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SIMPLE ROBUST TESTING OF REGRESSION HYPOTHESES

BY NICHOLAS M. KIEFER, TIMOTHY J. VOGELSANG, AND

HELLE BUNZEL1

1. INTRODUCTION

IN THIS PAPER WE CONSIDER the problem of hypothesis testing in models with errors
that have serial correlation or heteroskedasticity of unknown form. This situation is often
encountered in regression models applied to economic time series data. It is a classic

Ž .textbook result that while ordinary least squares OLS estimates of regression parame-
ters remain consistent and asymptotically normal when errors are heteroskedastic or

Žautocorrelated provided usual regularity conditions hold and no lagged dependent
.variables are in the model , standard tests are no longer valid. If the true form of serial

Ž .correlation�heteroskedasticity were known, then generalized least squares GLS pro-
vides efficient estimates and standard inference can be conducted on the GLS trans-
formed model. But, in practice the form of serial correlation�heteroskedasticity is often
unknown, and this has led to the development of techniques that permit valid asymptotic
inference without having to specify a model of the serial correlation or heteroskedastic-
ity. The most common approach is to estimate the variance-covariance matrix of the OLS

Žestimates nonparametrically using spectral methods heteroskedasticity and autocorrela-
Ž . .tion consistent HAC estimators and construct standard tests using the asymptotic

normality of the OLS estimates. HAC estimators have been extensively analyzed in the
Ž .econometrics literature and important contributions are given by Andrews 1991 , An-

Ž . Ž . Ž . Ž .drews and Monahan 1992 , Gallant 1987 , Hansen 1992 , Newey and West 1987 ,
Ž . Ž .Robinson 1991, 1998 , and White 1984 among others. The benefit of HAC estimator

tests is asymptotically valid inference that is robust to general forms of serial correla-
tion�heteroskedasticity in the errors.

We propose an alternative method of constructing robust test statistics. We apply a
nonsingular data dependent stochastic transformation to the OLS estimates. The asymp-
totic distribution of the transformed estimates does not depend on nuisance parameters.

ŽThen, test statistics that are asymptotically invariant to nuisance parameters asymptotic
.pivotal statistics are constructed. The resulting test statistics have nonstandard asymp-

totic distributions that only depend on the number of restrictions being tested, and
critical values are easy to simulate using standard techniques. The main advantage of our
approach compared to standard approaches is that estimates of the variance-covariance
matrix are not explicitly required to construct the tests. This is potentially important for

Ž . 2two reasons. First, with the exception of the estimator proposed by Robinson 1998 ,
consistent nonparametric estimates of variance-covariance matrices in models with serial

1 We thank Jean-Marie Dufour, Pierre Perron, an editor, and three anonymous referees for
helpful comments and suggestions on an earlier version of the paper. We thank seminar participants
at Boston College, Boston University, University of Aarhus, SMU, Yale University, Queen’s
University, Erasmus University, and the 1998 Summer Meetings of the Econometric Society in
Montreal. We also thank the Center for Analytic Economics at Cornell University.´

2 Ž .Robinson 1998 showed that in certain models with serial correlation, asymptotic variance-
covariance matrices of estimators can be consistently estimated using spectral methods but without
any truncation or smoothing.
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Ž .correlation require the choice of a truncation lag bandwidth . Even if a data dependent
method is used to choose the truncation lag, arbitrary choices must be made in practice,
and these choices can affect inference. Our tests completely avoid these choices. Second,
simulation studies have shown that sampling variability of HAC estimators in finite

Ž Ž .samples can lead to tests that have substantial size distortions e.g. Andrews 1991 ,
Ž . Ž ..Andrews and Monahan 1992 , and Den Haan and Levin 1997 . We report results from

finite sample simulations that show that our new tests have better finite sample size
Ž .properties than HAC estimator tests including prewhitening .

The remainder of the paper is organized as follows. In the next section we lay out the
model and review some well known OLS results. We show how the OLS estimates can be
transformed so that their joint distribution becomes asymptotically invariant to serial
correlation�heteroskedasticity nuisance parameters. Natural by-products of this transfor-
mation are t type statistics for testing hypotheses about individual parameters. In Section
3 we show how to construct tests of general linear hypotheses. Limiting null distributions
are obtained, and asymptotic critical values are tabulated. The tests developed in these
sections are natural extensions to regression models of the univariate trend function tests

Ž . Ž .proposed by Vogelsang 1998 . The tests in Vogelsang 1998 share the property that
serial correlation parameters need not be estimated to carry out valid asymptotic
inference. In Section 4 we show how our approach easily extends to GLS and instrumen-

Ž .tal variables IV estimation. We report results on local asymptotic power of the new
tests compared to HAC estimator tests in Section 5. We show that the new tests have
nontrivial local asymptotic power that is comparable but slightly below that of HAC
estimator tests. We note that local asymptotic power calculations for HAC estimator tests
are the same as those for tests with known variance-covariance parameters, while our
statistic implicitly corrects for unknown variance-covariance parameters. In Sections 6
and 7 we report results on the finite sample behavior of the tests. Because the local
asymptotic power approximation does not capture the influence of sampling variability of
HAC estimators on finite sample power, we provide cases based on an empirical example
where the power of the new tests dominates power of HAC estimator tests. Since our
tests can be more powerful and they dominate HAC estimator tests in the accuracy of
the asymptotic null approximation, our tests are very competitive in practice. Section 8
concludes and proofs are given in an Appendix.

2. THE MODEL AND SOME ASYMPTOTIC RESULTS

Consider the regression model given by

Ž . � Ž .1 y �X ��u t�1, 2, . . . , T ,t t t

Ž . Ž .where � is a k�1 vector of regression parameters, X is a k�1 vector of regressorst
� 4 Ž .that may include a constant, and u is a mean zero conditional on X random process.t t

It is assumed that u does not have a unit root, but u may be serially correlated andt t
have conditional heteroskedasticity. The following notation is used throughout the paper.

� Ž �. Ž � .Let � �X u and define ������� �Ý � �� where � �E � � and � is at t t 0 j�1 j j j t t� j
lower triangular matrix based on the Cholesky decomposition of � . Note that � is equal
to 2� times the spectral density matrix of � evaluated at frequency zero. Definet

t � 4 Ž .S �Ý � , which are the partial sums of � . Let W r denote a k-vector of indepen-t j�1 j t k
� �dent standard Wiener processes, and let rT denote the integer part of rT where

� �r� 0, 1 . We use � to denote weak convergence.
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The following two assumptions regarding X and u are sufficient for us to obtain ourt t
main results.

