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The photodissociation of dichlorine monoxide (CI20) at 308, 248, and 193 nm was studied by 
photofragment translational energy spectroscopy. The primary channel upon excitation at 308 and 
248 nm was Cl-O bond fission with production of CIO+Cl. A fraction of the CIO photoproducts 
also underwent spontaneous secondary dissociation at 248 nm. The center-of-mass translational 
energy distribution for the CIO+CI channel at 248 run appeared to be bimodal with a high energy 
component that was similar in shape to the 308 run distribution and a second, low energy component 
with a maximum close to the threshold for the 2CI +Oe P) channel. Observation of a bimodal 
distribution suggests that two pathways with different dissociation dynamics lead to CIO+CI 
products. The high product internal energy of the second component raises the possibility that CIO 
is formed in a previously unobserved spin-excited state a 4I-. Following excitation at 193 nm, a 
concerted dissociation pathway leading to CI2+O was observed in addition to primary CI-O bond 
breakage. In both processes, most of the diatomic photofragments were formed with sufficient 
internal energy that they spontaneously dissociated. The time-of-flight distributions of the CI2+O 
products suggest that these fragments are formed in two different channels CI2err)+Oe P) and 
ClzCX lI)+OcrD). 

I. INTRODUCTION 

The importance of chlorine-catalyzed ozone loss cycles 
in the stratosphere has motivated studies of the photochem­
istry of chlorine-containing compounds. Among the chlorine 
oxides, dichlorine monoxide (CI20, also referred to as 
chlorine monoxide) is currently thought to playa minor role 
in stratospheric chemistry. However, a study of its photo­
chemistry can deepen our understanding of the photochem­
istry of related molecules; furthermore, Cl20 is frequently 
used in laboratory studies of chlorine/oxygen chemistry, in 
flow tube studies as a photolytic precursor for CIO, and in 
molecular beam studies to calibrate the relative detector sen­
sitivity for Cl and CIO fragments. Correct interpretation of 
such experiments requires characterization of ClzO photo­
chemistry, but the photodecomposition pathways are still un­
certain, especially at shorter wavelengths (X. <300 run). 

ClzO possesses a complex manifold of electronically ex~ 
cited states. The four highest filled molecular orbitals of 
Cl20 are nearly degenerate nonbonding and weakly anti­
bonding orbitals, and excitation of electrons from these or­
bitals gives rise to several transitions in the visible and ultra­
violet. The absorption spectrum contains overlapping 
continuous bands between 660 and 220 run. The most promi­
nent of those features are a maximum at 255 nm and a shoul­
der at 280 nm (see Fig. 1).1 1\vo additional strong features 
appear in the vacuum ultraviolet, a strong continuous band 
with a peak at 171.3 nm (whose onset at 220 nm can be seen 

.) Authors to whom correspondence should be addressed. 
b)Contribution number 8901. 

in Fig. 1) and a structured Rydberg transition with an origin 
at 162.9 run.2 

Earlier experiments on the UV photochemistry of Cl20 
involved the measurement of the final product quantum 
yields at high reactant pressures and the determination of the 
chain propagation mechanisms. FinkeJnburg et al. 3 investi­
gated both the direct and chlorine-sensitized photochemical 
decompositions of ClzO at 313, 365, and 436 nm. From an 
observed final Cl2 product quantum yield of 3.5, they de­
duced that4 

CI20+hv-+CIO+CI,.6.H;=32.9 kcallmol (1) 

was the initial ClzO decomposition step. Several studies later 
suggested that atomic oxygen is produced directly from Cl20 
by photolysis at shorter wavelengths 

ClzO+hv-+2Cl+Oep), .6.H;=96.4 kcal/mol, (2) 

CI20+hv-+CI2+0ep), .6.H;=39.2 kcal/mol. (3) 

Schumacher and· Townend5 observed an increased qu'antum 
yield of 4.5 upon irradiation in the wavelength range 235-
275 nm. They proposed that channel (2) was the only Cl20 
dissociation pathway occurring below 275 nm. To explain 
the unit increase in quantum yield at shorter wavelengths, 
they had to assume that oxygen atoms do not react with CIO; 
however, subsequent experiments have shown that the 
0+ Cl20 reaction is fast. 6 Edgecomb et al. reexamined Cl20 
photochemistry by flash photolysis at X.>281 nm and direct 
detection of CIO intermediates.? They suggested that the in-

... creased quantum yield observed by Schumacher and 
Townend was due to limited initial formation of 0 atoms by 
reaction (2), followed by rapid reaction of these atoms with 
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FIG. 1. The absorption spectrum of e120. Points, are taken from Ref. 17 
based on an evaluation of published spectra in Ref. 1. 

CI20. In a more recent flash-photolysis study, Basco and 
Dogra found an average final product quantum yield of Cl2 
of 4.9±1.0 at all wavelengths, regardless of the presence of 
C12.8 When they photolyzed Cl20 at A<310 nm, they also 
observed vibrationally excited oxygen Of, which they con­
jectured could only be formed by reactions of atomic oxygen 

O+CI20~2CI+Of, 

O+CIO~Cl+Or 

(4) 

(5) 

They inferred that there were two possible sources of oxygen 
atoms-photolysis of Cl20 and photolysis of CIO. Their data 
was most consistent with 0 atoms, formed entirely by sec­
ondary photodissociation of the primary CIO products 

CIO+hv--JoCI+O. (6) 

They concluded that no compelling case could be made for 
atomic oxygen produced directly from photolysis of CI20. 
Prior to 1989, there was thus conflicting evidence for reac­
tion (2) or reaction (3). All of these earlier studies relied on 
indirect detection of 0 atoms and an incomplete understand­
ing of the reaction kinetics, especially of the CIO self­
reaction. 

