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ABSTRACT: An environmentally benign method for the synthesis of aryl sulfides in water under mild conditions has been real-

ized, in which arenes are coupled with equal stoichiometry of allyl sulfides. This arylthiolation is enabled by the presence of the 

Lipshutz surfactant, TPGS-750-M, using water as the recyclable reaction medium. 

Aryl sulfides are key constituents of pharmaceuticals,
1
 ligands,

2
 and organic materials

3
 and are useful intermediates

4
 in modern 

organic chemistry. Accordingly, a wide variety of approaches to aryl sulfides have been developed. One of the most common 

methods involves the transition metal-catalyzed coupling of aryl halides or pseudohalides with thiols or other sulfur based partners,
5
 

which typically require prefunctionalized arenes (e.g. aryl halides). The direct C–H arythiolation of arenes mediated by transition 

metals
6
 offers improved reaction efficiency; however, these reactions often require expensive and sometimes toxic transition met-

als, raising issues of metal contamination especially in the pharmaceutical industry. More recently, direct C–H arylthiolation for the 

synthesis of aryl sulfides under metal-free conditions
7
 has emerged. Various electrophilic sulfur reagents and precursors including 

thiols,
8
 disulfides,

9
 sulfonyl chlorides,

10
 sulfonyl hydrazines,

11
 N-(thio)succinicmides,

12
 sodium sulfonates,

13
 and others

14
 have been 

employed. While these represent powerful transformations, the vast majority of current synthetic approaches suffer from limitations 
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including: the use of bad odor, air-sensitive thiol substrates, strongly basic media, inert atmosphere, excess oxidants, high reaction 

temperature, and toxic organic solvents. Therefore, the development of new sustainable protocols for the synthesis of aryl sulfides 

in green solvents, such as water,
15

 under mild conditions is still highly desirable for sustainable organic synthesis. 

Scheme 1. PIFA-Mediated Direct C–H arylthiolation  

 

The arylthiolation of arenes with benzyl phenyl sulfide in the presence of phenyliodine(III) bis(trifluoroacetate) (PIFA) was first 

reported by Kita et al.
16

 in 1996 and involved a one-pot two-step procedure at -78 °C (Scheme 1A). Given PIFA, which belongs to 

one of the most important classes of hypervalent iodine(III) reagents,
17

 is easy accessible and low toxic, this transformation is po-

tentially useful. However, only one substrate, o-dimethoxybenzene was reported using halogenated solvent CH2Cl2, which is envi-

ronmentally egregious.
18

 In addition, the E Factor
19

 from Kita’s procedure is very high. As our continuing efforts exploring organo-

sulfur chemistry in water,
20

 we report herein an environmentally benign method for the synthesis of aryl sulfides via C–H function-

alization of electron-rich arenes in water (Scheme 1B). This new method offers some advantages, including a benign reaction sol-

vent, a 1:1 ratio of the two coupling partners, catalytic use of ZnCl2 under micellar conditions,
21

 and recyclable reaction medium 

and catalyst. 

Our optimization studies focused on the reaction between m-dimethoxybenzene and commercially available allyl phenyl sulfide 

(Table 1). To our delight, the desired arylthiolation product 1 was obtained in 70% yield after a 24 h reaction that employed 10 mol% 

ZnCl2 as the catalyst, 1 equiv PIFA as the oxidant, and 2 wt% TPGS-750-M/H2O as the solvent (Table 1, entry 1). In order to shed 

light on the role of each reagent, several control experiments were subsequently conducted. Reaction efficiency was dramatically 

affected upon removing ZnCl2 from the reaction (Table 1, entry 2), which suggested that the reactivity of PIFA might be further 

enhanced by Lewis acid ZnCl2.
22

 Attempts to replace ZnCl2 with other Lewis acids, such as LiCl and BF3•Et2O, resulted in a much 

lower yield (Table 1, entries 3 and 4). Inferior reaction performance was also observed when a variety of alternative solvents such 

as toluene, THF, MeCN, CH2Cl2, toluene/water, CH2Cl2/water, or pure water were used (Table 1, entries 5–11). This confirmed that 

TPGS-750-M, developed by Lipshutz,
23

 might be playing a significant role in the micellar catalysis. 
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Table 1. Optimization of the Reaction Conditions 

 

entry variation from the standard condition yieldb 

1 none 70 

2 without ZnCl2 42 

3 LiCl instead of ZnCl2 46 

4 BF3•Et2O instead of ZnCl2 37 

5 in toluene 32 

6 in THF 8 

7 in MeCN 27 

8 in CH2Cl2 24 

9 in toluene/water 50 

10 in CH2Cl2/water 56 

11 in H2O 61 

aConditions: m-dimethoxybenzene (0.24 mmol), allyl phenyl sulfide (0.24 mmol), ZnCl2 (0.024 mmol), PIFA (0.24 mmol), solvent (0.6 

M) at 60 °C for 24 h. bYields were determined by HPLC analysis with 1-nitro naphthalene as an internal standard. 