�1�2 � rT � Ž . � �ASSUMPTION A1: T Ý � ��W r for all r� 0, 1 ,t�1 t k

Ž �1 � rT � � . � � �1ASSUMPTION A2: plim T Ý X X � rQ for all r� 0, 1 and Q exists.t�1 t t

Assumption A1 holds under a variety of regularity conditions. One set of conditions is
Ž .given by Phillips and Durlauf 1986 that require that � be weakly stationary, that thet

elements of � have a finite moment greater than two, and that � satisfy well knownt t
� 4	-mixing conditions. These conditions permit conditional heteroskedasticity in � butt

Ž .rule out most forms of unconditional heteroskedasticity. Andrews 1991 showed that
� 4consistent HAC estimators can be obtained under the stronger assumption that � ist

Ž .fourth order stationary and 	-mixing see his Lemma 1 . Assumption 1 is also satisfied by
stationary and invertible ARMA processes with innovation with finite fourth moments
Ž Ž .. � 4 � 4see Hall and Heyde 1980 . Assumption A1 rules out unit roots in X and u .t t

Ž .Assumption A2 holds, for example, when X is a weakly second order stationaryt
vector process and rules out trends in the regressors. However, the asymptotic results
remain valid for certain hypotheses if the regressors are trend stationary. To be more
precise suppose the regression model is y �
�� t�X � ��u and X �
 �� t��t t t t x x t

Ž . � 4 � 4where 
 and � are k�1 vectors, and � and � u satisfy Assumptions A1 and A2.x x t t t
In the Appendix we show that the new statistic proposed in this paper is invariant to
projections of subsets of regressors. Therefore, hypotheses involving � can be tested

˜ ˜� 4 � 4using the regression y �X ��u where y and X are residuals from the regression˜ ˜ ˜t t t t t
� 4 � 4 � 4of y and X on 1, t . This detrended regression satisfies Assumptions A1 and A2t t

˜ ˜ �1�2 � rT � ˜ �1�2 � rT � Ž .because X �� and it is easy to show that T Ý � u �T Ý � u �o 1 andt t t�1 t t t�1 t t p
�1 � rT � ˜ �̃ �1 � rT � � Ž . � 4T Ý � � �T Ý � � �o 1 . Once t is included in the regression, the asymp-t�1 t t t�1 t t p

totic results we obtain for tests of the � parameters do not apply to tests that involve the
Ž .parameters 
 the intercept or � in which case the asymptotic distributions depend on

the specific deterministic trends included in the regression.
ˆŽ .Suppose regression 1 is estimated by OLS to obtain � , the OLS estimate. The

1�2 ˆŽ .limiting distribution of T ��� follows directly from Assumptions A1 and A2 as
�1T T

�1�2 �1 �1�2ˆŽ . Ž .2 T ��� � T X X T X uÝ Ýt t t tž /
t�1 t�1

�1T
��1 �1�2� T X X T SÝ t t Tž /

t�1

�1 Ž . Ž �1 �1 . Ž �1 �1 . Ž .�Q �W 1 �N 0, Q ���Q �N 0, Q � Q �N 0, V .k

This asymptotic normality result can be used to test hypotheses about �. To construct
standard tests that are asymptotically invariant to nuisance parameters, an estimate of

�1 �1 �1 Ž �1 T � .�1V�Q � Q is required. A natural estimator of Q is T Ý X X . A HACt�1 t t
estimator of � can be constructed from � �X u where u are the OLS residuals.ˆ ˆ ˆt t t t

ˆ �1 T � �1ˆ �1 T � �1 ˆŽ . Ž .Consider the estimator V� T Ý X X � T Ý X X where � is a HACt�1 t t t�1 t t
1�2 ˆ �̂1�2 �1 T � � 1̂Ž . Ž .estimator of � . If we transform T ��� using V � T Ý X X � wheret�1 t t

ˆ ˆ� is obtained from the Cholesky decomposition of � , we have
�̂1�2 1�2 ˆŽ . Ž . Ž .3 V T ��� �N 0, I .k
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Ž .Using 3 , hypotheses about individual � ’s can be tested using t statistics in the usual
way with standard errors given by square roots of the diagonal elements of the matrix
V̂�T. The asymptotic theory does not explicitly account for the effects of sampling

ˆvariation in V, and this variation is potentially important in finite samples.
We take a different approach to testing that is similar in spirit to the transformation in

1�2 ˆŽ . Ž .3 except that we transform T ��� using a moment matrix constructed from the
ˆ t tdata that does not require an estimate of � . Define S �Ý X u �Ý � . Usingˆ ˆt j�1 j j j�1 j

�1�2 ˆAssumptions A1 and A2, the limiting behavior of T S as T�� is� rT �

� � � �rT rT
��1�2 �1�2 �1�2ˆ ˆŽ . � Ž .44 T S �T X u �T X u �X X ���ˆÝ Ý� rT � t t t t t t

t�1 t�1

� � � �rT rT
��1�2 �1 1�2 ˆŽ .�T � � T X X T ���Ý Ýt t tž /t�1 t�1

� �rT
��1�2 �1 1�2 ˆŽ .�T S � T X X T ���Ý� rT � t tž /t�1

Ž . �1 Ž . Ž Ž . Ž ..��W r � rQQ �W 1 �� W r � rW 1 .k k k k

ˆ �2 T ˆ �̂ Ž .Consider C�T Ý S S . From 4 and the continuous mapping theorem we havet�1 t t

1ˆŽ . Ž Ž . Ž ..Ž Ž . Ž ..5 C�� W r � rW 1 W r � rW 1 � dr ��.H k k k k
0

1Ž Ž . Ž ..Ž Ž . Ž ..To simplify later developments let P �H W r � rW 1 W r � rW 1 � dr, which isk 0 k k k k
the integral of the outer product of a k-dimensional multivariate Brownian bridge. In the
univariate case P is the limiting distribution of the Cramer-von Mises statistic and is´1
related to the Anderson-Darling statistic. Because P is positive definite by construction,k
we can use a Cholesky decomposition to write P �Z Z� or equivalently P�1 �k k k k
Ž � .�1 �1Z Z where Z is lower triangular.k k k

ˆ �1 T � � 1 ˆ �1 T � � 1 ˆŽ . Ž .Now consider B � T Ý X X C T Ý X X . Define M �t� 1 t t t� 1 t t
�1 T � �1 1̂�2 1̂�2Ž .T Ý X X C with C lower triangular and the Cholesky decomposition oft�1 t t

ˆ�1 1�2 ˆŽ . Ž . Ž .C. Consider the transformation M T ��� . It follows directly from 2 and 5 :

ˆ�1 1�2 ˆ �1Ž . Ž . Ž .6 M T ��� �Z W 1 .k k

This transformation results in a limiting distribution that does not depend on the
�1 Ž .nuisance parameters Q and � . The distribution of Z W 1 is nonstandard. Becausek k

Ž . Ž . Ž . � Ž .Ž Ž . Ž ..� � �W 1 and W r � rW 1 are Gaussian and E W 1 W r � rW 1 �0 for all r� 0, 1 ,k k k k k k
Ž .they are independent, and it follows that Z and W 1 are independent as well.k k

�1 Ž . Ž �1. Ž .Therefore, conditional on Z , Z W 1 �N 0, P . If we let p P denote the distribu-k k k k k
�1 Ž .tion function of P , we can write the unconditional distribution of Z W 1 ask k k

1 Ž �1. Ž . �1 Ž .H N 0, P p P dP , which is a mixture of normals. Thus, the distribution of Z W 10 k k k k k
is symmetric with thicker tails than a normal distribution. This result is analogous to
Fisher’s classic development of the t statistic. After using a data dependent stochastic

Ž .transformation dividing by a moment of the data proportional to the error variance ,
Fisher obtained a finite sample distribution free of nuisance parameters with fatter tails
than a normal distribution, a t distribution. This analogy is not exact as we obtain a
distribution free of nuisance parameters only asymptotically, and the distribution of

�1 Ž .Z W 1 is not equivalent to a multivariate t distribution. But, the analogy is accurate ask k
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a nuisance parameter is eliminated and this results in increased dispersion of the null
limiting distribution.