Sander and Friedl used Cl20 photolysis to form CIO in a 
recent flow tube study of the BrO+CIO reaction.9 When they 
photolyzed Cl20 with broadband radiation from a xenon 
flashlamp (A> 180 nm through quartz) in the presence of 
Br2' they detected BrO products as well. BrO could only be 
produced by the reaction 

(7) 

They concluded that atomic oxygen was formed directly 
from Cl20 photolysis by either reaction (2) or reaction 
(3). From the BrO yield, they obtained an 0 atom quantum 
yield of 0.2S±0.OS integrated over the intensity distribu­
tion of the flashlamp. They could not measure the wave­
length dependence of the quantum yield, nor could they 
identify the specific Cl20 dissociation channels leading to 
o atom production. 

, . '-The primary and secondary channels in the photodisso-
, ciati~n of Cl20 can be probed and differentiated by the tech­

nique of photofragment translational energy spectroscopy, 
which allows the direct detection of photoproducts and the 
determination of their translational energy and angular distri­
butions. We have employed this method to study the UV 
photodissociation of dichlorine monoxide. In an earlier 
communication,10 we used the photolysis of Cl20 at 308 nm 
to calibrate the relative detection efficiencies of our mass 
spectrometer for CI and CIO photofragments. In this paper, 
we present full results of the study of dichlorine monoxide 
photolysis at 308 and 248 nm, as well as preliminary data at 

. 193 nm. The CIO+CI and C12+0e P) channels are energeti­
cally accessible at all three wavelengths, but the 
Cl+Cl+Oe P) channel can only be reached at 193 and 248 
nm. By photolyzing Cl20 at these wavelengths, we can com­
pare the dissociation dynamics upon excitation to different 
regions of the Cl20 absorption spectrum. 

II. EXPERIMENT 

The experimental apparatus and methods are described 
in detail elsewhere,11 and only a brief outline is presented 
here. A continuous molecular beam of Cl20 was formed by 
passing helium over the surface of liquid Cl20 (vapor pres­
sure of 6.9 Torr at -74°C) and expanding the mixture 
through a 0.1 mm diameter water-cooled glass nozzle 
(4.9 °C) at a total stagnation pressure of 200 Torr. A skimmer 
confined the beam to an angular divergence of 3.4°. A rect­
angular slit aperture further collimated the beam to a 2.3 
mmX3.0 mm spot in the interaction region. The nozzle was 
4.8 cm from the interaction volume, where the molecular 
beam intersected the focused, unpolarized beam of a pulsed 
excimer laser. The density of Cl20 in the interaction volume 
was approximately 1011 cm -3. After a laser pulse, the result­
ing photoproducts scattered out of the interaction region and 
were detected off the beam axis with a mass spectrometer 
rotatable in the plane of the molecular beam and laser. The 
distance from the photolysis volume to the Brinks ionizer of 
the mass spectrometer was 34.1 cm. Time-of-flight (TOF) 
spectra of the fragments were recorded with a multichannel 
scaler in 2 JLS steps. Electron energies in the ionizer were 
nominally 160 eV (set by optimizing ion signal), but, the 
actual energy was lower due to space-charge effects at the 
emission currents used in 'these experiments. The velocity 
distribution of the parent molecular beam was determined by 
chopping the beam with a slotted disk and measuring the 
TOF distribution with the detector positioned on the beam 
axis. The correction for the flight time of ions from the ion­
izer to the Daly detector was found to be t = 3 .54 (ml e ) 112 

JLS. 
Cl20 synthesis followed techniques presented in the 

literature.12 The main impurity, C12, was removed by pump­
ing orr the sample at -li8 °C (ethanol slush bath). Running 
the molecular beam prior to performing the experiment 
served as a further purification step by preferentially remov­
ing the more volatile C12 • After the molecular beam velocity 
had stabilized, data collection proceeded. 

A Lambda Physik EMG 101 excimer laser was useQ to 
provide the excitation wavelengths of 193, 248, or 308 nm. 
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Pulse energies in the interaction region were 13-25,48-60, 
or 9-22 mJ and spot sizes were (width by height) 2.3X3.5, 
4.7X2.4, or 3.3X1.4 mm, respectively. We measured the flu­
ence dependence of the ml e =35 TOF spectra at all wave­
lengths in order to identify and minimize contributions from 
stimulated secondary dissociation of primary CIa photofrag­
ments. The laser pulse energy was attenuated to the levels 
quoted above with quartz plates until the shape of the ml e 
=35 TOF spectra lio lo.nger varied with intensity. 

TOF spectra were recorded at mle=35 (CI+), 51 
(ClO+), 70 (Cli), and 16 (0+) and at detector angles from 
10° to 60°. Each TOF spectrum was averaged for 100 000 to 
500 000 laser pulses. Angular distributions at 248 and 308 
nm were recorded at mle=51 over the range 10°_50°. The 
248 nm distribution was made in 10° increments with four 
scans of 10000 laser pulses each for a total of 40 000 laser 
pulses at each angle. The 308 nm distribution was recorded 
in 5° increments with six scans for a total of 60 000 laser 
pulses at each angle. The angular distribution of the ml e = 16 
signal from 193 nm photolysis was measured from 10° to 
60° in two scans for a total of 20 000 shots at each angle. 

