydro-1-benzothiophen-2-yl)-imino]furan-3(2*H*)-ones **3a–3h** (Scheme 1).

2-Iminofuranones **3a–3h** were isolated as orange crystalline substances which displayed in the IR spectra absorption bands due to substituent in position 3 of the tetrahydrobenzothiophene fragment (CN group in **3a–3d**, 2215–2220 cm⁻¹, or ester carbonyl group in **3e–3h**, 1686–1693 cm⁻¹) and C³=O carbonyl group (1693–1717 cm⁻¹). Their ¹H NMR spectra showed signals from aromatic protons at δ 7.17–8.01 ppm, a singlet from the vinylic proton in the furan ring at δ 6.20–6.35 ppm, signals from protons in the cyclohexene ring at δ 2.71–2.83 and 1.84–1.90 ppm, and signals from the ester ethyl group (in **3e–3h**) at δ 4.38– 4.40 and 1.39–1.41 ppm.

The reaction was regioselective, and compounds 3a-3h were formed in almost quantitative yield. Furthermore, it may be regarded as a rare case of reactions of triphenylphosphine imines at the lactone carbonyl, presumably due to increased electron density on C² of the furan ring.

Furan-2,3-diones [18–20], as well as their 3-imino analogs [21–27], readily undergo hydrolysis even by the action of atmospheric moisture. However, 2-iminofuranones 3a-3h remained unchanged on prolonged storage in air and on heating in aqueous solvents. Compounds 3a-3h were hydrolyzed by heating for 15 min in boiling dioxane-water (6:1) containing a catalytic amount of HCl; as a result, amides 4a-4hwere obtained (Scheme 2).

Amides **4a–4h** are yellow or orange crystalline substances. They showed in the IR spectra absorption

bands due to stretching vibrations of the NH group (both H-bonded and not, 3119-3196 and 3350-3365 cm⁻¹, respectively), cyano group (2204-2213 cm⁻¹) or ester carbonyl (1682–1693 cm⁻¹), and amide carbonyl (1665–1691 cm⁻¹). In the ¹H NMR spectra of these compounds we observed a singlet from the NH proton (δ 12.50–12.57 ppm, H-bonded, **4e–4h**; 9.75–9.88 ppm, free, **4a–4d**), signals from aromatic protons (δ 7.19–8.03 ppm), a singlet from the vinylic proton (δ 7.08–7.28 ppm), signals from protons in the cyclohexene fragment (δ 2.63–2.81 and 1.80– 1.85 ppm), and signals from the ester ethyl group in **4e–4h** (δ 4.38–4.39, 1.40–1.85 ppm).

Presumably, the hydrolysis of 3a-3h begins with protonation of the imino nitrogen atom to form intermediate I_1 which takes up water molecule at C^2 of the furan ring to give intermedate I_2 . Proton migration in I_2 to the endocyclic oxygen atom yields intermediate I_3 which undergoes opening of the furan ring at the O^1-C^2 bond with subsequent elimination of proton, and [1,5]-prototropic shift in intermediate I_4 thus formed leads to amides 4a-4h (Scheme 2)

The spectral parameters of 4a-4c coincided with those of the products obtained by reactions of the corresponding 5-arylfuran-2,3-diones with 2-amino-4,5,6,7-tetrahydro-1-benzothiophene-3-carbonitrile [10], but the melting points were different. The structure of the hydrolysis products was additionally confirmed by independent synthesis of amide 4a from benzoylpyruvic acid (5) and nitrile 6 by heating for a short time in ethanol (Scheme 3). The physical constants and spectral data of samples of 4a prepared by the two methods were identical.

EXPERIMENTAL

The IR spectra were recorded on an FSM-1201 spectrometer from samples dispersed in mineral oil. The ¹H NMR spectra were measured on Varian Mercury Plus-300 (300 MHz) and Bruker Avance III spectrometers (400 MHz) using hexamethyldisiloxane as internal standard. The mass spectra were obtained on a Kratos MS-30 instrument (electron impact, 70 eV; ion source temperature 200°C). The elemental compositions were determined on a Leco CHNS-932 analyzer. The progress of reactions and the purity of the isolated compounds were monitored by TLC on Sorbfil PTSKh P-A-UF-254 plates (diethyl ether–benzene–acetone, 10:9:1; detection under UV light or by treatment with iodine vapor). The melting points were measured on a SMP40 melting point apparatus.