Hypotheses about individual � ’s can be tested using t type statistics, which we label
t*, that are constructed in the same way as usual t statistics with the usual standard

ˆerrors replaced with square roots of the diagonal elements of the B�T matrix. Because
the t* statistics are invariant to the ordering of the regressors, the limiting distribution of

�1 Ž .any t* is given by the first element in the vector Z W 1 . Using the fact that Choleskyk k
�1 Ž .decompositions are lower triangular, it is easy to show that the first element of Z W 1k k

Ž . � 1Ž Ž . Ž ..2 �1�2has the same distribution as W 1 � H W r � rW 1 dr . Therefore, as T��1 0 1 1

1�2
1 2Ž . Ž . Ž Ž . Ž ..7 t*�W 1 � W r � rW 1 dr .H1 1 1

0

Ž .Critical values of 7 were computed using simulations and are tabulated in Table I. The
Ž . Ž .Wiener process, W r , was approximated by normalized sums of i.i.d. N 0, 1 pseudo1

random deviates using 1,000 steps and 50,000 replications. The simulations were written
in the GAUSS programming language using an initial seed of 1,000 for the random

Ž . Ž .number generator. We also computed the density of 7 and the density of 7 with
Ž .variance normalized to one by smoothing the 50,000 realizations of 7 using standard

kernel techniques.3 These densities are plotted in Figure 1 along with the density of a
standard normal random variable. The asymptotic distribution of the normalized t* has
tails slightly fatter than a standard normal random variable.

3. TESTS FOR GENERAL LINEAR HYPOTHESES

Suppose we are interested in testing more general linear hypotheses of the form

H : R�� r , H : R�� r ,0 1

Ž . Ž .where R is a q�k matrix with rank q and r is a q�1 vector. When the null
ˆ ˆŽ .hypothesis is true, we have R�� r�R ��� . To motivate the new statistic consider

1�2 ˆ 1�2 ˆ �1Ž . Ž . Ž . Ž . Ž .T R ��� . From 2 it follows that T R ��� �RQ �W 1 . Because W 1 is ak k
1 Ž .vector of independent Wiener processes and is Gaussian, RQ�W 1 is equivalent ink

�Ž . �Ž . Ž .distribution to �*W 1 where W 1 is a q�1 vector of independent Wienerq q
Ž . �1 �1processes and �* is the q�q matrix square root of RQ ���Q R�. �* exists and is

invertible because the matrix RQ�1���Q�1R� has full rank of q. Now consider the
ˆ ˆ �1 �1matrix RBR�. It is simple to show that RBR��RQ �P ��Q R, which is equivalent ink

� ˆŽ .distribution to �*P �*� see the Appendix . Let M* denote the matrix square root ofq
ˆ ˆ � 1�2 � 1�2 ˆ� � ŽRBR� and note that M*� �*P �*� ��*Z . Suppose we transform T R ��q q

ˆ��1 ˆ �1 1�2 ˆ ˆ �1 1�2 ˆ. Ž . Ž� using M giving M* T R ��� . It evidently follows that M* T R ��

TABLE I

ASYMPTOTIC CRITICAL VALUES OF t*

1.0% 2.5% 5.0% 10.0% 50.0% 90.0% 95.0% 97.5% 99.0%

�8.544 �6.811 �5.374 �3.890 0.000 3.890 5.374 6.811 8.544

3 Ž .We computed the variance of 7 to be 10.893 using the sample variance of the 50,000
replications.
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� Ž .FIGURE 1.Densities of t*, t , and N 0, 1 .norm

. ��1 � Ž .� �Z W 1 , which is free of nuisance parameters. Forming the usual quadraticq q
ˆ �1 1�2 ˆŽ .form using M* T R ��� gives

ˆ �1 1�2 ˆ ˆ �1 1�2 ˆŽ . � Ž .� � Ž .�8 M* T R ��� � M* T R ���

�1ˆ ˆ ˆŽ Ž .. � � Ž .�T R ��� � RBR� R ��� .

Ž .The quadratic form 8 suggests the following statistic for testing H against H :0 1

�1ˆ ˆ ˆŽ . � � Ž .F*�T R�� r � RBR� R�� r �q.

ˆ ˆ 1�2 ˆŽ Ž .Notice that F* is the classic F test except that B replaces V. If T R ��� were
ˆtransformed using the matrix square root of RVR�, the quadratic form would lead to the

.construction of the classic F test based on a HAC estimate of V. We prove in the
Appendix the following asymptotic result:

THEOREM 1: Suppose that Assumptions A1 and A2 hold. Then under the null hypothesis
Ž . �1 Ž .H : R�� r, F*�W 1 �P W 1 �q as T��.0 q q q

The limiting distribution of F* is free of nuisance parameters and only depends on q.
The distribution is nonstandard, but critical values can easily be simulated because the
distribution is a function of independent standard Wiener processes. By approximating

Ž .each Wiener process in the vector W r using the same techniques that were used toq
Ž . Ž . �1 Ž .simulate 7 , critical values of W 1 �P W 1 �q were computed for q�1, 2, . . . , 29, 30q q q

and are tabulated in Table II. Because the distribution depends only on q, using Table II
is no more difficult in practice than using a chi-square distribution table. In addition,
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TABLE II

ASYMPTOTIC CRITICAL VALUES OF F*

% q � 1 q � 2 q � 3 q � 4 q � 5 q � 6 q � 7 q � 8 q � 9 q � 10

90.0 28.88 35.68 42.39 48.79 55.02 61.18 67.37 73.10 78.52 83.84
95.0 46.39 51.41 58.17 65.33 71.69 78.70 84.63 90.89 96.38 101.8
97.5 65.94 69.76 76.07 83.35 89.65 96.53 102.7 109.8 114.2 120.0
99.0 101.2 96.82 100.7 108.4 114.2 121.2 126.9 134.4 139.6 144.9

% q � 11 q � 12 q � 13 q � 14 q � 15 q � 16 q � 17 q � 18 q � 19 q � 20

90.0 89.39 94.47 100.1 105.3 110.3 115.5 121.2 126.6 131.5 136.5
95.0 107.7 113.6 119.9 125.5 131.5 136.6 141.4 147.1 152.9 158.0
97.5 127.2 132.9 138.8 145.2 151.0 155.9 161.1 167.6 174.0 179.8
99.0 152.6 157.8 163.8 169.7 174.7 181.6 188.8 194.8 203.2 208.5

% q � 21 q � 22 q � 23 q � 24 q � 25 q � 26 q � 27 q � 28 q � 29 q � 30

90.0 141.9 146.6 152.1 157.0 161.8 167.2 171.6 177.0 181.6 187.0
95.0 163.6 169.3 174.7 180.3 184.9 190.7 196.0 201.5 206.4 211.4
97.5 186.0 191.2 197.0 202.3 207.5 213.3 218.9 224.4 229.1 236.0
99.0 214.0 219.3 224.6 230.1 236.3 242.4 246.9 252.9 259.8 266.3

Note: q is the number of restrictions being tested.

asymptotic critical values for a wide range of percentage points for q�1, 2, . . . 40 have
Ž . 4been computed by MacKinnon 1999 using response surface methods.