III. RESULTS AND ANALYSIS 

Fragments recoiling upon dissociation can be character­
ized by a center-of-mass (c.m.) translational energy distribu­
tion peEr) and a c.m. angular distribution 
w( O)oc 1 + /3P2 (cos 0), where Er is the total c.m. transla­
tional energy of the products, 0 is the angle between the 
electric field vector of the radiation and the relative product 
velocity (recoil) vector, and P 2 is the second Legendre 
polynomialY The available energy Eavl=hv-!J..H~, is parti­
tioned between the c.m. translational energy Er and frag­
ment internal energy E int • The anisotropy parameter f3, 
which is determined by the angle between the transition mo­
ment and recoil vector, varies from 2 (parallel) to -1 (per­
pendicular). If the dissociation is not instantaneous, the mol­
ecule will have time to rotate. Even partial averaging over 
molecular orientations by rotation reduces the observed an­
isotropy and diminishes the value of f3. 14 For linear mol­
ecules with lifetimes greater than a rotational period, f3 is 
reduced by a factor of 4; for polyatomics, f3 can approach 
zero. The TOF spectra are measured in the laboratory (LAB) 
frame at fixed detector angles. The peEr) and w( 0) distri­
butions are related to velocity and angular distributions in the 
LAB frame by a c.m.-to-LAB coordinate transformation, 
with intensities scaled by the appropriate Jacobian 
determinant. IS In analyzing the data for a given channel, we 
seek to find the c.m. distributions which best fit the observed 
TOF spectra at alI laboratory angles. 

We determine the anisotropy parameter f3 for each pri­
mary channel by fitting the recorded angular distribution. 
Each TOF spectrum is then fit by a forward convolution 
method 15 in which a trial numerical c.m. translational energy 
distribution is convoluted with experimental parameters and 
the c.m. angular distribution, and then transformed into a 
TOF spectrum in the LAB frame. This procedure is repeated 
with the P(ET) function and /3 parameter iteratively adjusted 
until the TOF spectra predicted by a single P(ET) distribu-
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FIG. 2. Laboratory TOF distributions of m/e=51 at 308 hm for tliree de~ 
tector angles. The solide lines are the best fits. 

tion satisfactorily fit the data at all angles. We have not at­
tempted to model the secondary dissociation of the primary 
photofragments in the current analysis. 

In many cases, we recorded TOF spectra for both prod­
ucts from a primary two body dissociation channel and could 
therefore exploit the conservation of linear momentum to 
confirm our assignment. The two fragments recoil with equal 
and opposite momenta in the c.m. frame of reference, and the 
TOF spectra of both products are described by the same c.m. 
translational energy P(ET) and angular w( 0) distributions. 
We could thus use the c.m. distribution obtained by fitting 
the TOF spectra of one product to predict that of its counter­
fragment. 

A. 308 nm 

We observed photoproduct signals at mle=16, 35, and 
51 from the photolysis of Cl20 at 308 nm. The mle=51 
(ClO+) TOF spectra, shown in Fig. 2 for various laboratory 
angles, consisted of a sharp peak with a slow tail. These 
products had an anisotropic angular distribution that was fit 
with f3=0.5. With the exclusion of cluster dissociation, the 
only plausible assignment for the mle=51 signal is CIa 
formed in channel (1). The P(ET) distribution that fit the 
ClO+ spectrals displayed in the upper panel of Fig. 3. 

In the mle=35 TOF spectra shown in Fig. 4, two peaks 
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FIG. 3. The c.m. translational energy distributions P(ET) for the CIO+CI 
channel at 308 (upper) and 248 nm (lower) determined by fitting the mle 
= 51 TOF spectra at the respective wavelengths. 

were apparent. The shape of the slower peak was identical to 
$e ml e = 51 peak after correcting for the difference between 
the mle=35 and 51 ion flight times; therefore, we attributed 
this slower peak to cracking of CIO products in the ionizer to 
form Cl+. We assigned the fast, sharp peak to the Cl coun­
terfragment. To confirm these assignments, we used the 
P(ET) distribution and f3 parameter derived from the CIO 
analysis to fit the TOF spectra at mle=35. CI is formed in 

1.0 

0.5 

308 nm 

m/e =: 35 (CI+) 

30· 

100 175 
Flight time (jlSec) 

FIG. 4. Laboratory TOF distributions of ml e =35 at 3Q8 nm for two detec­
tor angles. The solid lines. are the calculated fits using the P(ET) distribution 
shown in the lower panel of Fig. 3. The dashed lines are the individual 
contributions from the CI and CIO fragments. 

1.0 

0.5 

0.5 

248 nm 
40· 

m/e = 51 (CIO+) 

m/e =: 35 (CI+) 

o.o~rgJl-.l.-l-~~~~~~ 

.® 150 250 350 
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FIG. 5. Laboratory TOP distributions of mle=51 and mle=35 at 248 om 
for a 40° detector angle. The solid lines are the calculated fits using the 
P(ET) distribution shown in Fig. 3. The dashed lines in the mle=35 TOP 
spectrum are the contributions from each product. 

the same dissociation event as CIO, so a fit to each compo­
nent at ml e =35 can be calculated with the respective c.m.­
to-LAB transformation of the same P(ET) distribution. A 
complete fit of the TOF spectrum requires only one adjust­
able parameter, the relative scaling factor of the two compo­
nents. The agreement between the predicted and observed 
TOF spectra shown in Fig. 4 verifies that the two compo­
nents arise from the momentum-matched counterfragments 
formed in the CIO+CI channel and eliminates the possibility 
that the fragments were produced from the photodissociation 
of clusters. Given the success of the fit and the absence of 
signal at ml e =70, we conclude that only the CIO+CI chan­
nel is observed when photolyzing Cl20 at 308 llffi. 