Using the standard conditions described in Table 1, we next explored the scope of this transformation. With respect to ally sul-

fides, diverse ally aryl sulfides served as effective cross-coupling partners with m-dimethoxybenzene or 1,3,5-trimethoxybenzene 

(Scheme 2). Product 1 was isolated in 67% yield. Arylthiolation products were obtained in moderate to excellent yields (45%–98%) 

with allyl sulfides containing electron-donating (2–6) and electron-withdrawing (7–14) functional groups. It is worth highlighting 

that versatile bromo, chloro, and fluoro substituents were well tolerated, which could be potentially further functionalized. While 

electronic effects had no significant influence on the process (3, 5, and 14), steric effects resulted in noticeable differences in reac-

tivity (5 vs 6, and 8 vs 9). Naphthyl-substituted substrates were also competent in the reaction conditions, delivering desired sulfides 

(15 and 16) in good yields. 
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Scheme 2. Scope of ally sulfides 
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We next evaluated the scope with regards to the arene coupling partner (Scheme 3). Various electron-rich arenes were successful-

ly coupled to allyl phenyl sulfide. Alkoxybenzenes proceeded well under the standard conditions, giving the corresponding prod-

ucts in high yields (17 and 18). Phenols also underwent smooth C–H arylthiolation, albeit in lower yields (19 and 20). In addition, 

extended aromatics were successfully applied (21–26). Finally, this coupling reaction is compatible with free hydroxyl (19, 20, 22 

and 24), amine (25 and 27), and amide (26) groups. With respect to limitatioins, this method is unsuccessful with arenes like simple 

phenol, anisole, and toluene, or arenes with electron-withdrawing groups. 
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Scheme 3. Scope of arenes 

 

To further demonstrate the sustainability of this micelle-enabled coupling, we performed recycling of the aqueous medium con-

taining the surfactant TPGS-750-M and ZnCl2 catalyst (Scheme 4). Once an arylthiolation was complete, the reaction solution was 

extracted with a minimum volume of ethyl acetate, providing the desired coupling product. To the remaining aqueous mixture, was 

then introduced 1,3,5-trimethoxybenzene (1 equiv), allyl phenyl sulfide (1 equiv), and PIFA (1 equiv), leading to another arylthiola-

tion. As shown in scheme 4, the arylthiolation proceeded efficiently without significant loss of yields and with a low E factor for 

each recycle. The E factor can be reduced dramatically compared to Kita’s reaction conditions (Scheme 1a). 

Scheme 4. Recycle Studies 

 

Lastly, a hypothetical mechanism for the arylthiolation is outlined in Scheme 5a. We propose that the first step is the formation 

of radical cation intermediate A, via a single electron transfer (SET) process.
8d

 Subsequent nucleophilic attack of radical cation B 

by the sulfide would give rise to the sulfonium salt B. Following deallylation
7b

 would liberate the desired aryl sulfide product 1. 

Importantly, it has been shown that PIFA is an excellent SET oxidant.
17, 24

 Moreover, the addition of radical scavenger TEMPO 

prevented formation of sulfide 1, suggesting that radical intermediates might be involved in the transformation.  
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Scheme 5. Proposed Reaction mechanism 

  

In summary, we have demonstrated an environmentally benign method for the synthesis of diaryl sulfides under micellar condi-

tions. The C–H arylthiolation process was enabled by the presence of the Lipshutz surfactant, TPGS-750-M. Most notably, this 

reaction proceeded in an aqueous reaction medium that avoids organic solvent and allows for the recycling of the water, surfactant, 

and the catalyst. 

ASSOCIATED CONTENT  

EXPERIMENTAL SECTION 

General Experimental. 