ˆ ˆConstruction of the F* statistic amounts to replacing the HAC estimator, � , with C
ˆ ˆand using the scaling matrix B in place of the usual scaling matrix V. The scaling matrix

B̂ converges to a random matrix rather than the fixed variance-covariance matrix. Viewed
in this way, our approach creates a new class of statistics that are robust to serial
correlation�heteroskedasticity in the errors and are asymptotically pivotal. In general, an

ˆasymptotically pivotal statistic can be obtained by replacing � with any moment matrix
Ž Ž .. Ž Ž ..of the data that has a limiting distribution of the form � f W r �� where f W r is ak k

ˆŽ .random matrix that is a functional of W r . Therefore, our particular choice of C isk
somewhat arbitrary and to some degree ad hoc, but it yields an elegant distribution

ˆtheory with asymptotic distributions that do not depend on R, r, or k. Other choices of C
might not satisfy this property. In addition, we prove in the Appendix that our choice of
Ĉ ensures that F* is invariant to projecting out subsets of regressors, i.e. F* satisfies the

Ž . Ž Ž .. 5Frisch-Waugh-Lovell FWL Theorem see Davidson and MacKinnon 1993 . Also, F*
Žhas the important practical property of invariance to rescaling of the regressors i.e.

. 6invariance to units of measurement . This discussion raises the natural question as to

4 Consult the personal web page of James MacKinnon, http:��www.econ.queensu.ca�pub�faculty�
mackinnon for a computer program that calculates asymptotic P values and critical values.

5 HAC based tests satisfy the FWL Theorem only if a fixed truncation lag is used without
prewhitening. Therefore, if an automatic truncation lag and�or prewhitening is used, different test
statistics can result when one, say, first detrends regressors before estimating a regression as
opposed to directly including a trend in the regression. See Section 7 for an example.
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ˆwhether a theory of optimality can be created to help guide the choice of C. We leave
this interesting and challenging problem as an open research topic.

4. EXTENSIONS TO GLS AND IV ESTIMATION

In this section we briefly discuss how the F* statistic can be applied to more general
regression models that include GLS and IV estimation. Stack y , X , and u into matricest t t

Ž .y, X, and u and consider a transformation of regression 1 ,

Ž .9 y*�X*��u*,

Ž .where y*�� y, X*�� X, u*�� u, and � is a T�T transformation matrix. Esti-
Ž . Ž . Ž .mating 9 by OLS is equivalent to minimizing y*�X*� �� �� y*�X*� . When

1�2 Ž . Ž .�1��Ý where Ý�E uu� we obtain the GLS estimate of �. When ��Z Z�Z Z�
Ž . Ž .where Z is a T�m vector of instruments with m	k and E Z u �0, we obtain thet t

IV estimate of �. Provided that ���X�u� and T�1Ý� rT � X�X�� satisfy Assumptions A1t t t t�1 t t
Ž .and A2, Theorem 1 still applies to F* constructed from regression 9 . In the case of IV

Ž �1 T � .estimation, sufficient conditions are stationary Z and plim T Ý Z X �0.t t�1 t t
Ž .The natural extension beyond regression 9 is to consider a generalized methods of

Ž .moments GMM framework that would include OLS, GLS, and IV as special cases. This
would be an important extension as GMM models are widely used in empirical macroe-
conomics. We conjecture that Theorem 1 generalizes to GMM models, but it is not clear
whether standard GMM regularity conditions will be sufficient to obtain such a result.
Furthermore, in overidentified GMM models, it is not obvious whether F* should be
constructed using sample analogs of the original moment conditions or sample analogs of
the moment conditions implied by the weighted GMM minimization problem. It is
unclear how the choice of weighting matrix will affect the asymptotic properties of F*.
An extension to GMM models is nontrivial and is beyond the scope of this paper.

5. LOCAL ASYMPTOTIC POWER k�1 CASE

In this section we contrast the power properties of the t* and HAC estimator t
statistic using a local asymptotic framework. Of course, both tests have unit power

Ž .against nonlocal alternatives. We restrict attention to the single regressor case k�1 as
this special case sufficiently illustrates local asymptotic power comparisons. With k�1
the regression becomes

Ž .10 y �� x �u ,t t t

Žwhere � and x are scalars and x is mean zero this assumption has no effect on thet t
.local power results . We consider testing the null hypothesis H : �
� against the0 0

alternative H : ��� �cT�1�2. Under the alternative, we model � as local to � such1 0 0
�1�2 2 Ž 2.that � converges to � at rate T with local alternative parameter c. Let � �E x ,0 x t

2 � Ž . 2and let � �� �2 � � where � �E � � with � �x u . The parameter � is the0 j�1 j j t t� j t t t x
variance of x , and the parameter � 2 is equal to 2� times the spectral density of �t t
evaluated at frequency zero. Define � 2 �T�1ÝT x2 and let � 2 be a HAC estimator ofˆ ˆx t�1 t

6 ŽAs a referee pointed out, the F* statistic is not invariant to the ordering of the observation as is
.White’s HC estimator . We anticipate F* being used in time series settings where there is a natural

ordering of the data. Should F* be used in a pure cross section situation, ordering of the data
becomes an issue.
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FIGURE 2.Local asymptotic power, 5% nominal size, k�1, y �� x �u , H : ��� ,t t t 0 0
H : ��� �cT�1 �2.1 0

2 ˆ t� 4 Ž .� based on � �x u where u are the OLS residuals from 10 . Let S �Ý � andˆ ˆ ˆ ˆt t t t t j�1 j
ˆ �2 T 2̂define C�T Ý S .t�1 t

Using this notation, the HAC estimator t test, t , and t* can be calculated asH AC

1�2
1�2 �2 2 �2ˆŽ .t �T ��� � � � � ,ˆ ˆ ˆŽ .H AC 0 x x

1�2
1�2 �2 �2ˆ ˆŽ .t*�T ��� � � C� .ˆ ˆŽ .0 x x

In the Appendix we show under the local alternative and Assumption A1 and A2, as
T��,