B. 248 nrTi 

The products detected at 248 nm exhibited TOF distri­
butions (Fig. 5) similar to those obtained at 308 nm. The 
ml e = 51 spectra each had a single peak with a pronounced 
shoulder, while the ml e = 35 spectra consisted of two peaks, 
the slower one identified as an ionizer crack of the product 
detected at mle=51. We again fit the mle=51 TOF spectra 
assuming that the signal came entirely from primary CIO 
products arising from the CIO+CI channel. A fit of the ml e 
=51 angular distribution gave f3=0.5. The P(ET) distribu­
tion (see the lower panel of Fig. 3) and f3 parameter were 
then used to predict the mle=35 TOF spectra (see Fig. 5). 
The predicted spectra matched the two main peaks observed 
rn:"the ml e =35 spectra, although they do not account for all 
of the signal detected at mle=35. The CIO+CI channel must 
be a major photodissociation channel at 248 nrn, but it is not 
the only dissociation pathway. 

The discrepancy between the predicted and observed 
TOF spectra at mle=35 appears as a broad background be-
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neath the CIO peak, suggesting that secondary CI atom prod­
ucts are formed by spontaneous dissociation of primary CIO 
fragments. The available energy at 248 nm is 82 kcaUmol, 
sufficient for secondary dissociation of CIO (Do=6304 kcaU 
mol). We observe a significant probability for CIO products 
formed near the dissociation limit, and formation of CIO 
with sufficient energy to dissociate is thus plausible. 

Secondary photodissociation of the CIO photo­
fragments16 

(3') 

is also a possible source of atomic chlorine, because the ab­
sorption cross section of CIO at 248 nm is uClo=3.2X 10-18 

cm2
, almost twice that of Cl20 (UCI20= 1.7 X 10-18 cm2).'7 

We were able to identify products from photolysis of CIO by 
examining the power dependence of the signal at mle=35. 
At high laser fluences, new peaks appear that are forward 
and backward scattered from the primary CIO signal at ml e 
=35, the result of photodissociation of the CIO fragments. 
These peaks are absent in the TOF spectra used in the data 
analysis, which were collected at reduced laser fluence. 
Stimulated secondary dissociation of CIO therefore does not 
contribute appreciably to the CI atom signal seen in Fig. 5. 

The peEr) distribution derived from mle=51 provides 
information only on the channel leading to CIO products 
stable enough to reach the detector. A complete peEr) dis­
tribution could in principle be extracted from the TOF spec­
trum of the primary CI atom fragment, but the slow tail of 
the primary distribution overlaps the secondary CI atom sig­
nal, and these contributions could not be deconvoluted. The 
peEr) distribution shown in Fig. 3 (lower panel) is therefore 
truncated at low energies and does not include the contribu­
tion from CIO that had undergone secondary dissociation. 

The peEr) distribution extends to a low energy thresh­
old of 16 kcallmol. For products observed with total transla­
tional energy less than 19 kcaUmol, the internal energy ex­
ceeds the CI-O bond dissociation energy.18 There are a 
number of ways to account for the observation of intact CIO 
products that appear to have internal energies above the dis­
sociation limit. First, there are uncertainties of 2 kcaUmol in 
the fit and 0.5 kcallmol in the Cl20 heat of formation. Sec­
ond, energy could be partitioned into spin-orbit excitation of 
the CI atom (the 2 P 112 state, 2 kcallmol), the CIO fragment 
(the 2III/2 state, 1 kcallmol), or both. Finally, CIO products 
could be metastable (bound by a centrifugal barrier) if 
formed in high rotational levels. The eqUilibrium bond angle 
is 110°, and in this geometry, a departing CI atom would 
impart a large torque on the CIO fragment. With the use of 
either soft or rigid radical models,19 we estimate that as 
much as 40%-50% of the available energy could be initially 
partitioned into CIO rotation. CIO radicals in such high J 
states would have centrifugal barriers supporting vibrational 
levels up to 6 kcallmol above the CI-O dissociation limit. 
Although some CIO products thus appear to be metastable 
with internal energies above the dissociation limit, the inabil­
ity to fit the mle=35 TOF distribution in the same way that 
the 308 nm TOF was fit implies that a fraction of the CIO 
products are formed so internally hot that they dissociate. 

1.0 

0.5 

~ 
::l 00 .e . 

.!!!. 
£1.0 

Z 

0.5 

0.0 l-kl<I 
~ 

50 

193 nm 

m/e = 16 (0+' 

20' 

~ 

\~ .Ih .~ 
.r<l 

-~~ 

50' 

\, -D O..n. ~ 

v v 0 -uur 

150 250 350 
Flight time (Jlsec) 

FIG. 6. Laboratory TOF distributions of m/e=16 at 193 run for two detec­
tor angles. Circles are experimental points and the solid lines are the 
fits obtained using the P(ET) distribution for the CI2+O channel shown 
in Fig. 7. 

