Synthese und Cycloadditionen von *trans,trans-*1,4-Bis[ethoxycarbonylamino]-1,3-butadien¹

Richard R. SCHMIDT*, Adalbert WAGNER

Fakultät für Chemie, Universität Konstanz, Postfach 55 60, D-7750 Konstanz, Bundesrepublik Deutschland

Ungesättigte Kohlenhydrate², insbesondere Pseudoglycale^{2,3} (Hex-2-enopyranosen) sind von wachsendem Interesse als Synthese-Zwischenstufen, da die Doppelbindung leicht modifiziert werden kann, z. B. durch Hydroxylierung^{4,5}, Epoxidierung^{5,6} und Hydroxyaminierung⁷. Zur direkten Synthese 4-amino-substituierter Pseudoglycale, deren Bedeutung beispielsweise durch die Strukturen der Antibiotika Blasticidin S und Mildiomycin unterstrichen wird, wurden Cycloadditionen von 1,4-Diaminobutadienen mit Carbonyl-Verbindungen und anderen Dienophilen begonnen⁸. Das trans,trans-1,4-Bis[ethoxycarbonylamino]-1,3-butadien (1a) konnten wir durch Curtius-Abbau von trans,trans-Muconsäure (2a) erhalten. Dazu wurde intermediär das gemischte Anhydrid 2b und daraus das Azid 2c hergestellt und 2c der Thermolyse in Ethanol unterworfen.

HO

2a

$$\begin{array}{c}
C_1 - C_2 - C_2 + f_5 / (i - C_3 + f_7)_2 N - C_2 + f_5 / DMF / Aceton
\end{array}$$

$$\begin{bmatrix}
C_2 + f_5 - C_5 - O_5 & O_5 & O_5 - C_5 + f_5 / DMF / Aceton
\end{array}$$

$$\begin{bmatrix}
C_2 + f_5 - C_5 - O_5 & O_5 & O_5 - C_5 + f_5 / DMF / Aceton
\end{array}$$

$$\begin{bmatrix}
N_3 & O_5 & O_5 & O_5 - C_5 - O_5 + f_5 / DMF / Aceton
\end{array}$$

$$\begin{bmatrix}
N_3 & O_5 & O_5 & O_5 - C_5 - O_5 - C_5 - C_5$$

Damit steht neben dem 1,4-Diacetoxybutadien 1b⁹, dem 1,4-Bis[acetylthio]-butadien 1c¹⁰ bzw. dem 1,4-Bis[trimethylsilylthio]-butadien 1d¹⁰ auch die entsprechende 1,4-Diamino-Verbindung 1a zur Verfügung.

(H₂C)₂Si-S S-Si(CH₃)₃ 1d

Durch Diels-Alder-Reaktionen elektronen-reicher Diene, insbesondere solcher mit Alkoxy- und Acyloxy-Substituenten, wurden zahlreiche funktionell substituierte, sechsgliedrige Ringe aufgebaut und zur Synthese von Naturstoffen und Derivaten genutzt^{3,11}. Die Umsetzung von 1a mit verschiedenen elektronenarmen Dienophilen lieferte bequem entsprechende amino-substituierte Cycloaddukte (3-9).

Die Reaktion mit Maleinsäure-anhydrid lieferte das Addukt 3, das beim Erhitzen über den Schmelzpunkt in Phthalsäure-anhydrid (10) übergeführt wurde.

Das primäre Cycloaddukt des Tetracyanoethylens cyclisierte sofort zum Pyrimidin-Derivat 4. 1,4-Naphthochinon und 5-Hydroxy-1,4-naphthochinon ergaben mit 1a unter Dehydrierung die Anthrachinon-Derivate 5¹² und 6. Mit Acetylendicarbonsäure-ester wurde das Cyclohexadien-Derivat 7 erhalten, welches mit Mangandioxid quantitativ zum bekannten 3,6-Diaminophthalsäure-Derivat 11¹³ dehydriert wurde.

$$C_2H_5O-C-N$$
 H^5
 C_2H_5O-C-N
 H^3
 C_2H_5O-C-N
 H^3
 C_2H_5O-C-N
 C_2H_5
 C_2H_5
 C_2H_5
 C_2H_5
 C_2H_5
 C_2H_5
 C_2H_5
 C_2H_5
 C_2H_5
 C_2H_5

Als Heterodienophile wurden außerdem Azodicarbonsäureester und Mesoxalsäure-ester eingesetzt und das Pyridazin 8 bzw. das amino-substituierte Pseudoglycal 9 isoliert.