Commercially available reagents and solvents were used; acetonitrile of chemically pure grade was subjected to additional purification [28]; rectified ethanol was of deluxe grade. Compounds **2a–2d** were synthesized according to [29] from the corresponding aroyl-(hetaroyl)pyruvic acids [30, 31]; ethyl 2-amino-4,5,6,7-tetrahydro-1-benzothiophene-3-carboxylate and 2-amino-4,5,6,7-tetrahydro-1-benzothiophene-3carbonitrile (**6**) were prepared as reported in [32].

3-Substituted N-(triphenvl- λ^5 -phosphanvlidene)-4,5,6,7-tetrahydro-1-benzothiophen-2-amines 1a and 1b (general procedure). A solution of 0.05 mol of triphenylphosphine in 100 mL of anhydrous benzene was cooled to 5°C, a solution of 0.05 mol of bromine in 30 mL of anhydrous benzene was added dropwise under stirring, and the mixture was stirred for 3 h at room temperature. A solution of 0.1 mol of triethylamine in 30 mL of anhydrous benzene was added to the resulting suspension of dibromo(triphenvl)- λ^{5} phosphane, a solution of 0.05 mol of nitrile 6 or ethyl 2-amino-4,5,6,7-tetrahydro-1-benzothiophene-3-carboxylate in 50 mL of anhydrous benzene was added, and the mixture was stirred for 20 min at 50°C. After cooling, the precipitate of triethylamine hydrobromide was filtered off, the filtrate was evaporated under reduced pressure, and the residue was purified by recrystallization.

2-[(Triphenyl- λ^5 -phosphanylidene)amino]-4,5,6,7-tetrahydro-1-benzothiophene-3-carbonitrile (1a). Yield 16.4 g (75%), yellow crystals, mp 196.4– 196.6°C (from EtOH); published data [14]: mp 198°C. IR spectrum: v 2209 cm⁻¹ (CN). ¹H NMR spectrum (CDCl₃), δ , ppm: 1.71 m (4H, CH₂), 2.32 m (2H, CH₂), 2.49 m (2H, CH₂), 7.44–7.80 m (15H, H_{arom}).

Ethyl 2-[(triphenyl- λ^5 -phosphanylidene)amino]-4,5,6,7-tetrahydro-1-benzothiophene-3-carboxylate (1b). Yield 18.7 g (77%), yellow crystals, mp 181– 182°C (from EtOH); published data [14]: mp 181°C. IR spectrum: v 1699 cm⁻¹ (C=O). ¹H NMR spectrum (CDCl₃), δ , ppm: 1.33 t (3H, Me, J = 7.1 Hz), 1.68 m (4H, CH₂), 2.34 m (2H, CH₂), 2.71 m (2H, CH₂), 4.28 q (2H, OCH₂, J = 7.1 Hz), 7.42–7.85 m (15H, H_{arom}).

5-Aryl(hetaryl)-2-[(3-R-4,5,6,7-tetrahydro-1-benzothiophen-2-yl)imino]furan-3(2H)-ones 3a-3h (general procedure). A mixture of 0.01 mol of phosphine imine 1a or 1b and 0.01 mol of furan-2,3dione 2a-2d in 20 mL of anhydrous toluene was stirred for 3-5 h at 50-60°C. The mixture was cooled, and the precipitate was filtered off and recrystallized from acetonitrile.

2-{[3-Oxo-5-phenylfuran-2(3*H***)-ylidene]amino}-4,5,6,7-tetrahydro-1-benzothiophene-3-carbonitrile (3a).** Yield 2.61 g (78%), orange crystals, mp 254°C. IR spectrum, v, cm⁻¹: 2196 (CN), 1691 (C³=O). ¹H NMR spectrum (CDCl₃), δ , ppm: 1.90 m (4H, CH₂), 2.74 m (2H, CH₂), 2.83 m (2H, CH₂), 6.40 s (1H, CH), 7.55–7.71 m (3H, H_{arom}), 7.94 m (2H, H_{arom}). Mass spectrum, *m/z* (*I*_{rel}, %): 334 (91) [*M*]⁺, 160 (100), 176 (98), 77 (71) [Ph]⁺, 102 (53) [PhC=CH]⁺, 69 (48), 188 (46). Found, %: C 68.26; H 4.21; N 8.36; S 9.60. C₁₉H₁₄N₂O₂S. Calculated, %: C 68.24; H 4.22; N 8.38; S 9.59. *M* 334.39