General Information: All glassware was oven dried and all solvents were distilled prior to use, unless otherwise noted. Unless 

otherwise noted, all reactions were performed under an atmosphere of argon. Optimization and substrate screens were performed in 

2-mL and 4-mL vials. All reagents were used as received from commercial suppliers unless otherwise indicated. TPGS-750-M was 

prepared according to the literature.
23d

 The 2 wt% TPGS-750-M/H2O solution was prepared by dissolving TPGS-750-M in water. 

Allyl phenyl sulfide were prepared according to the procedures reported in the literature
 25

. Thin-layer chromatography (TLC) was 

carried out on Merck silica gel plates (60F-254) and compounds were visualized using UV light absorbance and/or Vanillin reagent, 

and High Performance Liquid Chromatography (HPLC) with UV detection at 254 nm. For HPLC yields, UV response factors rela-

tive to an internal standard (1-Nitronaphthalene). Flash column chromatography was performed using silica gel 60 (230-400 mesh). 

High resolution mass spectra were acquired by Agilent 6500 QTOFMS (ESI). All 
1
H NMR, 

13
C NMR spectra were recorded on 

Bruker DRX-600 or AMX-400 instruments. Chemical shifts were given in parts per million (ppm, δ), referenced to the solvent peak 

of CDCl3, defined at δ = 7.26 (
1
H NMR), defined at δ = 77.16 (

13
C NMR). Coupling constants were quoted in Hz (J). 

1
H NMR 

Spectroscopy splitting patterns were designated as singlet (s), doublet (d), triplet (t), quartet (q). Splitting patterns that could not be 

interpreted or easily visualized were designated as multiplet (m) or broad (br). 

General Procedure for the Preparation of aryl sulfides: An oven-dried 4 mL vial was charged with ZnCl2 (0.024 mmol, 10 

mol%), arene (0.24 mmol, 1 eq), 2 wt% TPGS-750-M/H2O (0.4 mL, 0.6 M) and allyl sulfide  (0.24 mmol, 1 eq) sequentially. The 
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mixture was stirred for about 1 min until a homogeneous solution appeared. PIFA (0.24 mmol, 1 eq) was added and the solution 

was heated at 60 °C for 24 hours. After the completion monitored by TLC, the reaction was cooled to RT and extracted by EtOAc 

(3×0.4 mL), the organic phases was dried over anhydrous Na2SO4 and concentrated in vacuo. The crude was purified by flash col-

umn chromatography (petroleum ether /EtOAc = 50/1 to petroleum ether /EtOAc = 20/1) to afford desired aryl sulfides. 

(2,4-Dimethoxyphenyl)(phenyl)sulfane (1).
26  

The product was obtained as a colorless oil (39.5 mg, 0.161 mmol, 67% yield).  
1
H 

NMR (600 MHz, CDCl3) δ 7.34 (d, J = 8.4 Hz, 1H), 7.22 (m, 2H), 7.12 (m, 3H), 6.53 (d, J = 2.5 Hz, 1H), 6.50 (dd, J = 8.4, 2.5 Hz, 

1H), 3.84 (s, 3H), 3.81 (s, 3H). 
13

C NMR (150 MHz, CDCl3) δ 162.0, 160.5, 137.9, 136.9, 128.9, 127.9, 125.6, 112.3, 105.5, 99.4, 

56.1, 55.6. 

(2,4-Dimethoxyphenyl)(4-methoxyphenyl)sulfane (2).
9d

 The product was obtained as a colorless oil (34.5 mg, 0.125 mmol, 52% 

yield). 
1
H NMR (400 MHz, CDCl3) δ 7.29 – 7.24 (m, 2H), 7.07 (d, J = 8.5 Hz, 1H), 6.86 – 6.80 (m, 2H), 6.48 (d, J = 2.5 Hz, 1H), 

6.42 (dd, J = 8.5, 2.5 Hz, 1H), 3.84 (s, 3H), 3.79 (s, 3H), 3.79 (s, 3H). 

(4-Methoxyphenyl)(2,4,6-trimethoxyphenyl)sulfane (3).
7c

 The product was obtained as a white solid (51.4 mg, 0.168 mmol, 70% 

yield). 
1
H NMR (400 MHz, CDCl3) δ 7.09 – 7.04 (m, 2H), 6.76 – 6.71 (m, 2H), 6.19 (s, 2H), 3.85 (s, 3H), 3.81 (s, 6H), 3.74 (s, 

3H). 

