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ABSTRACT: A Suzuki−Miyaura cross-coupling of α-pyridinium
esters and arylboroxines has been developed. Combined with formation
of the pyridinium salts from amino acid derivatives, this method
enables amino acid derivatives to be efficiently transformed into α-aryl
esters and amides. Under the mild conditions, broad functional group
tolerance on both the amino acid derivatives and the arylboroxine are
observed, including protic functional groups. Mechanistic studies
support an alkyl radical intermediate, similar to other cross-couplings of
alkylpyridinium salts.

Amino acids are a privileged class of starting materials for the
synthesis of a wide variety of organic molecules, ranging

from ligands and organocatalysts to natural products or
pharmaceuticals, including both peptides and nonpeptides.1 In
addition to classic synthetic manipulations that allow the
carboxy group to undergo esterification, reductions, and
substitutions, nickel-catalyzed decarboxylative cross-couplings
enable amino acids to be transformed into amines with a range of
new groups at the α-carbon (Scheme 1A).2 However, the
chemistry of the amino substituent remains largely limited to

classic substitutions on the N atom. Deaminative reactions
continue to be underdeveloped, despite the potential to
efficiently access valuable products. In particular, deaminative
arylations of amino acid derivatives would deliver propionic
acids and related compounds, important for their nonsteroidal
anti-inflammatory activity.3,4 An exception is Wang’s efficient
metal-free reaction of α-diazoesters, generated in situ, and
arylboronic acids; however, only a single example of a protic
functional group (indole) was demonstrated, and the yield was
only 36% (Scheme 1B).5 Based on our work in developing cross-
couplings of Katritzky alkylpyridinium salts,6−8 we envisioned
that pyridinium derivatives of amino acids could also be efficient
reagents for deaminative arylation. Indeed, Glorius was the first
to report an arylation of this class of pyridinium salt, a Minisci-
type reaction enabled by photoredox catalysis; however, this
method is limited to the installation of electron-rich heteroaryl
groups (Scheme 1C).9 In addition, Liu has developed a
photoredox-catalyzed reaction of these pyridinium salts with
biphenyl isocyanates to deliver 6-alkyl phenanthridines,10 and
we have reported a single example of a reductive coupling to
install a pyrimidine.11−14 However, beyond these examples of
installation of specific heteroaryl groups, arylation of these
substrates has not been demonstrated. Specifically, current
methods do not allow installation of a broad scope of aryl
groups, including electronically varied and functionalized aryl
and heteroaryl substituents.
To solve this limitation, we envisioned that a Suzuki−Miyaura

cross-coupling of amino acid-derived pyridinium salts with
arylboronic reagents would enable the synthesis of a diverse
range of α-aryl carboxylates. Suzuki−Miyaura cross-coupling is
one of the most well-established methods for the installation of
an aryl group, often boasts exceptional scope, and is one of the
most useful reactions in medicinal chemistry.15 Herein, we
report the development of this deaminative arylation method,
which uses a catalyst from commercially available components,
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Scheme 1. Deaminative Arylation of Amino Acid Derivatives
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employs mild reaction conditions, and offers wide functional
group tolerance (Scheme 1D).
The pyridinium salt substrates were prepared by treating the

amino esters with 2,4,6-triphenylpyrilium tetrafluoroborate (5)
at room temperature in CH2Cl2 in the presence of Et3N and 4 Å
MS, followed by acidification with AcOH (Scheme 2). This

method is a modified procedure from that originally reported by
Katritzky,16 and generally gives 20−30% higher yields than
heating the amine and 2,4,6-triphenylpyrylium in refluxing
EtOH, which is the most common method for pyridinium salt
synthesis.17

We selected the cross-coupling of pyridinium salt 3b, derived
from alanine, and p-tolylboronic acid for optimization. Using
Ni(cod)2 and 1,10-phenanthroline as the catalyst system, we
observed a dramatic effect of base; although NaOMe and K3PO4
resulted in≤10% yield, the milder K2CO3 provided 69% yield of
desired product 6 (Table 1, entries 1−3). Notably, the Suzuki−