2-{[5-(4-Chlorophenyl)-3-oxofuran-2(3*H***)ylidene]amino}-4,5,6,7-tetrahydro-1-benzothiophene-3-carbonitrile (3b). Yield 3.24 g (88%), orange crystals, mp 235–236°C. IR spectrum, v, cm⁻¹: 2215 (CN), 1697 (C³=O). ¹H NMR spectrum (CDCl₃), \delta, ppm: 1.90 m (4H, CH₂), 2.71 m (2H, CH₂), 2.83 m (2H, CH₂), 6.32 s (1H, CH), 7.38 and 7.81 (2H each, H_{arom},** *AA'BB'***,** *J* **= 7.6 Hz). Mass spectrum,** *m/z* **(***I***_{rel}, %): 368 (100) [***M***]⁺, 188 (100), 204 (77), 139 (75), 45 (56), 111 (33) [ClC₆H₄]⁺. Found, %: C 61.90; H 3.56; N 7.63; S 8.70. C₁₉H₁₃ClN₂O₂S. Calculated, %: C 61.87; H 3.55; N 7.60; S 8.69.** *M* **368.83.**

2-{[5-(4-Methylphenyl)-3-oxofuran-2(3*H*)ylidene]amino}-4,5,6,7-tetrahydro-1-benzothiophene-3-carbonitrile (3c). Yield 3.45 g (99%), orange crystals, mp 184–185°C. IR spectrum, v, cm⁻¹: 2215 (CN), 1697 (C³=O). ¹H NMR spectrum (CDCl₃), δ , ppm: 1.89 m (4H, CH₂), 2.39 s (3H, Me), 2.71 m (2H, CH₂), 2.83 m (2H, CH₂), 6.33 s (1H, CH), 7.33 and 7.81 (2H each, H_{arom}, *AA'BB'*, *J* = 8.1 Hz). Mass spectrum, *m/z* (*I*_{rel}, %): 348 (100) [*M*]⁺, 176 (100) [C₉H₈N₂S]⁺, 119 (83) [MeC₆H₄CO]⁺, 161 (47), 204 (69.5) [C₁₀H₈N₂OS]⁺, 91 (35) [MeC₆H₄]⁺, 322 (7) [*M* – CN]⁺. Found, %: C 68.97; H 4.60; N 8.07; S 9.21. C₂₀H₁₆N₂O₂S. Calculated, %: C 68.94; H 4.63; N 8.04; S 9.20. *M* 348.42.

2-{[3-Oxo-5-(thiophen-2-yl)furan-2(3H)-ylidene]amino}-4,5,6,7-tetrahydro-1-benzothiophene-3-carbonitrile (3d). Yield 3.34 g (98%), orange crystals, mp 201–202°C. IR spectrum, v, cm⁻¹: 2220 (CN), 1693 (C³=O). ¹H NMR spectrum (CDCl₃), δ , ppm: 1.90 m (4H, CH₂), 2.72 m (2H, CH₂), 2.81 m (2H, CH₂), 6.20 s (1H, CH), 7.30 t (1H, H_{arom}, *J* = 4.2 Hz), 7.83 d (1H, H_{arom}, *J* = 4.8 Hz), 7.88 d (1H, H_{arom}, *J* = 3.0 Hz). Mass spectrum, *m/z* (*I*_{rel}, %): 340 (72) [*M*]⁺, 277 (100), 111 (100), 204 (67), 312 (53) [*M* – CO]⁺. Found, %: C 60.00; H 3.53; N 8.20; S 18.85. C₁₇H₁₂N₂O₂S₂. Calculated, %: C 59.98; H 3.55; N 8.23; S 18.84. *M* 340.42.

Ethyl 2-{[3-oxo-5-phenylfuran-2(3*H*)-ylidene]amino}-4,5,6,7-tetrahydro-1-benzothiophene-3-carboxylate (3e). Yield 2.48 g (65%), orange crystals, mp 146–148°C. IR spectrum, v, cm⁻¹: 1698 (C³=O), 1686 (C=O, ester). ¹H NMR spectrum (CDCl₃), δ , ppm: 1.41 t (3H, Me, J = 7.2 Hz), 1.82 m (4H, CH₂), 2.73 m (2H, CH₂), 2.81 m (2H, CH₂), 4.38 q (2H, OCH₂, J = 7.2 Hz), 6.35 s (1H, CH), 7.47–7.63 m (3H, H_{arom}), 7.93 d (2H, H_{arom}, J = 8.4 Hz). Mass spectrum, m/z (I_{rel} , %): 381 (80) [M]⁺, 308 (65) [M – COOEt]⁺, 179 (57). Found, %: C 66.10; H 5.00; N 3.65; S 8.42. C₂₁H₁₉NO₄S. Calculated, %: C 66.12; H 5.02; N 3.67; S 8.41. M 381.45.