C.193 nm 

The primary goal of our experiment was the study of 
Cl20 photolysis at 308 and 248 nm. Our 193 nm study, while 
more exploratory, did reveal the main features of the disso­
ciation dynamics at this wavelength. 

The mle=16 TOF spectra collected at 20° and 50° are 
shown in Fig. 6. The angular distribution at this mass was fit 
with an anisotropy parameter of ,8=004. We observed a 
prominent peak arriving at short times that was not detected 
at other masses, indicating that the signal probably arises 
from 0 atom products from the concerted dissociation 
CI20--+CI2 +O. From fits of the TOF spectra (solid lines in 
Fig. 6), we obtained the peEr) distribution shown in Fig. 7. 
This distribution had a peak at Er =42 kcaUmol and ended at 
Er =56 kcaUmol, 4 kcallmol above the threshold for the 
2CI +Oe P) channel. 

We tried to fit the TOF spectra of the counterfragment 
Cl2 at mle=70 using the peEr) distribution and anisotropy 
parameter ,8 obtained from fitting the 0 atom data. The TOF 
distribution predicted by the full peEr) distribution (the 
dashed line in Fig. 8) fit only the leading edge of the ob­
served ml e =70 TOF spectrum. The discrepancy was re­
moved (solid line of Fig. 8) if the P(ET) distribution was 
truncated (the shaded area in Fig. 7) by assuming that Cl2 
fragments formed with internal energy greater than 
D o(CI0=57.2 kcallmol dissociated before reaching the de­
tector. From the difference between this truncated peEr) dis­
tribution and the distribution obtained from the 0 atom data, 
we estimated that 87% of the Cl2 products undergo second­
ary dissociation. The Cl2 dissociation could only occur if the 
o atom counterfragments were in the 3 P state. 

A secondary peak at mle=70 occurred at t=225 p,s in 
the TOF spectrum at 200 (see Fig. 8); products at these ve-
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FIG. 7. The P(Er) distribution for the CI2+O channel upon photolysis at 
193 run derived from TOP spectra at mle=16, plotted against an energy 
level diagram. The shaded area shows the translational energies which cor­
respond to internal energies less than the CI-CI bond dissociation energy. 

locities also contributed significantly to the slow peak ob­
served at 300

• These Cl2 products were momentum matched 
with 0 atom counterfragments in the low energy tail of the 
P(ET) distribution in Fig. 7. Fragments at the peak had 
E T=19 kcallmol, while those at the leading edge had E T=30 
kcallmol, corresponding to E int=79 kcallmoL We thus ob­
served Cl2 signal well above the threshold for the 

1.0 !\ 193 nm 
'1 

m/e = 70 (C12 +) 

20· 

0.5 

375 
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FIG. 8. Laboratory TOP distributions of mle=70 at 193 nm for two detec­
tor angles. The dashed lines are the fits obtained using the full P(Er ) dis­
tribution for the CI2+O channel (shown in Pig. 7) determined from the 
ml e = 16 signal. The solid lines are the fits calculated using the P(Er) dis­
tribution truncated at Er;;' Do(CI2). 
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FIG. 9. Laboratory TOP distributions of mle=51 and mle=35 at 193 run 
recorded at a 40° detector angle. 

2Cl+Oe P) channeL BoundCl2 could only be observed if 
the 0 atom was in an excited state. Therefore, we tentatively 
assign this signal to the pathway forming spin-excited oxy­
gen atoms, the CI2(X l~t)+OeD) channeL 

We observed signal at still longer arrival times in the 200 

TOF spectra at both m/ e =70 and 16 (see Fig. 8). These 
peaks occurred at LAB velocities close to the parent beam 
velocity, indicating that the products were formed with little 
translational energy (ET =2and 8 kcallmol at m/ e = 16 and 
70, respectively, assuming the products are CI2+O from the 
C120 monomer). The signal could arise from a number of 
channels, including cluster dissociation or, for the m/ e = 16 
signal, secondary dissociation. The relatively low signal to 
noise ratio and lack of angular distribution information pre­
vented further analysis. 

The m/e=35 and 51 TOF spectra were recorded at 400 

(Fig. 9). Although we were unable to extract a P(ET) distri­
bution, correlations between the two TOF spectra provide 
strong evidence for the ClO+CI channeL At m/e=51, a 

-weak- peak arriving at 152 J-ts was apparent. If we were to 
assign this peak to CIO products from the CIO+CI channel, 
then ET would be 54 kcallmol, and the counterfragment CI 
atoms would arrive at 110 J-tS, which corresponds to the fast 
signal in the m/ e =35 TOF spectrum. In additiori, the CI 
atoms arriving at the leading edge (t=100 fJ-S) of the m/e 
=35 TOF spectrum can be momentum matched with the 
fastest CIO at 130 J-tS with ET=82 kcallmol. The m/e=51 
TOF_spectrum fell off rapidly at t= 155 fJ-S, coinciding with 
the onset for secondary dissociation of the CIO fragments, 
i.e., Eint>Do(ClO). 
. The TOF spectrum at in/ e =35 consisted of a number of 

superimposed peaks (the lower panel of Fig. 9). Sources of 
m/ e =35 signal include cracking of C12 and CIO in the ion­
izer to form CI +, primary CI photofragments formed via the 
CI +CIO channel, atomic chlorine from spontaneous second-
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ary dissociation of CIO and C12 , and possibly concerted three 
body decomposition to 2CI +0. Extensive secondary disso­
ciation was evident. The peak at 127 f.1-S appears to arise from 
Cl photofragments that are momentum matched to CIO prod­
ucts that undergo spontaneous secondary dissociation and 
give rise to the strong m/e=35 peak at 165 f..lS. 