Miyaura arylation of alkylpyridinium salts with unactivated alkyl
groups required a much stronger base (KOtBu),7a potentially
indicating that the α-carbonyl facilitates the reaction, consistent
with a more stabilized radical intermediate. Increasing the
equivalents of boronic acid and base further raised the yield
(entry 4). Under these conditions, air-sensitive Ni(cod)2 could
be replaced with air-stable NiCl2·DME without a detrimental
loss in yield (entry 5). By adding 4 Å MS, the catalyst loading
could be lowered to 5 mol % while maintaining high yield (entry

6). Use of the more electron-rich 4,4′-dimethylbipyridine (4,4′-
dmbpy) ligand resulted in quantitative yield (entry 7). We
hypothesized that the 4 Å MS may be absorbing water from the
boronic acid; accordingly, the use of boroxine is also sufficient to
achieve high yield (entry 8). We found the use of boroxine more
convenient for scope studies (see below), but either protocol
can be used (boronic acid and 4 Å MS or boroxine). Control
experiments demonstrated that 71% yield can be obtained when
the catalyst loading is lowered to 2 mol % (entry 9) and that the
reaction requires heating and nickel catalyst (entries 10 and 11).
With these optimized conditions in hand, we examined their

generality against the pyridinium salt derivatives of common
proteinogenic amino acids (Scheme 3). Of the aliphatic amino
acids, pyridinium salts derived from glycine (7), alanine (8−12),
and phenylalanine (15) esters worked well, including a Weinreb
amide (12). On 5 mmol scale, the reaction also worked well (8).
However, more sterically challenging valine (13) and leucine
(14) derivatives reacted in lower yields. Improved yields were
achieved by heating the reactions at 80 °C; however, the

Scheme 2. Optimized Pyridinium Synthesis

Table 1. Optimizationa

entry [Ni] ligand base yield (%)b

1 Ni(cod)2 1,10-phen NaOMe 10
2 Ni(cod)2 1,10-phen K3PO4 6
3 Ni(cod)2 1,10-phen K2CO3 69
4c Ni(cod)2 1,10-phen K2CO3 77
5c NiCl2·DME 1,10-phen K2CO3 75
6c,d,e NiCl2·DME 1,10-phen K2CO3 88
7c,d,e NiCl2·DME 4,4′-dmbpy K2CO3 >99
8d,f NiCl2·DME 4,4′-dmbpy K2CO3 >99
9f,g NiCl2·DME 4,4′-dmbpy K2CO3 71
10d,f,h NiCl2·DME 4,4′-dmbpy K2CO3 n.d.i

11f none 4,4′-dmbpy K2CO3 n.d.i

aConditions: pyridinium salt 3b (0.10 mmol, 1.0 equiv), [Ni] (10 mol
%), ligand (12 mol %), boronic acid (1.5 equiv), base (1.7 equiv),
MeCN (0.33 M), 70 °C, 24 h. bDetermined by 1H NMR using 1,3,5-
trimethoxybenzene as internal standard. cBoronic acid (2.5 equiv),
base (2.8 equiv). d[Ni] (5 mol %), ligand (6 mol %). e4 Å MS. f(p-
TolBO)3 (0.8 equiv), K2CO3 (2.8 equiv). g[Ni] (2 mol %), ligand (3
mol %). hRoom temperature. in.d. = not detected.