Ž . 2 Ž . Ž 2 .11 t �c� ���W 1 �N c� �� , 1 ,H AC x 1 x

1�2
1 22Ž . Ž Ž .. Ž Ž . Ž ..12 t*� c� ���W 1 � W r � rW 1 dr .Hx 1 1 1

0

Ž . Ž .Results 11 and 12 show that local asymptotic power of both statistics depends on
c� 2�� . Naturally, as c increases, power increases. As � 2 increases, power also in-x x
creases, which follows from the standard regression result that more variability in the
regressors leads to more efficient estimates. As � 2 increases, power decreases, which

� 4follows since variability in u is higher.t
The local asymptotic distributions were used to compute asymptotic power, which is

plotted in Figure 2. The power of t was computed analytically. The power of t* wasH AC
simulated using methods similar to those used to simulate the asymptotic critical values.
Power was computed using the asymptotic 5% critical values.7 The power of t* is
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nontrivial and is comparable to, but slightly below, that of t . In finite samples powerH AC
of the tests is likely to be closer since the asymptotic power of t does not reflect theH AC
finite sample variability in � 2. In fact, we give examples in Section 7 where power of theˆ

Ž .t* F* statistic exceeds the power of HAC estimator tests.

6. FINITE SAMPLE SIZE

In this section we report the results of an extensive simulation experiment with the
purpose of comparing the finite sample size of HAC estimator tests and the F* test. We

Ž .designed the simulations so that they replicate the data generating processes DGPs and
Ž . Ž .estimators used by Andrews 1991 and Andrews and Monahan 1992 .

We consider a regression model with a constant and four stochastic regressors so that
Ž .k�5. We use the HAC estimator recommended by Andrews 1991 that uses the

Ž .quadratic spectral kernel. The truncation lag or bandwidth was chosen using the
Ž .automatic data-dependent procedure proposed by Andrews 1991 using the plug-in

Ž .method based on univariate AR 1 models fit to the individual elements of � . Testst̂
Ž .based on this estimator are labeled QS. Consult Andrews 1991 for additional details.

Ž .Following Andrews and Monahan 1992 , we also computed HAC estimator tests using
Ž .pre-whitening based on a VAR 1 parametric model of � . We also employed thet̂

Ž .eigenvalue adjustment procedure used by Andrews and Monahan 1992 when fitting the
VAR to � . The pre-whitening tests are labeled QS-PW. Consult Andrews and Monahant̂
Ž .1992, p. 957 for additional details. Note that we are comparing our test with tests based
on optimal HAC estimators.

Ž .We report results for six of the seven DGPs used by Andrews 1991 and Andrews and
Ž . Ž .Monahan 1992 . The models are: AR 1 �HOMO, where the errors and stochastic

Ž . Ž . Ž .regressors are AR 1 homoskedastic processes; AR 1 �HET1 and AR 1 �HET2 where
Ž .the DGPs are the same as the AR 1 �HOMO DGP except the error has multiplicative

Ž . Ž .heteroskedasticity; MA 1 �HOMO, where the errors and stochastic regressors are MA 1
Ž . Ž .homoskedastic processes; and MA 1 �HET1 and MA 1 �HET2 where the DGPs are the

Ž .same as the MA 1 �HOMO DGP except the error has multiplicative heteroskedasticity.
In all cases, the regressors and errors were drawn independently of each other. In the

Ž .AR 1 models, the stochastic regressors and errors were generated according to the
Ž 2.model � ��� �e where e is drawn from i.i.d. N 0, 1�� random variables whicht t�1 t t

results in � having unit variance. The initial condition was drawn from the stationaryt
Ž .distribution of the AR 1 model. In each replication a new set of regressors was randomly

drawn. We transformed the regressor matrix so that T�1ÝT X X � is an identity matrixt�1 t t
Ž .following Andrews and Monahan 1992, p. 959 . For the HET1 and HET2 models, the

Ž . � �errors were first drawn from the AR 1 process and then multiplied by X and2 t
1 5� �Ý X respectively. We report results for ���0.5, �0.3, 0.0, 0.3, 0.5, 0.7, 0.9, 0.95.i�2 i t2

Ž .The MA 1 models were generated in a similar fashion with the stochastic regressors
and errors generated according to the model � �e �� e where e is drawn from i.i.d.t t t�1 t
Ž Ž 2.�1.N 0, 1�� random variables, which results in � having unit variance. We reportt

results for ��0.3, 0.5, 0.7, 0.99. In all cases we used 2,000 replications.
Ž . Ž .Following Andrews 1991 and Andrews and Monahan 1992 we computed type I

Ž .error probabilities they computed confidence interval coverage probabilities for tests of
Ž .the hypothesis H : � �0. We extend the results of Andrews 1991 and Andrews and0 2

7 We also computed asymptotic power for 1%, 2.5%, and 10% significance levels. The relative
power of the tests is similar to that depicted in Figure 1 and is available upon request.
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Ž .Monahan 1992 and also report results for tests of the hypotheses: H : � �� �0, H :0 2 3 0
� �� �� �0, H : � �� �� �� �0. We label the hypotheses according to the2 3 4 0 2 3 4 5

Ž .number of restrictions being tested, i.e. q�1, 2, 3, 4. The results for the AR 1 models
with a sample size of T�128 are reported in Table III. Several patterns emerge from the
table. First, in nearly every case, null rejection probabilities of F* are less distorted and
closer to 0.05 than the QS or QS�PW tests. The differences become larger as q
increases. Although the F* test has less distortions, there are many cases in which null
rejection probabilities are much greater than 0.05. Nonetheless, the asymptotic approxi-
mation of the distribution of F* is substantially better compared to QS and QS�PW.
Second, as � approaches one, distortions of the null rejection probabilities increase for
all the statistics. This is explained by the fact that the stationary asymptotic approxima-
tion becomes less accurate the closer the autoregressive root is to one. Third, for all
three statistics, as q increases, null rejection probabilities also increase, indicating the
asymptotic approximation is less precise when testing joint hypotheses compared to
testing simple hypotheses. This result suggests, in particular, that for joint hypotheses,
size distortions of HAC estimator tests can be substantial even when there is only modest
serial correlation in the errors.

Ž .Results for the MA 1 models with T�128 are given in Table IV. Similar patterns are
Ž .seen as for the AR 1 models except that distortions overall are much less severe.

Rejection probabilities of F* are rarely above 0.10 while those of QS and QS�PW often
exceed 0.10 especially for large q.

Ž .In Table V we report results for the AR 1 �HOMO model for sample sizes T�
256, 512. The table indicates that the asymptotic approximation improves substantially for
all the tests as T increases. For the most part, F* has rejection probabilities close to 0.05
for �
0.5. For ��0.5 rejection probabilities are inflated but by much less compared to
when T�128. Rejection probabilities of QS and QS�PW are, for the most part, more
distorted than those of F*, especially for �	0.9 and q	3.

