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Abstract—The norbornyl system has been recognized simply as a ‘locked’ carbasugar and a short, general approach to
carbasugars and their new siblings, ‘confused’ carbasugars, from readily available 7-ketonorbornanes is reported. © 2001 Elsevier
Science Ltd. All rights reserved.

In the pursuit of scientific research, sometimes the most
obvious is either taken for granted or escapes attention.
The bicyclo[2.2.1]heptane (norbornyl) system has been
explored by generations of organic chemists in a myriad
ways ranging from mechanistic and stereochemical
probes to starting point for diverse syntheses.1 How-
ever, the C7-framework of the norbornyl system has not
been recognized as a simple ‘locked’ carbasugar from
which the six-membered C7-carbasugar skeleton can be
easily retrieved through ‘unlocking’ involving C1�C7 or
C4�C7 bond scission. Considering the current wide-
spread interest in the synthesis of carbasugars,2 we
regard our norbornyl approach as short, simple and
conceptually different. We demonstrate here that
indeed, a simple 7-norbornenone derivative like 1 can
be readily elaborated to a variety of carbasugars 2 and
to related new entities that we name ‘confused’ carba-
sugars 3. The ‘confused’ carbasugars 3 have the same
level of oxygenation on the cyclohexanoid framework
as the carbasugars, but the hydroxymethyl and the
‘para ’ hydroxy groups are interchanged (see bold por-
tions in 2 and 3). In view of the well-established impor-
tance of carbasugars 2 and its congeners in
glycomimicry, the first time access to their new siblings,
the ‘confused’ carbasugars 3, should stimulate interest
in the evaluation of their biological activity profile.

endo-2-Acetoxy-7-norbornenone 5 and its precursor
ketal 4, readily available through Diels–Alder reaction
between 5,5-dimethoxy-1,2,3,4-tetrachlorocyclopenta-
diene and vinyl acetate, followed by reductive dehalo-
genation,2b,3 were chosen as the starting points of our
projected syntheses.4 We recognized that dihydroxyla-
tion of the norbornene double bond and cleavage of the
C1�C7 bond with amplification of functionality would
provide direct access to carbasugars. Consequently, 4
was subjected to OsO4-mediated dihydroxylation exclu-
sively from the exo-face to furnish 6. A one-pot cis-diol
protection and acetal deprotection in 6 delivered the
keto-acetonide 7 (Scheme 1). Baeyer–Villiger oxidation
of 7 led to a regioisomeric mixture of lactones 8 and 9
(13:87). LiAlH4 reduction of 8 and 9 yielded triols 10
and 11, respectively. Acetonide deprotection in 10 led
to the pseudo-�-DL-talopyranose carbasugar 12a (char-
acterized as the pentaacetate 12b4a,5). The same depro-
tection in 11 delivered the ‘confused’ carbasugar 13a
(characterized as the pentaacetate 13b6) quite easily
(Scheme 1).

To introduce stereochemical diversity in our synthetic
approach and to fine-tune the relative ratios of the
carba- and ‘confused’ carbasugar formation, an alter-
nate strategy was executed. Chemoselective Baeyer–Vil-
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Scheme 1. Reagents and conditions : (i) OsO4, NMMO (50% aq. solution, 4 equiv.), Me2CO–H2O (4:1), rt, 30 h, 80%; (ii)
Amberlyst-15, Me2CO, rt, overnight, 70%; (iii) MCPBA, NaHCO3, DCM, 0–5°C, 3–4 h, quant.; (iv) LAH, THF, 0–5°C, 2–3 h,
70%; (v) (a) Amberlyst-15, aq. MeOH, rt, overnight, (b) Ac2O, Py, rt, overnight, 72% (two steps).

liger oxidation of norbornenone 5 furnished the lac-
tones 14 and 15 (30:70) (Scheme 2). The minor lactone
14 was first subjected to LiAlH4 reduction to furnish
cyclohexene triol 16. OsO4-mediated dihydroxylation
on 16 was stereospecific from the face opposite to the
allylic hydroxyl group and furnished pseudo-�-DL-
altropyranose carbasugar 17a and was fully character-
ized as its pentaacetate 17b.7 In an alternate sequence,
16 was subjected to epoxidation with m-chloroperben-
zoic acid in aqueous medium to furnish trans-epoxide
18 in a stereoselective manner. Interestingly, the epoxi-
dation of 16 was dictated by steric considerations rather
than by the usually encountered directing influence of
the allylic hydroxyl group.8,9 Acid-catalyzed opening of
the epoxide ring in 18 was regioselective and pseudo-�-

DL-mannopyranose 19a (characterized as the penta-
acetate 19b5,10) was the main product formed with only
traces of the regioisomeric pseudo-�-DL-idopyranose.11

In an analogous manner, the major lactone 15 from 5
was reduced with LiAlH4 to furnish two cyclohexene
triols 20 and 21 (75:25) (Scheme 3). Quite unexpectedly,
epimerization had occurred during the hydride reduc-
tion of 15, possibly at the intermediate aldehyde stage
and the hydroxymethyl group in 21 was cis to the
neighbouring hydroxyl group. Dihydroxylation of 20
with OsO4 proceeded stereoselectively to furnish the
‘confused’ carbasugar 22a (characterized as penta-
acetate 22b6). Epoxidation of 20 took a course analogous
to 16 and furnished the trans-epoxide 23.8,9 Acid-cata-
lyzed opening in 23 led to a new ‘confused’ carbasugar

Scheme 2. Reagents and conditions : (i) MCPBA, Na2CO3, DCM, 0°C–rt, 4–5 h, 94%; (ii) LAH, THF, −15°C, 2 h, 70%; (iii) (a)
OsO4, NMMO (50% aq. solution, 4 equiv.), Me2CO–H2O (4:1), rt, overnight, (b) Ac2O, Py, rt, 36 h, 78% (two steps); (iv)
MCPBA, H2O, rt, 2 days, 75%; (v) (a) cat. HClO4 (70%), H2O, rt, 24 h, (b) Ac2O, Py, rt, 35 h, 73% (two steps).
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Scheme 3. Reagents and conditions : (i). LAH, THF, −15°C, 2 h, 70%; (ii) (a) OsO4, NMMO (50% aq. solution, 4 equiv.),
Me2CO–H2O (4:1), rt, overnight, (b) Ac2O, Py, rt, 36 h, 76% (two steps); (iii) MCPBA, H2O, rt, 2 days, 77%; (iv) (a) cat. HClO4

(70%), H2O, rt, 24 h, (b) Ac2O, Py, rt, 40 h, 72% (two steps).

24a (characterized as pentaacetate 24b6) in a regioselec-
tive manner (Scheme 3). Similar transformations, dihy-
droxylation and epoxidation ring opening could also be
executed on 21, thus providing additional diversity
among the ‘confused’ carbasugar family. We have car-
ried out preliminary studies of the glycosidase inhibi-
tion ability of ‘confused’ carbasugars 13a, 22a and 24a
towards a panel of six glycosidases. However, no sig-
nificant inhibition has been observed.

In summary, we have delineated a new and exception-
ally simple approach to carbasugars and their siblings
the ‘confused’ carbasugars, which has built-in flexibility
to create stereochemical diversity. The ‘confused’ carba-
sugars being new entities, deserved to be evaluated
further and elaborated to their amino derivatives as
well as to oligomers. Efforts along these lines are in
progress.
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