(2,4-Dimethoxyphenyl)(p-tolyl)sulfane (4).
9d

 The product was obtained as a colorless oil (35.0 mg, 0.134 mmol, 56% yield). 
1
H 

NMR (400 MHz, CDCl3): δ 7.24 (d, J = 8.4 Hz, 1H), 7.12 – 7.08 (m, 2H), 7.05 (d, J = 8.4 Hz, 2H), 6.51 (d, J = 2.5 Hz, 1H), 6.47 

(dd, J = 8.4, 2.5 Hz, 1H), 3.821 (s, 3H), 3.818 (s, 3H) 2.30 (s, 3H). 
13

C NMR (100 MHz, CDCl3) δ 161.5, 159.9, 135.9, 135.6, 

133.5, 129.8, 129.2, 113.8, 105.4, 99.4, 56.1, 55.6, 21.1 

p-Tolyl(2,4,6-trimethoxyphenyl)sulfane (5).
26

 The product was obtained as a white solid (60.6mg, 0.209 mmol, 87% yield). 
1
H 

NMR (400 MHz, CDCl3) δ 6.99 – 6.93 (m, 4H), 6.21 (s, 2H), 3.87 (s, 3H), 3.81 (s, 6H), 2.25 (s, 3H). 

m-Tolyl(2,4,6-trimethoxyphenyl)sulfane (6). The product was obtained as a white solid (46.0 mg, 0.158 mmol, 66% yield). 
1
H 

NMR (400 MHz, CDCl3) δ7.03 (t, J = 7.7 Hz, 1H), 6.88 (s, 1H), 6.84 (d, J = 7.5 Hz, 1H), 6.77 (d, J = 7.9 Hz, 1H), 6.22 (s, 2H), 

3.88 (s, 3H), 3.81 (s, 6H), 2.24 (s, 3H). 
13

C NMR (100 MHz, CDCl3) δ 163.0, 162.7, 138.6, 138.3, 128.5, 126.5, 125.5, 122.8, 91.4, 

56.5, 55.6, 21.5. HRMS-ESI (m/z) [M+H]
+
 calculated for C16H19O3S 291.1049, found 291.1056. HRMS-ESI (m/z) [M+K]

+
 calcu-

lated for C16H18KO3S 329.0608, found 329.0609. 

(4-Bromophenyl)(2,4-dimethoxyphenyl)sulfane (7).
27

 The product was obtained as a colorless oil (40.4 mg, 0.125 mmol, 52% 

yield). 
1
H NMR (400 MHz, CDCl3) δ 7.37 (dd, J = 8.1, 0.5 Hz, 1H), 7.34 – 7.28 (m, 2H), 6.99 – 6.94 (m, 2H), 6.55 – 6.48 (m, 2H), 

3.84 (s, 3H), 3.80 (s, 3H). 
13

C NMR (100 MHz, CDCl3) δ 162.4, 160.7, 137.6, 137.4, 131.8, 129.0, 119.0, 111.4, 105.6, 99.6, 56.1, 

55.7. 

(3-Bromophenyl)(2,4,6-trimethoxyphenyl)sulfane (8). The product was obtained as a white solid (67.3 mg, 0.190 mmol, 79% 

yield). 
1
H NMR (400 MHz, CDCl3) δ 7.15 (ddd, J = 7.7, 1.8, 1.2 Hz, 1H), 7.09 (t, J = 1.7 Hz, 1H), 7.01 (t, J = 7.8 Hz, 1H), 6.98 – 

Page 7 of 14

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

6.93 (m, 1H), 6.22 (s, 2H), 3.88 (s, 3H), 3.81 (s, 6H). 
13

C NMR (100 MHz, CDCl3) δ 163.4, 162.6, 159.6, 156.7, 141.5, 129.9, 

128.1, 127.5, 124.3, 122.8, 91.8, 91.5, 56.4, 55.7, 55.6. HRMS-ESI (m/z) [M+K]
+
 calculated for C15H15BrKO3S 392.9557, found 

392.9570. 

(2-Bromophenyl)(2,4,6-trimethoxyphenyl)sulfane (9).
26

 The product was obtained as a white solid (38.2 mg, 0.108 mmol, 45% 

yield). 
1
H NMR (400 MHz, CDCl3) δ 7.46 (dd, J = 7.9, 1.3 Hz, 1H), 7.06 – 6.99 (m, 1H), 6.92 – 6.85 (m, 1H), 6.51 (dd, J = 8.0, 1.5 

Hz, 1H), 6.23 (s, 2H), 3.88 (s, 3H), 3.80 (s, 6H). 