1,4-Bis[ethoxycarbonylamino]-1,3-butadien (1a):

Zu einer gerührten Lösung von trans,trans-Muconsäure (2a; 21.3 g, 0.15 mol) und Diisopropylethylamin (48 g, 0.372 mol) in wasserfreiem Dimethylformamid (160 ml) läßt man bei 0°C unter Stickstoff eine Lösung von Ethyl-carbonochloridat (Alte Bezeichnung: Chlorameisensäureethyl-

Tabelle 1. Cycloaddukte (3-9) aus 1,4-Bis[ethoxycarbonylamino]-butadien (1c) und Dienophilen

Dienophil	Cycloaddukt		Reaktions- bedingungen	Ausbeute ^a [%]	F [°C]	R _f ^b	Summenformel (molare Masse)
	C ₂ H ₅ O-C-N H ⁶ H ¹ O H ⁴ C ₂ H ₅ O-C-N H ³ H ² O	3	20 h/80°C	70	183-204°C ^d	0.25	C ₁₄ H ₁₈ N ₂ O ₇ (326.3)
NC_C CN	C ₂ H ₅ O-C-N CNCNO O O O O O O O O O O O O O O O O	4	5 min/25 °C	75	175°C	0.40	C ₁₆ H ₁₆ N ₆ O ₄ (356.3)
	H ² H ² H ³	_{2H5} 5	3 h/80°C	65	220°C Zers.	0.77	C ₂₀ H ₁₈ N ₂ O ₆ (382.4)
он о	H ² OH OHN C-O(C ₂ H ₅ C ₂ H ₅ 6	3.5 h/40 °C	69	234°C Zers.	0.83	C ₂₀ H ₁₈ N ₂ O ₇ (398.4)
оосн _з	C ₂ H ₅ O-C-N H ⁶ COOCH ₃ H ² COOCH ₃ C ₂ H ₅ O-C-N H ³	7	20 h/80°C	72	96−97°C	0.43	C ₁₆ H ₂₂ N ₂ O ₈ (370.4)
COOC ₂ H ₅ I N IN IN I COOC ₂ H ₅	C ₂ H ₅ O-C-N H ⁵ U C ₂ H ₅ O-C-N H ⁵ U C ₂ H ₅ O-C-N H ⁵ U	8	20 h/80°C	80	Öl	0.33	$C_{16}H_{26}N_4O_8$ (402.4)
C ₂ H ₅ OOC ₂ COOC ₂ H ₅	C ₂ H ₅ O-C-N H ² C ₂ H ₅ O-C-N H ²	9	44 h/80°C (Tisch-Autoklav)	34°	ÖI	0.43	C ₁₇ H ₂₆ N ₂ O ₉ (402.4)

a Isoliertes Produkt.

ester; 33 g, 0.30 mol) in wasserfreiem Aceton (30 ml) tropfen und nach 30 min eine eisgekühlte Lösung von Natriumazid (39 g, 0.30 mol) in Wasser (90 ml). Man rührt noch 15 min, gießt das Gemisch dann auf Eiswasser (400 ml) und extrahiert mit Toluol (10×300 ml). Die Toluol-Phase wird mit Natriumsulfat getrocknet, auf 250 ml eingeengt und die so erhaltene Azid-Suspension (2c) in eine siedende Lösung von t-Butylbrenzkatechin (50 mg) in wasserfreiem Ethanol (69 g, 1.5 mol) und Toluol (75 ml) tropfen gelassen. Nach 2 h wird das Gemisch zur Kristallisation von 1a auf -10 °C gebracht und das Produkt abgesaugt; Ausbeute: 11.0 g (32%); F: 230 °C (Zers.).

 $C_{10}H_{16}N_2O_4$ ber. $C_{52.62}$ $H_{7.06}$ $N_{12.27}$ (228.2) gef. $C_{52.67}$ $C_{7.07}$ $C_{7.07}$ $C_{7.07}$ $C_{7.07}$

'H-N.M.R. (DMSO- d_6): δ =9.30 (d, 2 N--H, $J_{1,NH}$ =9 Hz); 6.20-6.72 (m, AA'BB'-Spektrum 1-H, 4-H; 5.50-5.95 (m, AA'BB'-Spektrum 2-H, 3-H); 4.15 (q, 4H, 2 CH₂); 1.25 ppm (t, 6H, 2 CH₃).

trans, trans-1,4-Bis[ethoxycarbonylamino]-1,3-butadien (1a) aus trans, trans-Muconsäure-dichlorid:

Zu Azidotrimethylsilan (14 g, 0,12 mol) gibt man bei 10 °C innerhalb von 10 min portionsweise trans.trans-Muconsäure-dichlorid (10 g, 0,055 mol). Der entstandene Kristallbrei wird in wasserfreiem Dichloromethan (150 ml) suspendiert und das Gemisch 2 h gerührt. Die Kristalle (Diazid) werden unter Feuchtigkeitsausschluß abfiltriert, bei Raumtemperatur im

b Laufmittel: Petrolether/Ethyl-acetat 1/1.