Ethyl 2-{[5-(4-chlorophenyl)-3-oxofuran-2(3*H*)ylidene]amino}-4,5,6,7-tetrahydro-1-benzothiophene-3-carboxylate (3f). Yield 3.20 g (77%), orange crystals, mp 169–170°C. IR spectrum, v, cm⁻¹: 1715 (C³=O), 1693 (C=O, ester). ¹H NMR spectrum (CDCl₃), δ , ppm: 1.39 t (3H, Me, *J* = 7.2 Hz), 1.85 m (4H, CH₂), 2.73 m (2H, CH₂), 2.83 m (2H, CH₂), 4.40 q (2H, CH₂, *J* = 7.2 Hz), 6.34 s (1H, CH), 7.55 and 7.87 (2H each, H_{arom}, *AA'BB'*, *J* = 8.4 Hz). Mass spectrum, *m/z* (*I*_{rel}, %): 415 (100) [*M*]⁺, 369 (100), 206 (90), 278 (88), 342 (76) [*M* – COOEt]⁺, 136 (73) [CIC₆H₄C=CH]⁺, 225 (73), 51 (62), 179 (55). Found, %: C 60.66; H 4.36; N 3.40; S 7.70. C₂₁H₁₈CINO₄S. Calculated, %: C 60.65; H 4.36; N 3.37; S 7.71. *M* 415.89.

Ethyl 2-{[-5-(4-methylphenyl)-3-oxofuran-2(3*H*)ylidene]amino}-4,5,6,7-tetrahydro-1-benzothiophene-3-carboxylate (3g). Yield 3.08 g (78%), orange crystals, mp 197–198°C. IR spectrum, v, cm⁻¹: 1714 (C³=O), 1682 (C=O, ester). ¹H NMR spectrum (DMSO-*d*₆), δ , ppm: 1.32 t (3H, Me, *J* = 7.1 Hz), 1.81 m (4H, CH₂), 2.47 s (3H, Me), 2.63 m (2H, CH₂), 2.85 m (2H, CH₂), 4.28 q (2H, OCH₂, *J* = 7.1 Hz), 6.85 s (1H, CH), 7.48 and 7.70 (2H each, H_{arom}, *AA'BB'*, *J* = 8.1 Hz). Mass spectrum, *m/z* (*I*_{rel}, %): 395 (20) [*M*]⁺, 322 (100) [*M* – COOEt]⁺, 116 (80) [MeC₆H₄C=CH]⁺, 206 (75), 121 (73), 43 (53), 349 (43), 91 (42) [MeC₆H₄]⁺. Found, %: C 66.83; H 5.33; N 3.55; S 8.12. C₂₂H₂₁NO₄S. Calculated, %: C 66.82; H 5.35; N 3.54; S 8.11. *M* 395.47.

Ethyl 2-{[3-oxo-5-(thiophen-2-yl)furan-2(3*H*)ylidene]amino}-4,5,6,7-tetrahydro-1-benzothiophene-3-carboxylate (3h). Yield 3.02 g (78%), orange crystals, mp 201–202°C. IR spectrum, v, cm⁻¹: 1717 (C³=O), 1690 (C=O, ester). ¹H NMR spectrum (CDCl₃), δ , ppm: 1.39 t (3H, Me, *J* = 6.9 Hz), 1.84 m (4H, CH₂), 2.75 m (2H, CH₂), 2.81 m (2H, CH₂), 4.38 q (2H, OCH₂, *J* = 6.9 Hz), 6.17 s (1H, CH), 7.28 t (1H, H_{arom}, *J* = 3.9 Hz), 7.86 m (2H, H_{arom}). Found, %: C 58.93; H 4.42; N 3.61; S 16.52. C₁₉H₁₇NO₄S₂. Calculated, %: C 58.90; H 4.42; N 3.61; S 16.55.