Fragmentation to 2Cl +0 appears to be a major channel 
in the photolysis of C120 at 193 run; however, we were un­
able to deconvolute the strongly overlapping velocity distri­
butions from these secondary channels and thus could not 
measure the relative yields for the various channels. Atomic 
fragments could also arise from a concerted three body pro­
cess, but we were unable to identify such a channel because 
of the complexity of the m/e=35 TOF spectrum and the 
difficulty in modeling three body dissociation dynamics. 

IV. DISCUSSION 

A. CIO+CI channel 

We have observed simple CI-O bond fission leading to 
CIO+CI products at all three wavelengths. The CIO+CI 
channel is the only dissociation channel following excitation 
at 308 run, a major channel at 248 nm, and a minor channel 
at 193 nm. These findings agree with Finkelnburg et aZ} 
who concluded that above 300 nm, the only photodissocia­
tion pathway is CIO+Cl. Our results contradict the conclu­
sion of Schumacher and Townends that photolysis of Cl20 
from 235 to 275 run produced only atomic fragments 
2Cl+O. 

The dissociation dynamics at 308 and 248 nm appear to 
be similar, having identical values for the {3 parameter and 
sharing common features in their P(ET) distributions. {3=0.5 
implies that the angle between the transition moment and the 
recoil velocity vector is .::;45°. The transition dipole is thus 
approximately in plane and perpendicular to the C2u symme­
try (A 1) axis, indicating optical transitions to states of B2 
symmetry. If we assume that the geometry during dissocia~ 
tion is similar to that of the ground state, we calculate that 
complete rotational averaging will yield {3<0.19. 14 From the 
observed anisotropy of the angular distributions and the large 
translational energy release, we conclude that dissociation 
occurs within a rotational period. The P(ET) distributions are 
plotted together in Fig. 10. Both distributions appear to have 
more than one component. The faster component in each 
distribution dominates, and both have peaks at E int=30 kcall 
mol. The P(ET) distribution at 308 run has a slow shoulder 
with a low energy cutoff at ET =6 kcallmol, corresponding to 
Eint=54 kcallmol. The faster component of the 248 nm dis­
tribution is similar in shape to the 308 run distribution and 
differs only at low ET , where there is a second maximum at 
E T=23 kcallmol or Eint=59 kcallmol.lt is likely that the 248 
nm distribution extends to lower translational energies 
(higher internal energies), where secondary dissociation of 
CIO occurs. 

In contrast to the longer wavelength distributions, the 
ClO products from photolysis at 193 run are only formed 
with high internal energies near and above the dissociation 
limit (Eint;;.,33 kcallmol). 

The observation of multiple components in the P(ET) 

'E 
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UJ 
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FIG. 10. The energy level diagram for the. photodissociation of Cl20 at 308 
and 248 nrn. The P(ET) distributions for ClO+CI are shown to illustrate 
how the available energy is partitioned at the two wavelengths. 

distribution at 248 run implies that different dissociation dy­
namics lead to the same final products CIO+Cl. The low­
energy shoulder in the P(ET) distribution at 308 nm could 
also be interpreted as a second pathway, but such a conclu­
sion is more tentative. Partially resolved vibrational structure 
could give the appearance of two components at 308 nm. 
The fast component in the 248 nm P(ET) distribution is 
similar to the 308 nm distribution (see Fig. 10) and thus may 
be attributable to the same dynamical pathway. The second 
peak at 248 nm could then be interpreted as products from a 
new dynamical pathway. On the other hand, the low energy 
shoulder at 308 run could be the onset of a new channel 
which develops into the second peak at 248 nm as the pho­
tolysis wavelength depreases. These alternatives could be 
distinguished in a study of the wavelength dependence of the 
shape of the P(ET) distribution. 

Bimodal distributions can arise if two or more potential 
energy surfaces are 'involved in the dissociation. The irregu­
lar shape of the' absorption spectrum 1 between 220 and 600 
nm suggests the presence of several electronic states. The 
strongest bands are at 255 and -280 nm. It is thus possible 
to excite two repulsive states of CI20, both of which lead to 
ClO+CI products. We observe, however, that all components 
have the same anisotropy, within experimental error. This 
result is more consistent with excitation to a single electronic 
state of C120 followed by a nonadiabatic transition to a sec­
ond surface. In either case; different excited state surfaces 
leading to CIO+CI products may correlate to different final 
spin-orbit states, but our time-of-flight resolution precludes 
us from distinguishing among the possible spin-orbit chan­
nels. 

The bimodal distribution could also be explained if CIO 
products were formed in an electronically excited state. The 
report by Nee and Hsu20 of resolved CIO fluorescence upon 
excitation of CI20 in the vacuum ultraviolet indicates that the 
CIO photoproduct is formed in several Rydberg states, from 
the C to the H states. These states are not accessible at the 
longer wavelengths used in this study. The lowest known 
excited state of CIO is the A 2rr state, but the channel 