Die Mikroanalysen stimmten mit den berechneten Werten gut überein: C, ± 0.20 ; H, ± 0.14 ; N, ± 0.26 .

d Umwandlungsbereich in Phthalsäureanhydrid.

^e Bezogen auf 70% Umsatz von 1a.

Tabelle 2. 1H-N.M.R.-Daten der Cycloaddukte 3-9, 8 [ppm]

Produkt	Produkt Solvens	1-H	2-H	3-Н	4-H	5-H	Н-9	7-H	Н-8	HN	0CH ₂	ОСН3	СН,	НО
3ª	DMSO-d ₆	3.60	3.60-3.90	4.15-4.60		5.87	4.15-4.60			7.55 (d),	4.02 (q)		1.20 (t),	
4aª	Aceton-d ₆		- (m)	(m) 9.75 (s)	1	(s, 2H)	(m) 6.87 (m)	6.17 (dd),	6.1-6.4 (m);	J = 8 Hz 6.87 (d),	J = 7 Hz 4.45 (q),	I	J = 7 Hz 1.40 (t),	i
								J = 10 Hz, $J = 3 Hz$	5.775 (d), 8a-H, J=6.5 Hz	J = 10 Hz	J = 7 Hz; 4.20 (q),		J = 7 Hz; 1.20 (t),	
Sc.d	CDCI3	Automore	8.95	35	l	8.20-	7.75-7.	06	8.20-8.35	12.06 (s)	J = 7 Hz 4.30 (q),		J = 7 Hz 1.37 (t),	1
ŝ	į d		(s, 2H)	(H)		8.35 (m)	(m)		(m)		J = 7.1 Hz		J=7.1 Hz	
o	CDCi		∞ '	96	1	· ·		7.33-7.88 (m)	(u	12.12 (s);	4.28 (q),		1.37 (t),	12.5
			(s, 2H)	(H)						11.76 (s)	J = 7.1;		J = 7.1;	(s)
ř	5										4.30 (q)		1.39 (t)	
•	CDCI3			4.70-	.5	5.90 (d),	4.70-	*		5.42 (d),	4.12 (q),	3.80	1.24 (t),	1
ő	5			5.00 (m)	<i>J</i> =	J = 2.6 Hz	5.00 (m)			J = 7.4 Hz	J = 7.1 Hz	(s)	J = 7.1 Hz	
6	CDCI		ļ	$5.40-5.90^{b}$	5.0	90-6.45	5.40-	1	}	6.00-7.00	4.15 (m)	de la constantina della consta	1.20 (m)	1
Š	Ö			(m)		(m)	5.90 ^b (m)			(m) _b				
.	CDCI	6.26 (dd),		6.08-6.16	5.32 (d),		1	1		5.74-5.98	3.90-	í	1.10-	1
		J = 8.2 Hz,	c, 5.32 (m) (m)	(m)	$J = 8.2 \mathrm{J}$	Hz				(m)	4.50 (m)		1.60 (m)	
		711 7 - 6												

Vakuum (0.001 torr) vom restlichen Lösungsmittel befreit und dann in wasserfreiem Dioxan (200 ml) gelöst. Diese Lösung lässt man innerhalb von 1 h zu einer siedenden Mischung von wasserfreiem Ethanol (25.3 g, 0.55 mol), Toluol (200 ml) und Hydrochinon (50 mg) tropfen. Nach weiteren 2 h wird das Gemisch zur Kristallisation von 1a auf – 10 °C gebracht und das Produkt abgesaugt; Ausbeute: 9.2 g (72%); F: 230 °C (Zers.). Das so erhaltene Produkt ist mit dem wie oben erhaltenen 1a identisch (¹H-N.M.R., I.R.).

Diels-Alder-Reaktionen mit 1a; allgemeine Arbeitsvorschrift:

1.4-Bis[ethoxycarbonylamino]-1,3-butadien (1a; 1 equiv), das Dienophil (1.2 equiv) und Hydrochinon (0.01 equiv) werden in wasserfreiem Dimethylformamid (1 ml/0.1 g 1a) umgesetzt (Reaktionsbedingungen siehe Tabelle 1). Nach Beendigung der Reaktion wird das Solvens im Vakuum (0.01 torr) abgezogen und das Produkt umkristallisiert (3, 4, 5, 6 aus Ethanol, 7 aus Ether/Hexan 1/2) oder an Kieselgel chromatographiert (für 9: niedrig-siedender Petrolether/Ethyl-acetat 1/1; für 8: niedrig-siedender Petrolether/Ethyl-acetat 7/3).