Scheme 3. Substrate Scopea

aConditions: pyridinium salt 3 (1.0 mmol, 1.0 equiv), [Ni] (5 mol
%), ligand (6 mol %), boroxine (0.8 equiv), K2CO3 (2.8 equiv),
MeCN (0.33 M), 70 °C, 24 h. Average isolated yield of duplicate
experiments (±6%), unless noted otherwise. bSingle experiment. cn-
PrCN, 80 °C. dRun on half the normal scale (0.5 mmol 3).
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decomposition prevented even higher temperatures.17 The
pyridinium salt derived from methionine also worked well,
highlighting that even an often challenging thioether is tolerated
(16, 17). Pyridinium salts derived from cysteine and serine
methyl esters, with leaving groups in the β-position, could not be
formed due to elimination under the pyridinium synthesis
conditions.17 Side chains with protic functional groups were well
tolerated, as shown by 18−21 and 24. Even tyrosine (19) and
levodopa18 (20) derivatives with mildly acidic phenol groups
were successful, highlighting the mildness of the reaction
conditions. For pyridinium salts derived from asparagine (Trt,
21), aspartic acid (ester, 22), glutamic acid (ester, 23), lysine
(Cbz, 24), and arginine (Pbf, 25), protecting groups were
required. Without these protecting groups, pyridinium salts
were formed in low yields and some of the cross-couplings were
also poor. For the pyridinium salts derived from histidine and
glutamine, even with protection of the side chain, the substrate
syntheses were unsuccessful. In total, a wide range of functional
groups were tolerated on the pyridinium salts, including esters
(22, 23), a Weinreb amide (12), thioethers (16, 17), an
unprotected indole (18), free phenols (19, 20), primary amides
(21, 24), and a protected guanidine (25).
With respect to the range of arylboroxines amenable to this

reaction, we again observed broad functional group tolerance,
including ethers (8, 13−15, 18−22, 24−25), ketones (9),
tertiary anilines (10), fluoro (11, 12, 23), trifluoromethyl (16),
and aryl bromide (17). Notably, derivatives of pharmaceuticals,
such as ketoprofen (9) and flurbiprofen (12), can be prepared
efficiently.19 In terms of heteroarylboroxines, quinolinyl (7) and
3-pyridyl worked well (11, 15), enabling installation of this
prominent heteroaryl. However, electron-rich heteroaryls, such
as indole, resulted in low yields, as did arylboroxines with ortho
substituents.17

We also attempted to conduct the pyridinium formation and
cross-coupling in a single step. Simultaneous addition of the
pyrylium tetrafluoroborate and cross-coupling reagents (nickel
catalyst, arylboroxine, base) was unsuccessful. However, a one-
pot protocol was developed for the transformation of amino
ester 4a to product 8 without isolation of pyridinium 3a
(Scheme 4). Although this protocol resulted in lower yield than
when pyridinium 3a was isolated, such a one-pot protocol may
be advantageous in certain cases, such as parallel synthesis.

Like previous nickel-catalyzed cross-couplings of alkylpyr-
idinium salts,7a we hypothesize that this reaction proceeds via
single-electron transfer (SET) from a nickel catalyst to the
pyridinium ring to yield a neutral pyridyl radical. C−N bond
fragmentation then gives an alkyl radical, which likely combines
with a nickel arene intermediate before undergoing reductive
elimination to yield the arylated product. In support of an alkyl
radical intermediate, we observed racemization in the cross-
coupling of enantioenriched 3a, prepared from L-alanine
(Scheme 5, top).20 Also, the addition of TEMPO to the cross-
coupling yielded TEMPO-trapped adduct 26 (Scheme 5,

middle). Finally, the cross-coupling of cyclopropane 3q resulted
in formation of ring-opened product 27 (Scheme 5, bottom).
Further studies are needed to elucidate the nickel intermediates
involved.
In summary, we have developed a nickel-catalyzed Suzuki−

Miyaura arylation of amino acid-derived pyridinium salts. This
reaction harnesses a privileged class of substrates (amino acid
derivatives) and delivers α-aryl esters, which can be readily
hydrolyzed to carboxylates well-appreciated for their bioactiv-
ities. The reaction conditions are mild, enabling a broad range of
functional groups to be installed, making this method a useful,
complementary reaction for the arylation of amino acid
derivatives.
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