C120---+CIO(A 2II)+Clep312), AH~= 122 kcallmol (8) 

is also energetically inaccessible at 248 or 308 nrn. 
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In order for electronic excitation to account for the ob­
served bimodal distributions, it is necessary to postulate a 
hitherto unobserved state of CIO lying below the ground 
state CIO dissociation limit. The ground state configuration 
of CIO is ('7T)4( '7T*)3, and the A 2IT state is the only possible 
molecular state excited by a 'IT*<---'7T transition; however, in 
halogen compounds, the unoccupied a* orbital is relatively 
close in energy to the :rr* orbital, and high spin states from a 
a*<---7T* excitation are bound. For example, the lowest ex­
cited states of Cl2 are the weakly bound 3IJJ states arising 
from the (7T)4( 'IT*)3(a*) 1 configuration. These metastable 
states lie -7 kcallmol below the Cl2 dissociation limit. The 
existence of an analogous low lying state of CIO with con­
figuration (7T)4( 7T*)2(a*)1 is thus plausible, and would have 
4~ symmetry. Langhoff has predicted the existence of a 
weakly bound 4~- state in unpublished ab initio calculations 
performed in the course of an earlier study of CIO doublet 
states.21 In a recent recalculation, he estimates that this state, 
the a 4~- state, has an energy To=5l kcallmol above the 
ground state. 

If the theoretical value of To is correct, formation of CIO 
in the a 4~ - state is energetically allowed in photolysis of 
Cl20 at both 308 and 248 nm. At 308 nm, the energy avail­
able for translation upon formation ofCIO (a 4~-) is Eavt=9 
kcallmol, but essentially no products at these low transla­
tional energies were observed. At 248 nm, where Eavl=3l 
kcallmol, the slower component in the 248 nm P(ET) distri­
bution has a maximum at 21 kca1Jmol and thus conceivably 
could be due to the channel 

(9) 

These products can only correlate with a triplet state of CI20. 
Such a state could be formed by a spin-orbit induced 
Landau-Zener transition occurring at the intersection of an 
initially prepared singlet surface and a repulsive triplet sur­
face of CI20. 

B. The CI2+O channel 

We have presented direct evidence for the concerted dis­
sociation forming CI2+0ep) products following excitation 
at 193 nm. Over 80% of the Cl2 products undergo spontane­
ous secondary dissociation in the collisionless conditions of 
our experiment; the Cl2 products that do reach the detector 
appear to be highly excited, with 53 kcallmol or more of 
internal energy. The positive anisotropy parameter indicates 
that the transition moment and recoil vectors are approxi­
mately parallel. Given that these vectors are perpendicular to 
the a axis of this near prolate top, the low value of f3 pre­
vents us from reaching conclusions concerning the time scale 
of the dissociation.14 These observations are consistent with 
a concerted mechanism occurring on a surface with an early 
exit barrier, in which the CI-CI bond would. form while the 
chlorine atoms are still widely separated. 

The high internal energy of the Cl2 products could arise 
if the Cl2 molecules are formed in an electronically excited 
state. The lowest excited states of Cl2 are the A, A I, and B 
states, which are the three J levels of the 3IJ configuration 
lying 49.1, 50.7, and 50.9 kcallmol, respectively, above the 
ground state. Formation of chlorine in any of these states is 

energetically consistent with the data. Furthermore, the 
CI2eII)+Oep) channel would occur by a spin-allowed pro­
cess upon initial excitation to a singlet state, whereas the 
ground state products CI2(X l~)+Oep) would be formed 
via a spin-forbidden path. Production of triplet chlorine mol­
ecules thus provides the simplest explanation for the ob­
served results. If this hypothesis is correct, prompt emission 
from Cl2 should be observed following 193 nm photolysis of 
CI20. 

We did not observe the CI2+O channel when photolyz­
ing at 308 or 248 nm, although it is energetically allowed at 
both wavelengths. A 193 nm photon excites Cl20 in an en­
tirely new band, and it is possible that the barrier for con­
certed elimination of Clz is significantly lower on the new 
potential energy surface (vide infra). 

A concerted dissociation channel has also been observed 
in the photolysis of OCIO in the 300-400 nm region 

OCIO+hv-.CI+02• (10) 

In contrast to our observations on CI20, Davis and Lee22 

have found that the O2 product from OCIO appears to be 
formed with little internal energy, and O2 may in fact be 
formed in the 1 D.g state. The excited state is predissociative 
(the absorption spectrum is highly structured), and the angu­
lar distribution of photoproducts is isotropic, indicating that 
the excited molecule lives longer than a rotational period. 
These conclusions are supported by a recent time-resolved 
study by Baumert et at.23 The dynamics of this concerted 
dissociation are thus considerably different from those in 
Cl20 dissociation. The mechanism is believed to involve a 
nonadiabatic transition from the initially prepared state to a 
highly bent 2B2 state?4 The small bond angle at the mini­
mum energy configuration of this surface favors formation of 
O2, A similar coupling of electronic states may also be oc­
curring in CI20. 

C. The 2CI+O channel 

We find evidence for complete dissociation of Cl20 into 
three atoms upon excitation at 248 and 193 nm, but not at 
308 nm which lies to the red of the 294 nm threshold. At 248 
nm, this channel occurs by secondary dissociation of the pri­
mary CIO photofragments. Simple bond fission leading to 
CIO+CI products dominates, and formation of 2CI +Oe P) 
products is a minor secondary channel. The 2CI +0 eD) can 
also occur at high laser fiuences by stimulated secondary 
dissociation of CIO, because CIO has a large absorption 
cross section. 

In contrast, at 193 nm, almost ali of the primary Cl2 
photoproducts spontaneously dissociate. CIO that is detected 
is highly excited and it is probable that most of the primary 
CIO also unaergoes secondary dissociation. Although we 
could not determine if concerted three body dissociation oc­
curs upon photolysis at 193 nm, we can conclude that pho­
tolysis of Cl20 at 193 nm leads predominantly to three 
atomic fragments in the absence of quenching collisions. 