(4-Chlorophenyl)(2,4,6-trimethoxyphenyl)sulfane (10).
26

 The product was obtained as a white solid (40.9 mg, 0.132 mmol, 55% 

yield). 
1
H NMR (400 MHz, CDCl3) δ 7.13 – 7.09 (m, 2H), 6.97 – 6.92 (m, 2H), 6.21 (s, 2H), 3.87 (s, 3H), 3.81 (s, 6H). 

(4-Fluorophenyl)(2,4,6-trimethoxyphenyl)sulfane (11).
26

 The product was obtained as a white solid (43.1 mg, 0.146 mmol, 61% 

yield). 
1
H NMR (400 MHz, CDCl3) δ 7.06 – 6.99 (m, 2H), 6.89 – 6.83 (m, 2H), 6.20 (s, 2H), 3.86 (s, 3H), 3.81 (s, 6H). 

(2,4-Dimethoxyphenyl)(4-fluorophenyl)sulfane (12). The product was obtained as a colorless oil (36.8 mg, 0.139 mmol, 58% 

yield). 
1
H NMR (400 MHz, CDCl3) δ 7.27 (d, J = 8.6 Hz, 1H), 7.19 – 7.13 (m, 2H), 6.98 – 6.90 (m, 2H), 6.53 – 6.46 (m, 2H), 3.82 

(s, 3H), 3.81 (s, 3H). 
13

C NMR (150 MHz, CDCl3) δ 161.9, 161.6 (d, J = 245.3 Hz), 160.1, 135.96, 132.5 (d, J = 3.1 Hz), 130.7 (d, 

J = 7.9 Hz), 116.0 (d, J = 22.0 Hz), 113.4, 105.6, 99.5, 56.1, 55.6. HRMS-ESI (m/z) [M+H]
+
 calculated for C14H14FO2S 265.0693, 

found 265.0681. 

(4-(Trifluoromethyl)phenyl)(2,4,6-trimethoxyphenyl)sulfane (13). The product was obtained as a colorless oil (41.3 mg, 0.120 

mmol, 50% yield). 
1
H NMR (600 MHz, CDCl3) δ 7.38 (d, J = 8.3 Hz, 1H), 7.06 (d, J = 8.3 Hz, 1H), 6.23 (s, 1H), 3.89 (s, 3H), 3.81 

(s, 6H). 
13

C NMR (150 MHz, CDCl3) δ 163.6, 162.7, 144.4, 126.4 (q, J = 32.4 Hz), 125.4 (q, J = 7.5 Hz), 125.2, 124.6 (q, J = 271.5 

Hz), 91.8, 91.4, 56.4, 55.6. HRMS-ESI (m/z) [M+H]
+
 calculated for C16H16F3O3S 345.0767, found 345.0769. HRMS-ESI (m/z) 

[M+K]
+
 calculated for C16H15F3KO3S 383.0326, found 383.0323. 

(4-Nitrophenyl)(2,4,6-trimethoxyphenyl)sulfane (14).
26

 The product was obtained as a yellow solid (75.5 mg, 0.235 mmol, 98% 

yield).
 1
H NMR (400 MHz, CDCl3) δ 8.01 (d, J = 8.9 Hz, 2H), 7.05 (d, J = 8.9 Hz, 2H), 6.24 (s, 2H), 3.90 (s, 3H), 3.81 (s, 6H). 

(2,4-Dimethoxyphenyl)(naphthalen-2-yl)sulfane (15). The product was obtained as a colorless oil (35.5 mg, 0.120 mmol, 50% 

yield). 
1
H NMR (600 MHz, CDCl3) δ7.76 (d, J = 7.9 Hz, 1H), 7.69 (d, J = 8.6 Hz, 1H), 7.66 (d, J = 8.0 Hz, 1H), 7.55 (d, J = 1.1 

Hz, 1H), 7.45 – 7.36 (m, 3H), 7.28 (dd, J = 8.6, 1.8 Hz, 1H), 6.56 (d, J = 2.5 Hz, 1H), 6.52 (dd, J = 8.5, 2.5 Hz, 1H), 3.85 (s, 3H), 

3.81 (s, 3H). 
13

C NMR (100 MHz, CDCl3) δ162.0, 160.5, 136.8, 135.4, 134.0, 131.8, 128.4, 127.8, 127.2, 126.5, 126.5, 125.9, 

125.5, 112.4, 105.6, 99.5, 56.1, 55.7. HRMS-ESI (m/z) [M+K]
+
 calculated for C18H16KO2S 335.0503, found 335.0500. 