N-(4,5,6,7-Tetrahydro-1-benzothiophen-2-yl)-4-aryl(hetaryl)-2-hydroxy-4-oxobut-2-enamides 4a– 4h (general procedure). a. A solution of 0.01 mol of furan-3-one 3a–3h in 20 mL of water–dioxane (1:6) containing a catalytic amount of aqueous HCl was heated for 15–20 min under reflux. After cooling to room temperature, the precipitate was filtered off and recrystallized from chloroform–ethanol (1:1).

b. A solution of 0.48 g (2.5 mmol) of benzoylpyruvic acid (5) in 3 mL of ethanol was heated to the boiling point, and a solution of 0.445 g (2.5 mmol) of aminothiophene 6 in 3 mL of ethanol, heated to the boiling point, was added. After cooling to room temperature, the precipitate was filtered off and recrystallized from ethanol. Yield of **4a** 0.546 g (62%).

N-(3-Cyano-4,5,6,7-tetrahydro-1-benzothiophen-2-yl)-2-hydroxy-4-oxo-4-phenylbut-2-enamide (4a). Yield 2.85 g (81%, *a*), orange crystals, mp 214–215°C; published data [10]: mp 204–205°C. IR spectrum, v, cm⁻¹: 3405 (NH), 2218 (CN), 1701 (C=O, amide). ¹H NMR spectrum (CDCl₃), δ, ppm: 1.85 m (4H, CH₂), 2.58–2.73 m (4H, CH₂), 7.25 s (1H, CH), 7.51 m (2H, H_{arom}), 7.61 m (1H, H_{arom}), 8.01 m (2H, H_{arom}), 9.88 s (1H, NH), 15.02 br.s (1H, OH). Mass spectrum, m/z (I_{rel} , %): 352 (30) [M]⁺, 69 (100), 178 (75), 147 (53) [BzCH=COH]⁺, 77 (51) [Ph]⁺, 43 (32) [NHCO]⁺, 105 (27) [Bz]⁺. Found, %: C 64.77; H 4.59; N 7.93; S 9.09. C₁₉H₁₆N₂O₃S. Calculated, %: C 64.76; H 4.58; N 7.95; S 9.10. *M* 352.41.

4-(4-Chlorophenyl)-*N*-(**3-cyano-4,5,6,7-tetra-hydro-1-benzothiophen-2-yl)-2-hydroxy-4-oxobut-2-enamide (4b).** Yield 2.71 g (70%), yellow crystals, mp 225–226°C; published data [10]: mp 209–211°C. IR spectrum, v, cm⁻¹: 3356 (NH), 2211 (CN), 1688 (C=O, amide). ¹H NMR spectrum (CDCl₃), δ , ppm: 1.85 m (4H, CH₂), 2.63 m (2H, CH₂), 2.68 m (2H, CH₂), 7.20 s (1H, CH), 7.48 and 7.95 (2H each, H_{arom}, *AA'BB'*, *J* = 8.7 Hz), 9.85 s (1H, NH), 15.48 br.s (1H, OH). Mass spectrum, *m/z* (*I*_{rel}, %): 386 (58) [*M*]⁺, 181 (100), 69 (91), 139 (54) [ClC₆H₄CO]⁺, 150 (41), 43 (25) [NHCO]⁺, 209 (75). Found, %: C 58.97; H 3.90; N 7.24; S 8.32. C₁₉H₁₅ClN₂O₃S. Calculated, %: C 58.99; H 3.91; N 7.24; S 8.29. *M* 386.85.

N-(3-Cyano-4,5,6,7-tetrahydro-1-benzothiophen-2-yl)-2-hydroxy-4-(4-methylphenyl)-4-oxobut-2-enamide (4c). Yield 3.55 g (97%), yellow crystals, mp 191–192°C; published data [10]: mp 182–184°C. IR spectrum, v, cm⁻¹: 3350 (NH), 2213 (CN), 1691 (C=O, amide). ¹H NMR spectrum (CDCl₃), δ , ppm: 1.84 m (4H, CH₂), 2.44 s (3H, Me), 2.63 m (2H, CH₂), 2.67 m (2H, CH₂), 7.21 s (1H, CH), 7.30 and 7.91 (2H each, H_{arom}, *AA'BB'*, *J* = 8.1 Hz), 9.88 s (1H, NH), 15.41 br.s (1H, OH). Mass spectrum, *m/z* (*I*_{rel}, %): 366 (50) [*M*]⁺, 178 (100), 119 (51) [MeC₆H₄CO]⁺, 69 (38), 161 (28), 44 (23), 91 (16) [MeC₆H₄]⁺. Found, %: C 65.53; H 4.97; N 7.62; S 8.75. C₂₀H₁₈N₂O₃S. Calculated, %: C 65.55; H 4.95; N 7.64; S 8.75. *M* 366.44.