Our results are consistent with early photolysis experi­
ments which found evidence for atomic oxygen photoprod­
ucts upon irradiation at wavelengths A <294 nm. Our find­
ings support Edgecomb et at./ who hypothesized that a 
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limited yield of atomic oxygen is foimed via the 2CI +0 
channel in the 235-275 nm photolysis experiment of Schu­
macher and Townend.5 

The quantum yield of 0.25 ±0.05 for atonllc oxygen 
found by Sander and Friedl9 can also be understood qualita­
tively. Both channels (2) and (3) contribute to 0 atom fOl:­
mation because the wavelength range of the xenon flashlamp 
used to photolyze Cl20 extends to 180 nm. At wavelengths 
just below threshold, but longer than 2,0,0 nm,2CI+0 prod­
uctS are probably formed by the secondary dissociation of 
CIO products. Beiow 2,0,0 nm, additional atomic oxygen is 
fonned by the CI2+O channel (3), but most of the Cl2 also 
undergoes secondary dissociation. Channel (2) is thus effec­
tively the dominant source of 0 atom photoproducts, with 
dissociation to three atomic fragments probably resulting 
from secondary dissociation of highly excited diatomic frag­
ments. The relatively low 0 atom yield indicates that most of 
the photolysis occurs at longer wavelengths, a conclusion 
consistent with the intensity distribution of a xenon 
fiashlamp which decreases rapidly for A <3,0,0 nm. Another 
possible source of 0 atoms, stimulated secondary dissocia­
tion of the CIO products, was not discussed in their paper. 

D. Electronic structure of CI20 

The photoelectron spectrum of Cl20 reveals four low­
lying molecular orbitals, all within 4,0 kcal/mol (1.7 eV) of 
the highest occupied molecular orbital (HOMO).25 The orbit­
als have been assigned by ab initio calculations,26,27 taking 
into account perturbation corrections tp the Koopmans' theo­
rem energies,26 and all four contain significant CI p charac­
ter. The highest occupied orbitals in the ground state configu­
ration ofCl20 are .. ·(8a2)2(9al)2(2b2)2(3b l )2. The lowest 
unoccupied molecular orbital (LUMO) is the lOal orbital, 
which possesses significant u*(CIO) character. 

The orbitals are close i~ energy, a~d thus assignment of 
the absorption spectrum is possible only with the aid of cal­
CUlations that treat electron correlation. Lee has computed 
energies of the first ten singlet excited states in an ab initio 
calculation using a coupled-clusters perturbation technique 
CCSD(T).28 He finds five states below 13,0 kcal/mol all with 
predominantly single excitation character, including one lB2 

state at 1,03 kcal/mol (276 nm). In a recent multireference 
configuration interaction calculation, Langhoff also finds a 
1 B 2 state at = 11 0 kcal/mol (28,0 nm) with a large transition 
moment to the ground state;2l given the large uncertainties in 
the calculations, this state is a likely candidate for either the 
s~oulder at 284 nm or the main band at 255 nm. Langhoff 
also predicts at least three other dark states, all triplets, below 
2,0,0 nm. Kuwata et al. identify a high-lying lA I state at -7 
eV in a singles-and-doubles configuration interaction (CISD) 
calculation, and assign it to the absorption band at 171 nm.29 

The emerging theoretical picture of the. excited states of 
CIO, while incomplete, qualitatively supports a number of 
the inferences that we have drawn from the experimental 
results. If we are exciting to the IB2 state at 308 and 248 nm, 
the transition moment is perpendicular to the C2v symmetry 
axis and approximately parallel to the c.m. recoil vector, con­
sistent with the observed values of {3. An electron excited 
from the b2 orbital (weakly antibonding for CIO) to the 

LUMO [the ct*(CIO) lOal orbital] should lead to CIO bond 
cleavage. The different dynamical pathways ieading to the 
CIO+CI products could be the result of nonadiabatic transi­
tions from an initially prepared state to one of the many 
predicted dark states. Spin-orbit coupling to one of the trip­
let states would allow the formation of spin-forbidden prod­
ucts such as quartet CIO. 

The transition moment for excitation to the predicted 
lA I state at 6.8 e V is parallel to the symmetry axis, consis­
tent with the anisotropy parameter measured for the ci2+o 
channel at 193 nm. Concerted dissociation leading to Cl2 
products is most favored on surfaces with the potential en­
ergy minimized at small CIOCI bond angles. Promotion of an 
electron from the b2 orbital to the at orbital will decrease 
this angle because the b2 orbital is a formally antibonding 
orbital cr* for the CI-CI bond, while the LUMO a 1 has 
u(CI2) bonding character. The doubly excited configuration 
that involves exciting both b 2 electrons into the a 1 orbital 
will have 1 A t symmetry. In this configuration, two electrons 
are promoted from a cr* (CI2) orbital into a u(CI2)· bonding 
orbital; therefore, this I A 1 state is expected to possess an 
even smaller bond angle than the IB2 state. Excitation at 193 
nm to a tAl state could prepare a state with significant ad­
mixture of the double b2 excitation, or it could be followed 
by vibronic (Herzberg-Teiler) coupling to a B2 state; in ei­
ther case, the potential energy surface would. favor small 
bond angles and a lower barrier for concerted dissociation. 
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