7. FINITE SAMPLE POWER AND EMPIRICAL EXAMPLE

Using the DGPs from the previous section, we simulated size-adjusted power of the
statistics and found that power rankings of the statistics followed patterns qualitatively
similar to the local asymptotic power curve depicted in Figure 2. Therefore, we do not
report those simulations here and instead report results on finite sample power from
simulations based on the following empirical example. Let �lre� denote the firstt
difference of the natural logarithm of real aggregate restaurant revenues for the United

ŽStates, and let �lgdp denote the first difference of the natural logarithm of seasonallyt
. Ž .adjusted real gross domestic product GDP for the United States. We obtained

quarterly observations from 1971:1 to 1996:4 for the nominal versions of these series and
constructed the real series by dividing by the implicit GDP deflator. We seasonally
adjusted the nominal restaurant revenue series before constructing the real series. The
restaurant revenue series was obtained from the Current Business Reports published by
the Bureau of the Census, and the nominal GDP and deflator series were obtained from
the Sur�ey of Current Business published by the Bureau of Economic Analysis, U.S.
Department of Commerce. The levels of the real revenue and real GDP series are clearly
trending over time and may have unit root errors. Therefore, the first differences of the
series are likely to be stationary and satisfy Assumptions A1 and A2, so we consider a
regression model in first differences of the data. For simplicity, we are ignoring the
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TABLE III
Ž .FINITE SAMPLE NULL REJECTION PROBABILITIES AR 1 MODELS, T�128

2,000 REPLICATIONS, NOMINAL LEVEL 0.05; ASYMPTOTIC CRITICAL VALUES USED

Model � F* QS QS�PW Model � F* QS QS�PW

�0.5 0.067 0.094 0.079 �0.5 0.082 0.118 0.097
�0.3 0.058 0.073 0.067 �0.3 0.062 0.090 0.080

Ž . Ž .AR 1 - 0.0 0.059 0.064 0.068 AR 1 - 0.0 0.054 0.070 0.069
HOMO 0.3 0.073 0.078 0.075 HOMO 0.3 0.065 0.090 0.085
q�1 0.5 0.083 0.103 0.089 q�2 0.5 0.090 0.134 0.109

0.7 0.099 0.143 0.107 0.7 0.128 0.207 0.147
0.9 0.197 0.302 0.211 0.9 0.273 0.440 0.322
0.95 0.307 0.439 0.314 0.95 0.409 0.611 0.448

�0.5 0.096 0.147 0.127 �0.5 0.104 0.184 0.153
�0.3 0.074 0.109 0.107 �0.3 0.077 0.124 0.121

Ž . Ž .AR 1 - 0.0 0.059 0.083 0.093 AR 1 - 0.0 0.074 0.089 0.109
HOMO 0.3 0.071 0.115 0.108 HOMO 0.3 0.089 0.127 0.128
q�3 0.5 0.097 0.169 0.131 q�4 0.5 0.114 0.199 0.162

0.7 0.141 0.262 0.195 0.7 0.169 0.313 0.237
0.9 0.344 0.567 0.429 0.9 0.388 0.651 0.515
0.95 0.491 0.748 0.570 0.95 0.543 0.832 0.658

�0.5 0.075 0.108 0.093 �0.5 0.085 0.127 0.117
�0.3 0.070 0.084 0.080 �0.3 0.071 0.091 0.093

Ž . Ž .AR 1 - 0.0 0.063 0.069 0.068 AR 1 - 0.0 0.062 0.087 0.086
HET1 0.3 0.075 0.093 0.089 HET1 0.3 0.073 0.099 0.097
q�1 0.5 0.088 0.119 0.099 q�2 0.5 0.095 0.136 0.118

0.7 0.114 0.166 0.128 0.7 0.125 0.211 0.167
0.9 0.217 0.338 0.267 0.9 0.283 0.450 0.352
0.95 0.326 0.439 0.348 0.95 0.395 0.579 0.464

�0.5 0.087 0.153 0.134 �0.5 0.098 0.174 0.157
�0.3 0.065 0.100 0.103 �0.3 0.075 0.112 0.120

Ž . Ž .AR 1 - 0.0 0.068 0.088 0.101 AR 1 - 0.0 0.067 0.096 0.117
HET1 0.3 0.086 0.120 0.120 HET1 0.3 0.091 0.128 0.136
q�3 0.5 0.103 0.165 0.142 q�4 0.5 0.117 0.187 0.168

0.7 0.149 0.262 0.208 0.7 0.163 0.317 0.242
0.9 0.328 0.535 0.423 0.9 0.361 0.616 0.490
0.95 0.449 0.687 0.546 0.95 0.506 0.769 0.616

�0.5 0.073 0.090 0.078 �0.5 0.086 0.121 0.099
�0.3 0.064 0.077 0.069 �0.3 0.070 0.085 0.087

Ž . Ž .AR 1 - 0.0 0.056 0.068 0.073 AR 1 - 0.0 0.069 0.077 0.079
HET2 0.3 0.068 0.086 0.082 HET2 0.3 0.077 0.097 0.094
q�1 0.5 0.085 0.108 0.096 q�2 0.5 0.089 0.130 0.116

0.7 0.100 0.151 0.122 0.7 0.119 0.203 0.163
0.9 0.203 0.305 0.234 0.9 0.257 0.421 0.318
0.95 0.303 0.416 0.318 0.95 0.372 0.557 0.443
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TABLE III�Continued

Model � F* QS QS�PW Model � F* QS QS�PW

�0.5 0.083 0.142 0.124 �0.5 0.087 0.160 0.136
�0.3 0.075 0.105 0.104 �0.3 0.079 0.115 0.117

Ž . Ž .AR 1 - 0.0 0.069 0.086 0.097 AR 1 - 0.0 0.077 0.090 0.110
HET2 0.3 0.079 0.114 0.114 HET2 0.3 0.083 0.123 0.131
q�3 0.5 0.097 0.157 0.142 q�4 0.5 0.101 0.196 0.170

0.7 0.139 0.258 0.202 0.7 0.169 0.310 0.246
0.9 0.311 0.529 0.406 0.9 0.351 0.610 0.489
0.95 0.443 0.671 0.548 0.95 0.505 0.753 0.624

TABLE IV
Ž .FINITE SAMPLE NULL REJECTION PROBABILITIES MA 1 MODELS, T�128

2,000 REPLICATIONS, NOMINAL LEVEL 0.05; ASYMPTOTIC CRITICAL VALUES USED

Model � F* QS QS-PW Model � F* QS QS-PW

Ž . Ž .MA 1 - 0.3 0.072 0.074 0.071 MA 1 - 0.3 0.068 0.087 0.080
HOMO 0.5 0.073 0.084 0.074 HOMO 0.5 0.074 0.100 0.081
q�1 0.7 0.073 0.089 0.073 q�2 0.7 0.078 0.109 0.082

0.99 0.073 0.090 0.073 0.99 0.078 0.112 0.083

Ž . Ž .MA 1 - 0.3 0.066 0.106 0.104 MA 1 - 0.3 0.083 0.117 0.117
HOMO 0.5 0.074 0.124 0.105 HOMO 0.5 0.090 0.135 0.124
q�3 0.7 0.080 0.134 0.102 q�4 0.7 0.093 0.160 0.124