N-(3-Cyano-4,5,6,7-tetrahydro-1-benzothiophen-2-yl)-2-hydroxy-4-oxo-4-(thiophen-2-yl)but-2-enamide (4d). Yield 3.48 g (97%), yellow crystals, mp 182–183°C. IR spectrum, v, cm⁻¹: 3365 (NH), 2208 (CN), 1682 (C=O, amide). ¹H NMR spectrum (CDCl₃), δ, ppm: 1.84 m (4H, CH₂), 2.63 m (2H, CH₂), 2.68 m (2H, CH₂), 7.08 s (1H, CH), 7.21 t (1H, H_{arom}, *J* = 4.2 Hz), 7.76 d (1H, H_{arom}, *J* = 4.4 Hz), 7.89 d (1H, H_{arom}, *J* = 3.3 Hz), 9.75 s (1H, NH), 15.02 br.s (1H, OH). Mass spectrum, *m/z* (*I*_{rel}, %): 358 (47) [*M*]⁺, 153 (100), 179 (77), 69 (63), 111 (51), 181 (44), 43 (28) [NHCO]⁺. Found, %: C 56.95; H 3.96; N 7.82; S 17.90. C₁₇H₁₄N₂O₃S₂. Calculated, %: C 56.96; H 3.94; N 7.82; S 17.89. *M* 358.43.

Ethyl 2-[(2-hydroxy-1,4-dioxo-4-phenylbut-2-en-1-yl)amino]-4,5,6,7-tetrahydro-1-benzothiophene-3**carboxylate (4e).** Yield 2.80 g (70%), orange crystals, mp 168–169°C. IR spectrum, v, cm⁻¹: 3204 (NH), 1684 (C=O, ester), 1665 (C=O, amide). ¹H NMR spectrum (CDCl₃), δ , ppm: 1.42 t (3H, Me, J = 7.5 Hz), 1.81 m (4H, CH₂), 2.70 m (2H, CH₂), 2.81 m (2H, CH₂), 4.39 q (2H, OCH₂, J = 7.5 Hz), 7.28 s (1H, CH), 7.47–7.63 m (3H, H_{arom}), 8.00–8.03 m (2H, H_{arom}), 12.57 s (1H, NH), 15.69 br.s (1H, OH). Mass spectrum, *m*/*z* (*I*_{rel}, %): 399 (71) [*M*]⁺, 179 (100), 105 (89) [Bz]⁺, 151 (71), 69 (61), 225 (51). Found, %: C 63.15; H 5.30; N 3.50; S 8.03. C₂₁H₂₁NO₅S. Calculated, %: C 63.14; H 5.30; N 3.51; S 8.03. *M* 399.46.

Ethyl 2-{[4-(4-chlorophenyl)-2-hydroxy-1,4-dioxobut-2-en-1-yl]amino}-4,5,6,7-tetrahydro-1-benzothiophene-3-carboxylate (4f). Yield 3.69 g (85%), orange crystals, mp 203–204°C. IR spectrum, v, cm⁻¹: 3211 (NH), 1680 (C=O, ester), 1660 (C=O, amide). ¹H NMR spectrum (CDCl₃), δ , ppm: 1.41 t (3H, Me, J = 6.9 Hz), 1.80 m (4H, CH₂), 2.69 m (2H, CH₂), 2.81 m (2H, CH₂), 4.39 q (2H, OCH₂, J = 6.9 Hz), 7.25 s (1H, CH), 7.47 and 7.93 (2H each, H_{arom}, AA'BB', J = 8.4 Hz), 12.54 s (1H, NH), 15.43 br.s (1H, OH). Mass spectrum, m/z (I_{rel} , %): 433 (29) [M]⁺, 179 (100), 139 (76) [ClC₆H₄CO]⁺, 69 (75) [C₃H₃NO]⁺, 225 (51), 43 (33) [NHCO]⁺. Found, %: C 58.10; H 4.66; N 3.23; S 7.42. C₂₁H₂₀ClNO₅S. Calculated, %: C 58.13; H 4.65; N 3.23; S 7.39. *M* 433.90.

