788 Communications synthesis

tionen⁴. Wir versuchten, die Chloral-imine durch Umsetzen von Chloral (2) mit primären Aminen (1) zu den Aminolen 3 und anschließende Wasserabspaltung zu synthetisieren.

Es gibt zahlreiche Wasserabspaltungsmittel für eine Reaktion des Typs 3-4, so z.B. Molekularsieb, Titan(IV)chlorid¹, Zinkchlorid, Dimethylformamid/Schwefeltrioxid, Methansulfonsäure-chlorid; jedoch erreichte keines dieser Reagenzien das Thionylchlorid. Ersetzt man Thionylchlorid durch Trichloromethyl-carbonochloridat ("Diphosgen"), so erhält man bei 20°C Isocyanate (vgl. Lit. 5,8).

Bemerkenswerterweise entstehen aus den Aminolen 3 beim Umsetzen mit Magnesium-perchlorat in Dimethylformamid bei Raumtemperatur die N-Formylamine 5, deren Bildung aus 1 und 2 sonst erheblich drastischere Bedingungen erfordert⁶.

Unsere Vorversuche erwiesen Thionylchlorid in Gegenwart von N-Methylmorpholin als das Kondensationsmittel der Wahl bei der Synthese von Chloral-iminen (4). Auch die Synthese der Chloral-imine von chiralen Aminosäure-estern gelingt mit Thionylchlorid und N-Methylmorpholin, wobei eine, auf die wertvolle Amin-Komponente bezogen, befriedigende Ausbeute erzielt wird (s. Tabelle 1). Es sei hier erwähnt, daß die Umsetzung von Aminen mit Chloral-hemisulfat? (4,6-Bis[trichloromethyl]-1,3,5,2-trioxathian-2,2-dioxid) gleiche Mengen Aminol 3 und Imin 4 ergibt.

Wenn in unserer Reaktion Aminosäure-ester als Amin-Komponente verwendet werden, bleibt die Konfiguration der Aminosäure voll erhalten.

N-(2,2,2-Trichloro-1-hydroxyethyl)-amine (Aminole 3); allgemeine Arbeitsvorschriften:

Methode A: Zu einer Lösung von Chloral (1.47 g, 10 mmol) in trokkenem Ether (40 ml) gibt man unter Rühren das fein gepulverte Aminosäure-ester-hydrochlorid (10 mmol) und läßt dann eine Lösung von N-Methylmorpholin (1.01 g, 10 mmol) in Ether (10 ml) zutropfen. Das Gemisch wird über Nacht gerührt. Anschließend wird von N-Methylmorpholin-hydrochlorid abfiltriert, der Ether abgezogen und ohne Reinigung weiter umgesetzt.

Methode B: Es wird gearbeitet wie bei Methode A, jedoch ohne Zusatz von N-Methylmorpholin. Anstelle von Ether kann auch Tetrachloromethan, Chloroform oder Dichloromethan verwendet werden.

N-(2,2,2-Trichloroethyliden)-amine (4); allgemeine Arbeitsvorschrift:

Zur Lösung eines Aminols 3 (10 mmol) in absolutem Ether (30 ml) gibt man unter Rühren N-Methylmorpholin (2.22 g, 22 mmol) und läßt dann eine Lösung von frisch destilliertem Thionylchlorid (1.31 g, 11 mmol) in Dichloromethan (15 ml) langsam bei Raumtemperatur zutropfen. Nach ~2 h wird das entstandene N-Methylmorpholin-hydrochlorid abfiltriert und mehrmals mit trockenem Ether gewaschen. Das Filtrat wird eingeengt. Im Fall von Phenylalanin-methylester als Amin-Komponente wird der Rückstand aus Pentan umkristallisiert. Nicht unzersetzt destillierbare Öle werden ebenfalls in Pentan (50 ml) aufgenommen und unter Stickstoff mit 1-2 Tropfen Thionylchlorid (ohne Zugabe von Hilfsbase) versetzt zur vollständigen Umsetzung von eventuell noch vorhandenem Aminol 3 zu Choral-imin 4, Aminhydrochlorid und Chloral. Das Gemisch wird 30 min bei Raumtemperatur gerührt und unter Stickstoff filtriert. Dies wird solange wiederholt (1-2mal), bis kein Niederschlag nach Zugabe von Thionylchlorid mehr auftritt. Nach Abziehen des Pentans wird restliches Chloral und Thionylchlorid im Hochvakuum weitgehend entfernt; die so behandelten öligen Produkte liefern einwandfreie 1H-N.M.R.-Spektren, lassen sich im allgemeinen jedoch nicht analysen-rein erhalten.