0.99 0.082 0.139 0.101 0.99 0.094 0.164 0.118

Ž . Ž .MA 1 - 0.3 0.068 0.087 0.082 MA 1 - 0.3 0.072 0.093 0.090
HET1 0.5 0.082 0.098 0.086 HET1 0.5 0.074 0.103 0.089
q�1 0.7 0.083 0.102 0.084 q�2 0.7 0.082 0.115 0.095

0.99 0.080 0.104 0.084 0.99 0.080 0.122 0.097

Ž . Ž .MA 1 - 0.3 0.080 0.118 0.117 MA 1 - 0.3 0.086 0.112 0.122
HET1 0.5 0.085 0.132 0.119 HET1 0.5 0.093 0.139 0.130
q�3 0.7 0.095 0.140 0.116 q�4 0.7 0.095 0.151 0.130

0.99 0.095 0.146 0.116 0.99 0.093 0.158 0.130

Ž . Ž .MA 1 0.3 0.068 0.084 0.081 MA 1 - 0.3 0.073 0.088 0.089
HET2 0.5 0.077 0.096 0.084 HET2 0.5 0.072 0.103 0.091
q�1 0.7 0.082 0.098 0.083 q�2 0.7 0.077 0.110 0.088

0.99 0.081 0.098 0.076 0.99 0.085 0.104 0.089

Ž . Ž .MA 1 - 0.3 0.078 0.102 0.105 MA 1 - 0.3 0.077 0.119 0.126
HET2 0.5 0.077 0.122 0.115 HET2 0.5 0.082 0.142 0.138
q�3 0.7 0.082 0.133 0.109 q�4 0.7 0.087 0.155 0.136

0.99 0.086 0.132 0.106 0.99 0.097 0.156 0.125
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TABLE V
Ž .FINITE SAMPLE NULL REJECTION PROBABILITIES AR 1 -HOMO MODEL, T�256, 512

2,000 REPLICATIONS, NOMINAL LEVEL 0.05; ASYMPTOTIC CRITICAL VALUES USED

Model � F* QS QS-PW Model � F* QS QS-PW

�0.5 0.050 0.069 0.059 �0.5 0.062 0.089 0.071
�0.3 0.051 0.068 0.061 �0.3 0.049 0.064 0.062

Ž . Ž .AR 1 - 0.0 0.044 0.057 0.058 AR 1 - 0.0 0.053 0.053 0.056
HOMO 0.3 0.052 0.066 0.061 HOMO 0.3 0.057 0.075 0.067
q�1 0.5 0.054 0.081 0.064 q�2 0.5 0.070 0.095 0.077
T�256 0.7 0.067 0.101 0.078 T�256 0.7 0.095 0.137 0.106

0.9 0.123 0.191 0.141 0.9 0.170 0.289 0.197
0.95 0.184 0.297 0.207 0.95 0.263 0.442 0.311

�0.5 0.063 0.104 0.080 �0.5 0.072 0.120 0.095
�0.3 0.048 0.075 0.071 �0.3 0.056 0.086 0.078

Ž . Ž .AR 1 - 0.0 0.052 0.060 0.064 AR 1 - 0.0 0.057 0.064 0.068
HOMO 0.3 0.066 0.082 0.079 HOMO 0.3 0.067 0.090 0.086
q�3 0.5 0.073 0.101 0.096 q�4 0.5 0.084 0.132 0.106
T�256 0.7 0.100 0.173 0.125 T�256 0.7 0.122 0.202 0.146

0.9 0.213 0.386 0.263 0.9 0.250 0.477 0.342
0.95 0.330 0.565 0.406 0.95 0.394 0.682 0.502

�0.5 0.062 0.070 0.057 �0.5 0.059 0.080 0.070
�0.3 0.058 0.060 0.053 �0.3 0.047 0.061 0.056

Ž . Ž .AR 1 - 0.0 0.055 0.054 0.056 AR 1 - 0.0 0.047 0.053 0.056
HOMO 0.3 0.057 0.063 0.057 HOMO 0.3 0.058 0.062 0.058
q�1 0.5 0.047 0.067 0.062 q�2 0.45 0.058 0.073 0.060
T�512 0.7 0.064 0.081 0.064 T�512 0.7 0.065 0.097 0.072

0.9 0.092 0.125 0.084 0.9 0.105 0.170 0.118
0.95 0.124 0.193 0.132 0.95 0.165 0.278 0.195

�0.5 0.057 0.087 0.073 �0.5 0.057 0.091 0.073
�0.3 0.049 0.070 0.067 �0.3 0.045 0.076 0.068

Ž . Ž .AR 1 - 0.0 0.045 0.061 0.060 AR 1 - 0.0 0.060 0.063 0.066
HOMO 0.3 0.053 0.066 0.060 HOMO 0.3 0.057 0.082 0.071
q�3 0.5 0.050 0.077 0.065 q�4 0.5 0.054 0.089 0.071
T�512 0.7 0.068 0.104 0.077 T�512 0.7 0.073 0.117 0.091

0.9 0.120 0.225 0.156 0.9 0.142 0.268 0.191
0.95 0.194 0.365 0.240 0.95 0.232 0.452 0.309

possibility that the levels of the series are cointegrated.
Consider the regression

Ž .13 �lre� �� �� �lgdp �u .t 1 2 t t

Ž . Ž .In the notation of Section 2, �� � , � � and X � 1, �lgdp �. The parameter �1 2 t t 2
measures the change in the growth of real restaurant revenues with respect to a unit
increase in the real growth rate of GDP. Thus, � measures the sensitivity of real2
restaurant revenue growth to changes in real GDP growth. Since shocks to the restaurant
sector are likely to have little or no effect on GDP, it is reasonable to think of �lgdp ast
an exogenous regressor. Therefore, OLS provides a consistent estimate of � .2

ˆŽ .We estimated 13 by OLS and obtained � �0.681. Thus, an increase in the real2
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growth rate of GDP by 1% results in a 0.681% increase in the real growth rate of
ˆrestaurant revenues. To measure the sampling variability of � , we constructed the2

Ž . Ž .following 95% confidence intervals: QS: 0.059, 1.302 , QS�PW: �0.070, 1.431 , and F*:
ˆŽ .0.305, 1.056 . Confidence intervals based on QS and QS�PW were computed as � �2

ˆ 1�2 ˆŽ .1.96 V �T where V is the second diagonal element of22 22

�1 �1� ��1 T �1 Tˆ ˆŽ . Ž .V� T Ý X X � T Ý X X ,t�1 t t t�1 t t

�̂ is the QS or QS�PW HAC estimator respectively of � , 1.96 is 97.5% critical value of
a standard normal distribution, and T�103. The confidence interval based on F* was

ˆ ˆ 1�2 ˆŽ .computed as � �6.811 B �T where B is the second diagonal element of2 22 22

�1 �1� � ��1 T �2 T �1 Tˆ ˆ ˆŽ . Ž .B� T Ý X X T Ý S S T Ý X XŽ .t�1 t t t�1 t t t�1 t t

and 6.811 is the 97.5% asymptotic critical value taken from Table I. Interestingly, the
tightest confidence interval is obtained using F*, and there are nontrivial differences in
the HAC based confidence intervals whether or not prewhitening is used. This empirical
example suggests a situation where power of the F* statistic may be greater than power
of HAC estimator tests and illustrates the sensitivity of inference to the way HAC

Ž Ž .estimators are constructed see Den Haan and Levin 1997 for additional evidence on
.the latter .