Ethyl 2-{[2-hydroxy-4-(4-methylphenyl)-1,4-dioxobut-2-en-1-yl]amino}-4,5,6,7-tetrahydro-1-benzothiophene-3-carboxylate (4g). Yield 2.99 g (72%), orange crystals, mp 204°C. IR spectrum, v, cm⁻¹: 3392 (NH), 1698 (C=O, ester), 1637 (C=O, amide). ¹H NMR spectrum (CDCl₃), δ, ppm: 1.41 t (3H, Me, J = 7.1 Hz), 1.80 m (4H, CH₂), 2.38 s (3H, Me), 2.64 m (2H, CH₂), 2.80 m (2H, CH₂), 4.39 m (2H, OCH₂, J = 7.1 Hz), 7.27 and 7.88 (2H each, H_{arom}, AA'BB', J = 8.1 Hz), 12.53 s (1H, NH), 15.43 br.s (1H, OH). Mass spectrum, m/z (I_{rel} , %): 413 (63) [M]⁺, 179 (100), 225 (54), 69 (46) [C₃H₃NO]⁺, 151 (35), 43 (24) [NHCO]⁺. Found, %: C 69.89; H 5.62; N 3.41; S 7.73. C₂₂H₂₃NO₅S. Calculated, %: C 63.90; H 5.61; N 3.39; S 7.75. M 413.49.

Ethyl 2-{[2-hydroxy-1,4-dioxo-4-(thiophen-2-yl)but-2-en-1-yl]amino}-4,5,6,7-tetrahydro-1-benzothiophene-3-carboxylate (4h). Yield 3.37 g (83%), orange crystals, mp 191–192°C. IR spectrum, v, cm⁻¹: 3119 (NH), 1684 (C=O, ester), 1668 (C=O, amide). ¹H NMR spectrum (CDCl₃), δ, ppm: 1.40 t (3H, Me, J = 6.9 Hz), 1.80 m (4H, CH₂), 2.69 m (2H, CH₂), 2.80 m (2H, CH₂), 4.38 q (2H, OCH₂, J = 6.9 Hz), 7.10 s (1H, CH), 7.19 t (1H, H_{arom}, J = 4.2 Hz), 7.73 d.d (1H, H_{arom}, J = 1.1 Hz, 4.9 Hz), 7.87 d.d (1H, H_{arom}, J = 1.1, 3.9 Hz), 12.50 s (1H, NH), 15.01 br.s (1H, OH). Mass spectrum, m/z (I_{rel} , %): 405 (71) [M]⁺, 179 (100), 225 (82), 69 (77) [C₃H₃NO]⁺, 153 (60), 111 (43), 206 (42), 43 (19) [NHCO]⁺. Found, %: C 56.30; H 4.72; N 3.44; S 15.80. C₁₉H₁₉NO₅S₂. Calculated, %: C 56.28; H 4.72; N 3.45; S 15.82. M 405.48.

REFERENCES

- Pulina, N.A., Kuznetsov, A.S., and Rubtsov, A.E., *Russ.* J. Org. Chem., 2015, vol. 51, p. 967.
- Andreichikov, Yu.S., Shurov, S.N., Zalesov, V.V., and Shapet'ko, N.N., *Russ. J. Org. Chem.*, 1986, vol. 22, p. 857.
- Lisovenko, N.Yu., Merkushev, A.A., Nasibullina, E.R., Slepukhin, P.A., and Rubtsov, A.E., *Russ. J. Org. Chem.*, 2014, vol. 50, p. 759.
- Nasibullina, E.R., Shurov, S.N., Dmitriev, M.V., and Rubtsov, A.E., *Russ. J. Org. Chem.*, 2015, vol. 51, p. 284.
- 5. Capuano, L. and Tammer, T., *Chem. Ber.*, 1981, vol. 114, p. 456.
- 6. Zalesov, V.V. and Rubtsov, A.E., *Chem. Heterocycl. Compd.*, 2004, vol. 40, p. 133.
- Puterová, Z., Krutošíková, A., and Végh, D., Nova Biotechnol., 2009, vol. 9, no. 2, p. 167.
- Puterová, Z., Krutošíková, A., and Végh, D., *Arkivoc*, 2010, part (i), p. 209.
- 9. El-Mekabaty, A., Synth. Commun., 2014, vol. 44, p. 1.
- Nekrasov, D.D., Kol'tsova, S.V., and Andreichikov, Yu.S., *Chem. Heterocycl. Compd.*, 1994, vol. 30, p. 154.
- Palacios, F., Alonso, C., Aparicio, D., Rubiales, G., and Santos, J.M., *Tetrahedron*, 2007, vol. 63, p. 523.
- 12. Molina, P. and Vilaplana, M.J., *Synthesis.*, 1994, p. 1197.
- 13. Wamhoff, H., Richardt, G., and Stölben, S., Adv. Heterocycl. Chem., 1995, vol. 64, p. 159.
- 14. Wamhoff, H. and Haffmanns, G., Chem. Ber., 1984, vol. 117, p. 585.
- 15. Ding, M.-W., Huang, N.-Y., and He, H.-W., *Synthesis*, 2005, p. 1601.
- Wamhoff, H., Herrmann, S., Stölben, S., and Nieger, M., *Tetrahedron*, 1993, vol. 49, p. 581.