Phthalsäure-anhydrid (10) aus Addukt 3:

U.V. (Acetonitril): $\lambda_{\text{max}} \approx 496 \text{ nm } (\log \varepsilon = 4.02)$.

^e FT-Spektren (Bruker HX 90 E; CDCl, als innerer Standard).

U.V. (Acetonitril): $\lambda_{\text{max}} = 484 \text{ nm (log } \varepsilon = 3.80)$

8-Werte konnten nicht eindeutig zugeordnet werden.

^a TMS als innerer Standard.

4.7-Bis[ethoxycarbonylamino-1,2,3,6-tetrahydrophthalsäure-anhydrid (3; 0.30 g, 0.9 mmol) wird 5 min auf 210 °C erhitzt und das so erhaltene Produkt aus Acetonitril kristallisiert; Ausbeute: 0.12 g (90%); F: 131 °C (Lit. 15 , F: 131.8 °C).

3,6-Bis[ethoxycarbonylamino]-phthalsäure-dimethylester (11):

Eine Lösung von 3,6-Bis[ethoxycarbonylamino]-3,6-dihydrophthalsäure-dimethylester (7; 0.10 g, 0.27 mol) in Chloroform (5 ml) wird mit aktiviertem Mangandioxid¹⁴ 16 h bei Raumtemperatur gerührt. Anschließend wird filtriert, das Filtrat eingeengt; Ausbeute: 93 mg (94%); F: 184°C (Lit.¹³, F: 184–185°C).

C₁₆H₂₀N₂O₈ ber. C 52.17 H 5.47 N 7.61 (368.3) gef. 52.14 5.59 7.43

U.V. (Ethanol): $\lambda_{\text{max}} = 327 \text{ nm } (\log \varepsilon = 3.46)$.

¹H-N.M.R. (CDCl₃): δ = 8.52 (s, 2 N—H); 8.32 (s, 5-H, 6-H); 4.25 (q, 20-CH₂); 3.87 (s, 2-OCH₃); 1.32 ppm (t, 2 CH₃).

Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie danken wir für finanzielle Förderung dieser Arbeit.

Eingang: 7. Juli 1980

¹ De-novo-Synthese von Kohlenhydraten und verwandten Natrustoffen, Teil 7. Teil 6, siehe R. Angerbauer, R. R. Schmidt, *Carbohydr. Res.* 88, im Druck.

R. J. Ferrier, Adv. Carbohydr. Chem. 20, 67 (1965); 24, 199 (1969). B. Fraser-Reid, Acc. Chem. Res. 8, 192 (1975).

³ R. R. Schmidt, R. Angerbauer, Angew. Chem. 89, 822 (1977); Angew. Chem. Int. Ed. Engl. 16, 783 (1977).

R. Angerbauer, R. R. Schmidt, Carbohydr. Res., im Druck.

R. J. Ferrier, N. Prasad, J. Chem. Soc. [C] 1969, 575.
O. Achmatowicz, B. Szechner, Rocz. Chem. 49, 1715 (1975); C. A. 84, 90434 (1976).

⁵ R. R. Schmidt, R. Angerbauer, Carbohydr. Res., im Druck.

[&]quot;O. Achmatowicz, B. Szechner, Carbohydr. Res. 50, 23 (1976).

⁷ I. Dyong, G. Schulte, Q. Lam-Chi, H. Friege, Carbohydr. Res. 68, 257 (1979).

⁸ A. Wagner, *Diplomarbeit*, Universität Konstanz, 1980.

⁹ R. M. Carlson, R. K. Hill, Org. Synth. 50, 24 (1970).

R. S. Glass, D. L. Smith, Synthesis 1977, 886.

¹¹ R. R. Schmidt, R. Angerbauer, Angew. Chem. 91, 325 (1975); Angew. Chem. Int. Ed. Engl. 18, 304 (1979).

R. R. Schmidt, R. Angerbauer, Carbohydr. Res. 72, 272 (1979).

S. Blechert, Nachr. Chem. Tech. Lab. 28, 167 (1980), und dort zitierte Literatur.

¹² M. E. Grandmougin, C. R. Acad. Sci. 175, 971 (1922).

¹³ P. C. Arora, D. Mackay, J. Chem. Soc. [D] 1969, 677.

W. Oppolzer, L. Bieber, E. Francotte, Tetrahedron Lett. 1979, 4537.

¹⁵ R. H. Kienle, A. G. Hovey, J. Am. Chem. Soc. 51, 509 (1929).