Naphthalen-2-yl(2,4,6-trimethoxyphenyl)sulfane (16).
26

 The product was obtained as a white solid (51.7 mg, 0.158 mmol, 66% 

yield). 
1
H NMR (400 MHz, CDCl3) δ 7.72 (d, J = 7.8 Hz, 1H), 7.62 (dd, J = 13.8, 8.4 Hz, 2H), 7.42 – 7.30 (m, 3H), 7.21 (dd, J = 

8.6, 1.9 Hz, 1H), 6.25 (s, 2H), 3.90 (s, 3H), 3.81 (s, 6H). 
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Phenyl(2,4,6-trimethoxyphenyl)sulfane (17).
26

 The product was obtained as a white solid (62.3 mg, 0.226 mmol, 94% yield).  
1
H 

NMR (600 MHz, CDCl3): δ 7.15 (m, 2H), 7.03 (m, 3H), 6.22 (s, 2H), 3.87 (s, 3H), 3.81 (s, 6H). 

Phenyl(2,3,4-trimethoxy-6-methylphenyl)sulfane (18). The product was obtained as a white solid (55.7 mg, 0.192 mmol, 80% 

yield). 
1
H NMR (600 MHz, CDCl3) δ 7.18 (t, J = 7.8 Hz, 2H), 7.06 (t, J = 7.4 Hz, 1H), 7.00 (d, J = 7.4 Hz, 2H), 6.67 (s, 1H), 3.90 

(s, 3H), 3.87 (s, 3H), 3.78 (s, 3H), 2.37 (s, 3H). 
13

C NMR (150 MHz, CDCl3) δ 156.0, 154.6, 141.1, 139.8, 139.0, 128.9, 126.0, 

124.8, 116.8, 109.6, 61.6, 61.1, 56.1, 21.5. HRMS-ESI (m/z) [M+H]
+
 calculated for C16H19O3S 291.1049, found 291.1054. HRMS-

ESI (m/z) [M+K]
+
 calculated for C16H18KO3S 329.0608, found 329.0618. 

3,5-Dimethoxy-2-(phenylthio)phenol (19).
28

 The product was obtained as a colorless oil (25.8 mg, 0.098 mmol, 41% yield). 
1
H 

NMR (600 MHz, CDCl3): δ 7.21 (t, J = 7.7 Hz, 2H), 7.12 (t, J = 7.3 Hz, 1H), 7.06 (d, J = 7.4 Hz, 2H), 6.92 (s, 1H), 6.30 (d, J = 2.6 

Hz, 1H), 6.14 (d, J = 2.5 Hz, 1H), 3.83 (s, 3H), 3.79 (s, 3H). 

3,5-Dimethyl-4-(phenylthio)phenol (20).
13b

 The product was obtained as an orange oil (14.4 mg, 0.062 mmol, 26% yield). 
1
H 

NMR (400 MHz, CDCl3): δ 7.17 (t, J = 7.7 Hz, 2H), 7.05 (t, J = 7.3 Hz, 1H), 6.91 (d, J = 7.5 Hz, 2H), 6.69 (s, 2H), 2.38 (s, 6H). 

(4-Methoxynaphthalen-1-yl)(phenyl)sulfane (21).
24b

 The product was obtained as a white solid (42.1 mg, 0.158 mmol, 66% 

yield). 
1
H NMR (600 MHz, CDCl3) δ 8.35 – 8.30 (m, 2H), 7.80 (d, J = 8.0 Hz, 1H), 7.55 – 7.47 (m, 2H), 7.15 (t, J = 7.7 Hz, 2H), 

7.08 – 7.01 (m, 3H), 6.84 (d, J = 8.0 Hz, 1H), 4.05 (s, 3H). 
13

C NMR (150 MHz, CDCl3) δ 157.3, 139.2, 135.9, 135.4, 129.0, 127.8, 

126.8, 126.8, 126.1, 125.9, 125.2, 122.7, 120.3, 104.2, 55.8. 