Chloral-imine [N-(2,2,2-Trichloroethyliden)-amine]

Gerhard GIESEMANN, Ivar UGI

Institut für Organische Chemie der Technischen Universität München, D-8046 Garching

Ein Bericht über α -halogenierte Imine¹ veranlaßt uns, eine in den letzten Jahren von uns verwendete Methode zur Herstellung von Chloral-iminen mitzuteilen. In Lit.¹ wurden die α -Haloimine aus Carbonyl-Verbindungen und primären Aminen unter der Einwirkung von Titan(IV)-chlorid hergestellt. Dieses Kondensationsmittel ist schon für die Synthese von Iminen² und β -Haloiminen (α -Haloenamine)³ verwendet worden. Wir benötigten Chloral-imine (4) für die Verknüpfung von Peptid-Segmenten mittels Vierkomponenten-Kondensa-

$$R-NH_{2} + Cl_{3}C-CHO \longrightarrow R-NH-CH-CCl_{3}$$

$$1 \qquad 2 \qquad 3$$

$$\frac{SOCl_{2}}{} \rightarrow R-N=CH-CCl_{3}$$

Tabelle 1. Chloral-imine (4) aus primären Aminen (1) und Chloral (2) mittels Thionylchlorid

Amin 1	Methode	Aus- beute [%]	F bzw. Kp/torr [°C]	Summenformel bzw. LitDaten	l.R. (CCl ₄) v_{Core} [cm ⁻¹]	1 H-N.M.R. (CCI ₄ /TMS $_{ m int}$) δ [ppm]
t-C ₄ H ₉ —NH ₂	B (TiCl ₄) ³	95 (73) ³	Kp: 75°/15	Kp: 58-62°/13 ³	1665	2.50 (s)
C_6H_5 — CH_2 — NH_2	В	97	a		1658	2.36 (t, J=2.0 Hz)
H-Ala-OCH ₃	Α	90	a		1668	2.20 (s)
H-Leu-OCH ₃	Α	89	a		1665	2.20 (s)
H-Leu-O-CH ₂ -C ₆ H ₅	Α	92	a		1666	2.17 (s)
H-Phe-OCH ₃	Α	95	F: 52°	$C_{12}H_{12}Cl_3NO_2^b$ (308.6)	1664	2.50 (s)

b ber. C 46.71 H 3.92 Cl 34.47 N 4.54 gef. 46.72 4.06 34.3 4.54

Tabelle 2. N-Formylaminosäure-methylester (5) aus den Aminolen 3

Produkt 5	Ausbeute [%]	F bzw. Kp/torr [°C]		$[\alpha]_{\mathrm{D}}^{20}$
		gefunden	LitDaten	
N-(CHO)-L-Phe-OCH ₃	77	F: 48° (CH ₂ Cl ₂)	F: 51° (CH ₂ Cl ₂) ⁹	+86.37° (c 1, CH ₂ Cl ₂)
N-(CHO)-L-Leu-OCH ₃	65	Kp: 94-95°/0.3	Kp: $104-107^{\circ}/2-3^{\circ}$	-43.5° (c 1, Methanol)
N-(CHO)-L-Ala-OCH ₃	67	Kp: 80-81°/0.5	Kp: $83^{\circ}/2-3^{\circ}$	-34.6° (c 0.6, Ethyl-acetat)

Bei Verwendung chiraler Aminosäure-ester als Amin-Komponente wurden zur Prüfung des Konfigurationserhalts die entsprechenden Chloral-imine 4 in einem Gemisch aus 2 normaler Salzsäure und Dioxan (1/1) gelöst; dieses Gemisch wurde 30 min bei Raumtemperatur gerührt, das Solvens abgezogen und das entstandene Aminosäure-ester-hydrochlorid aus Dichloromethan umkristallisiert. Der spezifische Drehwert wurde jeweils mit dem des nicht umgesetzten Aminosäure-ester-hydrochlorids verglichen. In allen Fällen (Tabelle 1) wurde voller Konfigurationserhalt festgestellt.

N-Formylaminosäure-methylester (5); allgemeine Arbeitsvorschrift:

Ein Gemisch von Aminol 3 (10 mmol), Dimethylformamid (10 ml) und Magnesium-perchlorat-dihydrat (1 g) wird über Nacht bei Raumtemperatur gerührt. Anschließend wird das Dimethylformamid abgezogen, der Rückstand in Dichloromethan aufgenommen, diese Lösung filtriert und dann eingeengt. Das zurückbleibende Produkt 5 wird umkristallisiert bzw. fraktionierend destilliert.

Eingang: 22. Februar 1983 (überarbeitete Fassung: 19. April 1983)

N. DeKimpe et al., Synthesis 1982, 43.

² H. Weingarten, J. P. Chupp, W. A. White, *J. Org. Chem.* **32**, 3246 (1967).

L. Duhamel, P. Duhamel, J. M. Poirier, Bull. Soc. Chim. Fr. 1972, 221; Tetrahedron Lett. 1973, 4237.

R. Verhé et al., Bull. Soc. Chim. Belg. 86, 879 (1977).

⁴ I. Ugi, D. Marquarding, R. Urban, in: Chemistry and Biochemistry of Amino Acids, Peptides, and Proteins, Vol. 6, B. Weinstein, Ed., Marcel Dekker, New York 1982, S. 245.

⁵ W. J. Humphlett, C. V. Wilson, J. Org. Chem. 26, 2507 (1961).

⁵ E. J. Poziomek, J. Org. Chem. 28, 243 (1963).

⁷ V. L. Krasnov, N. K. Tulegenova, I. V. Bodrikov, Zh. Org. Khim. 15, 1997 (1979); C. A. 92, 6509 (1980).

S. Goldschmidt, M. Wick, Liebigs Ann. Chem. 575, 217 (1952).

G. Losse, A. Losse, J. Stöck, Z. Naturforsch. [b] 17, 785 (1962).