- Wang, H., Guo, S., Hu, Y., Zeng, X., and Yang, G., *Chin. J. Org. Chem.*, 2015, vol. 35, p. 1075.
- 18. Kollenz, G., Kappe, C.O., and Abd el Nabey, H., *Heterocycles*, 1991, vol. 32, p. 669.
- 19. Ziegler, E., Eder, M., Belegratis, C., and Prewedourakis, E., *Monatsh. Chem.*, 1967, vol. 98, p. 2249.
- Andreichikov, Yu.S., Gein, V.L., Zalesov, V.V., Kozlov, A.P., Kollenz, G., Maslivets, A.N., Pimenova, E.V., and Shurov, S.N., *Khimiya pyatichlennykh 2,3-dioksogeterotsiklov* (Chemistry of Five-Membered 2,3-Dioxo Heterocycles), Perm: Perm. Gos. Univ., 1994, p. 5.
- 21. Rubtsov, A.E. and Zalesov, V.V., *Russ. J. Org. Chem.*, 2003, vol. 39, p. 869.
- 22. Rubtsov, A.E., Makhmudov, R.R., Kovylyaeva, N.V., Prosyanik, N.I., Bobrov, A.V., and Zalesov, V.V., *Pharm. Chem. J.*, 2002, vol. 36, no. 11, p. 608.
- Komarova, O.A., Igidov, N.M., Rubtsov, A.E., Zalesov, V.V., Makarov, A.S., and Toksarova, Yu.S., *Russ. J. Org. Chem.*, 2010, vol. 46, p. 236.
- Komarova, O.A., Igidov, N.M., Koryagina, N.N., Makarov, A.S., Toksarova, Yu.S., and Rubtsov, A.E., *Russ. J. Org. Chem.*, 2011, vol. 47, p. 109.
- Tyuneva, A.V., Igidov, N.M., Koryagina, N.N., Borodin, A.Yu., Zakhmatov, A.V., Makarov, A.S., Toksarova, Yu.S., and Rubtsov, A.E., *Russ. J. Org. Chem.*, 2011, vol. 47, p. 258.
- 26. Rubtsov, A.E. and Zalesov, V.V., *Chem. Heterocycl. Compd.*, 2001, vol. 37, p. 1038.
- 27. Shipilovskikh, S.A., Rubtsov, A.E., and Zalesov, V.V., *Chem. Heterocycl. Compd.*, 2009, vol. 45, p. 658.
- Becker, H.G.O., et al., Organikum. Organischchemisches Grundpraktikum, Weinheim: Wiley, 2004, 22nd edn. Translated under the title Organikum, Moscow: Mir, 2008, vol. 2, p. 488.
- Andreichikov, Yu.S., Nalimova, Yu.A., Plakhina, G.D., Saraeva, R.F., and Tendryakova, S.P., *Chem. Heterocycl. Compd.*, 1975, vol. 11, p. 1252.
- Yanoborisov, T.N., Zhikina, I.A., Andreichikov, Yu.S., Milyutin, A.V., and Plaksina, A.N., *Pharm. Chem. J.*, 1998, vol. 32, no. 9, p. 480.
- Verbic, T.Z., Drakulic, B.J., Zloh, M.F., Pecelj, J.R., Popovic, G.V., and Juranic, I.O., *J. Serb. Chem. Soc.*, 2007, vol. 72, p. 1201.
- Gewald, K., Schinke, E., and Böttcher, H., *Chem. Ber.*, 1966, vol. 99, p. 94.