1-(Phenylthio)naphthalen-2-ol (22).
13b

 The product was obtained as a white solid (21.2 mg, 0.084 mmol, 35% yield). 
1
H NMR 

(600 MHz, CDCl3) δ 8.24 (d, J = 8.4 Hz, 1H), 7.92 (d, J = 8.9 Hz, 1H), 7.83 (d, J = 8.0 Hz, 1H), 7.53 – 7.48 (m, 1H), 7.41 – 7.37 

(m, 1H), 7.36 (d, J = 8.9 Hz, 1H), 7.22 – 7.16 (m, 3H), 7.11 (m, 1H), 7.07 – 7.02 (m, 2H). 
13

C NMR (100 MHz, CDCl3) δ 157.1, 

135.6, 135.5, 133.0, 129.6, 129.3, 128.7, 128.1, 126.5, 126.0, 124.8, 124.0, 117.0, 108.2. 

(2-Methoxynaphthalen-1-yl)(phenyl)sulfane (23).
13b

 The product was obtained as a colorless oil (22.4 mg, 0.084 mmol, 35% 

yield). 
1
H NMR (400 MHz, CDCl3): δ 8.46 (d, J = 8.6 Hz, 1H), 7.98 (d, J = 9.1 Hz, 1H), 7.83 (d, J = 8.1 Hz, 1H), 7.50 (t, J = 7.6 

Hz, 1H), 7.39 (t, J = 8.3 Hz, 2H), 7.13 (t, J = 7.6 Hz, 2H), 7.07 – 6.97 (m, 3H), 3.97 (s, 3H). 

1-(Phenylthio)naphthalene-2,7-diol (24).
13b

 The product was obtained as a white solid (25.7 mg, 0.096 mmol, 40% yield). 
1
H 

NMR (400 MHz, CDCl3): δ 7.82 (d, J = 8.8 Hz, 1H), 7.72 (d, J = 8.8 Hz, 1H), 7.52 (d, J = 2.5 Hz, 1H), 7.21 – 7.09 (m, 6H), 7.01 

(dd, J = 7.3, 1.8 Hz, 2H), 6.97 (dd, J = 8.7, 2.5 Hz, 1H). 

1-(Phenylthio)naphthalen-2-amine (25).
11b

 The product was obtained as a brown solid (41.0 mg, 0.163 mmol, 68% yield). 
1
H 

NMR (600 MHz, CDCl3): δ 8.28 (d, J = 8.5 Hz, 1H), 7.77 (d, J = 8.8 Hz, 1H), 7.73 (d, J = 8.0 Hz, 1H), 7.44 (t, J = 7.7 Hz, 1H), 

7.30 – 7.26 (m, 1H), 7.16 (t, J = 7.7 Hz, 2H), 7.09 – 7.05 (m, 2H), 7.03 (d, J = 8.4 Hz, 2H), 4.73 (br, 2H). 

N-(1-(phenylthio) naphthalen-2-yl)methacrylamide (26). The product was obtained as a brown oil (33.7 mg, 0.106 mmol, 44% 

yield). 
1
H NMR (600 MHz, CDCl3) δ 9.33 (s, 1H), 8.85 (d, J = 9.0 Hz, 1H), 8.44 (d, J = 8.5 Hz, 1H), 8.01 (d, J = 9.1 Hz, 1H), 7.86 
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(d, J = 8.1 Hz, 1H), 7.52 (t, J = 7.7 Hz, 1H), 7.45 (t, J = 7.4 Hz, 1H), 7.18 (t, J = 7.4 Hz, 2H), 7.11 (t, J = 7.3 Hz, 1H), 7.00 (d, J = 

7.8 Hz, 2H), 5.75 (s, 1H), 5.43 (s, 1H), 2.01 (s, 3H). 
13

C NMR (150 MHz, CDCl3) δ 166.4, 140.8, 140.6, 135.5, 135.5, 131.8, 131.3, 

129.5, 128.6, 128.0, 126.4, 126.1, 125.9, 125.3, 121.1, 119.7, 113.8, 18.6. HRMS-ESI (m/z) [M+H]
+
 calculated for C20H18NOS 

320.1104, found 320.1101. HRMS-ESI (m/z) [M+K]
+
 calculated for C20H17KNOS 358.0662, found 358.0664. 

2,6-Dimethyl-4-(phenylthio)aniline (27).
29

 The product was obtained as a brown oil (29.7 mg, 0.130 mmol, 54% yield). 
1
H NMR 

(400 MHz, CDCl3):  δ 7.20 (t, J = 7.6 Hz, 2H), 7.16 – 7.07 (m, 5H), 3.74 (s, 2H), 2.17 (s, 6H). 
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