The authors are indebted to Dr. David E. Green for his encouragement in the course of these investigations.

CONTRIBUTION FROM	R. L. Lester
INSTITUTE FOR ENZYME RESEARCH	F. L. CRANE
THE UNIVERSITY OF WISCONSIN	Y. HATEFI
MADISON, WISCONSIN	

RECEIVED AUGUST 13, 1958

COENZYME Q. I. STRUCTURE STUDIES ON THE COENZYME Q GROUP

Sir:

The discovery of a quinone, Q-275, has been reported,¹ and characterizing chemical and physical properties, oxidative degradation and hydrogenation are reported in an accompanying com-munication.² Four closely related quinones having similar coenzymatic activity have been isolated from microbial sources.² All five new quinones are designated as members of a coenzyme Q group, *i.e.*, coenzyme Q_6 , Q_7 , Q_8 , Q_9 and Q_{10} .

We now have extended these observations. Formula I agrees with our structural data for coenzyme Q₁₀ (beef heart) and II and III correspond to Q_9 , Q_8 , etc.

$$\begin{array}{c} CH_{3}O\\CH_{3}O\\CH_{3}O\\O\end{array} \begin{array}{c} CH_{3}CH_{3}\\CH_{2}CH_{2}CH=C-CH_{2})_{n}H \end{array} \begin{array}{c} I, n=10\\II, n=9\\III. n=8, \text{ etc.} \end{array}$$

Our isolated Q_{10} (yellow) melted at 49.5–50.5°. Found: C, 81.98, 82.05; H, 10.38, 10.31. Hydrogenation of Q10 resulted in an absorption of about 11 moles of hydrogen. Oxidation of the resulting hydroquinone yielded eicosahydro-coen-zyme Q_{10} ; $\lambda_{\text{max}}^{\text{isocetans}}$ 278 m μ , $E_{1\,\text{em}}^{1\%}$ 187. Found: C, 80.30; H, 12.36.

Proton type	C.p.s. <i>ª</i>	Rela- tive band areas	No. of protons based on 2CH:O/ mole	No. of protons caled, for Cs9H90- O4 and struc- ture I
HC=	+8	5	10	10
CH₃O—	-34	3	6	6
=CCH:CH=	-64, -69	1	2	2
$\int = C - C \underline{H}_2 - C \underline{H}_2 - C =$	-113	20	40	∫36
CH₁C=(nucleus)				3
CH ₂ C=(chain)	-125	16.5	33	33
			91	90

" The bands refer to 40 mc. spectra in carbon tetrachloride, + means at lower fields than water protons while - means at higher fields.

Coenzyme Q₁₀ appears to be a 2,3-dimethoxybenzoquinone derivative. Its absorption spectrum with maxima at 275 m μ and 405 m μ is in good agreement with that of aurantiogliocladin, (maxima at 275 and 407 m μ) identified as 2,3-dimethoxy-5,6dimethylbenzoquinone³.

We have studied the nuclear magnetic resonance spectra at 40 mc. of Q_{10} and many synthetic model compounds, and Dr. James N. Shoolery (Varian Associates) has kindly determined the spectrum of Q₁₀ at 60 me. These data characterize the protons of Q_{10} : these data show convincingly that Q_{10} has two CH_3O —, one CH_3 — and one isoprenoid chain of 10 units attached to a benzoquinone nucleus, but do not define the position of the ring substituents. N.m.r. data exclude the presence of

aromatic proton, $-\dot{C}=C\underline{H}_2$ and $-C\underline{H}_2C\underline{H}_3$, and assign the ten double bonds in the isoprenoid side chain as in I. The n.m.r. spectrum of eicosahydrocoenzyme Q_{16} shows the one =CCH₃ nucleus group at -111.5 c.p.s. While this group is not clearly resolved from $=C-CH_2CH_2C=$ in the spectrum of Q_{10} at 40 mc., it is at 60 mc.

Reduction and methylation of Q10 with dimethyl sulfate, gave a colorless crystalline tetramethoxy derivative (IV), m.p. 38-39°, $[\alpha]$ D 0° (chloroform). Found: C, 81.85; H, 10.82, OCH₃, 14.2.

Oxidation of IV with about a 4-fold excess of aqueous alkaline permanganate at 100° yielded tetramethoxyphthalic anhydride (V) (after sub-limation), m.p. 138-139° not depressed by admixture of synthetic tetramethoxyphthalic anhydride.

Oxidation of IV in acetone with the stoichiometric quantity of permanganate for ten double bonds gave after partition chromatography, 2methyl-3,4,5,6-tetramethoxyphenylacetic acid (VI) m.p. 75-76°, identical by melting point behavior and infrared spectra with a synthetic sample. The presence of levulinic and succinic acids as oxidation products was confirmed.²

The chemical and physical properties of synthetic 2,3-dimethoxy-5-methyl-6-farnesylbenzoquinone⁴ and analogs⁴ are closely similar to those of Q10. Ubiquinone, reported by Morton, et al., from animal organs (m.p. range $33-41^{\circ}$)⁵ and yeast (yellow oily fractions)⁶ is clearly related to the coenzyme Q group.

Contribution from the Merck, Sharp & Dohme Research Laboratories Division of Merck & Co., Inc. Rahway, New Jersey	Donald E. Wolf Carl H. Hoffman Nelson R. Trenner Byron H. Arison Clifford H. Shunk Bruce O. Linn
Rahway, New Jersey	BRUCE O. LINN JAMES F. MCPHERSON KARL FOLKERS

RECEIVED AUGUST 13, 1958

(3) E. B. Visher, J. Chem. Soc., 815 (1953).

⁽¹⁾ F. L. Crane, Y. Hatefi, R. L. Lester and C. Widmer, Biochim. Biophys. Acta, 25, 220 (1957).

⁽²⁾ R. L. Lester, F. L. Crane and Y. Hatefi, THIS JOURNAL, 80, 4751 (1958).

⁽⁴⁾ C. H. Shunk, B. O. Linn, E. L. Wong, P. E. Wittreich, F. M. Robinson and K. Folkers, THIS JOURNAL, 80, 4753 (1958).

⁽⁵⁾ R. A. Morton, G. M. Wilson, J. S. Lowe and W. M. F. Leat,

Chem. & Ind., 1649 (1957). (6) F. W. Heaton, J. S. Lowe and R. A. Morton, J. Cham. Soc., 4094 (1956).