To investigate the possibility that F* is more powerful in the empirical example, we
conducted the following simulation experiment. We fit a variety of ARMA models to the

Ž . Ž .OLS residuals from 13 and found that an AR 4 model provided a good fit. We also fit a
Ž . Ž .variety of ARMA models to �lgdp and found that an AR 1 and an ARMA 4, 1 modelt

provided good fits. We performed three power simulations using 2,000 replications and
T � 103. We generated data according to the model y � � x � u with u �t 2 t t t

Ž .�0.3429u �0.3301u �0.2686u �0.5947u �� , � � iid N 0, 0.0197 . We gen-t�1 t�2 t�3 t�4 t t
Ž .erated x using three DGPs: DGP 1 : x equal to the actual first differenced quarterlyt t

Ž . Ž . Ž .real GDP data x ��lgdp , DGP 2 : x �0.3249x �� , � � iid N 0, 0.0089 , andt t t t�1 t t
Ž .DGP 3 : x �0.9952 x �0.1446 x �0.0411 x �0.1465x �� �0.7410� , ��t t�1 t�2 t�3 t�4 t t�1
Ž .iid N 0, 0.0089 . The null hypotheses was H : � �0.0 2

We computed finite sample null rejection probabilities of the statistics using 5%
asymptotic critical values, which we report in Table VI. Regardless of the DGP used for
x , rejection probabilities of all the statistics are below 0.05 with those of QS and QS�PWt
below that of F*. Rejection probabilities of QS and QS�PW are quite low when the

Ž Ž ..actual GDP data are used DGP 1 which explains the wide confidence intervals using
QS and QS�PW in the empirical example. Because the tests are all conservative, it

TABLE VI

FINITE SAMPLE SIZE BASED ON THE EMPIRICAL EXAMPLE.
T�103, 2,000 REPLICATIONS, NOMINAL LEVEL 0.05; ASYMPTOTIC CRITICAL VALUES USED

� F* QS QS-PW2

Ž .DGP 1 0.00 0.026 0.005 0.002
Ž .DGP 2 0.00 0.044 0.038 0.030
Ž .DGP 3 0.00 0.044 0.030 0.023

Note: The regression is y � � � � x � u with H : � � 0. The DGP is y � � x � u , u � �0.3429 u � 0.3301ut 1 2 t t 0 2 t 2 t t t t�1 t�2
Ž . Ž . Ž .� 0.2686 u � 0.5947u � � , � � iid N 0, 0.0197 . For DGP 1 , x is first differenced quarterly real GDP. For DGP 2 ,t� 3 t�4 t t t

Ž . Ž .x � 0.3249 x � � , � � iid N 0, 0.0089 . For DGP 3 , x � 0.9952 x � 0.1446 x � 0.0411 x � 0.1465 x � � �t t�1 t t t t�1 t�2 t�3 t�4 t
Ž .0.7410� , � � iid N 0, 0.0089 .t� 1 t
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makes sense to compare power functions computed using the asymptotic critical values
Ž .this mimics the way the tests are used in practice . We simulated power for � �2
0.1, 0.2, . . . , 1.9, 2.0. The resulting finite sample power curves are plotted in Figures 3, 4
and 5 corresponding to the three DGPs for x . In Figure 3 we see that F* dominates thet

HAC estimator tests in terms of power when actual GDP data are used for x . This is nott
an atypical example as real GDP is commonly used in empirical work. In the other cases
where x is modeled as an ARMA process, the power ranking depends on how far � ist 2
from zero.

We conclude this section with an example that illustrates the sensitivity of HAC
estimator tests to projections of subsets of regressors in OLS regressions. Using the same
data set as above, we regressed the level of nominal aggregate restaurant revenue on a
constant, a time trend, and the level of nominal GDP and obtained the following 95%

Ž .confidence intervals for the estimate of the coefficient on nominal GDP: QS: 1.077, 1.321 ,
Ž . Ž . ŽQS�PW: 1.040, 1.358 , F*: 1.031, 1.366 . Because the nominal series almost certainly

have unit root errors, this example does not satisfy Assumptions A1 and A2. It is
.illustrative nonetheless. We also detrended the data and regressed the detrended

Žrevenue series on the detrended constant and detrended GDP we projected out the time
.trend . The OLS estimate of the GDP coefficient and F* are invariant to the method of

estimation by the FWL Theorem. Therefore, confidence intervals based on F* are the
same in the two cases. Confidence intervals based on QS and QS�PW are not invariant,
which is illustrated by confidence intervals based on the detrended regression: QS:
Ž . Ž .1.069, 1.329 , QS�PW: 0.795, 1.603 . This lack of invariance arises from using an
automatic bandwidth and�or pre-whitening and illustrates a pitfall when using HAC
estimator tests.

FIGURE 3.Finite sample power, T�103, 5% nominal size. y �� �� x �u ,t 1 2 t t
Ž .H : � �0, u �AR 4 .0 2 t
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FIGURE 4.Finite sample power, T�103, 5% nominal size. y �� �� x �u ,t 1 2 t t
Ž . Ž .H : � �0, u �AR 4 , x �AR 1 .0 2 t t

FIGURE 5.Finite sample power, T�103, 5% nominal size. y �� �� x �u ,t 1 2 t t
Ž . Ž .H : � �0, u �AR 4 , x �ARMA 4, 1 .0 2 t t
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8. CONCLUSIONS

In this paper we propose new test statistics for testing hypotheses in regression models
with serial correlation�heteroskedasticity of unknown form. The novel aspect of the new

Ž .tests is that they are simple to compute and do not require spectral density HAC
estimators. Our approach is to eliminate nuisance parameters asymptotically with a
simple stochastic transformation of the parameter estimates. Since there are many
conceivable transformations that will yield asymptotic pivotal statistics, our approach
creates a new class of test statistics that are pivotal and robust to heteroskedasticity and
serial correlation in the errors. An open research problem is to develop a theory of
optimality for this new class of tests. We derive the limiting null distributions of the new
tests and show that while they have nonstandard distributions, the distributions only
depend on the number of restrictions being tested and critical values are easily simulated.
Our results easily extend to GLS and IV estimation, and we conjecture that our approach
can be extended to the GMM framework. A simulation experiment showed that the

Ž .asymptotic approximation of the new test is better nearly uniformly than that of more
standard HAC estimator tests. But, like HAC estimator tests, the new tests suffer from

Ž .serious size distortions although less so if the data have highly persistent serial
correlation and are close to being nonstationary. This is a common problem in time
series models when the true form of serial correlation is unknown. Finally, the new tests
retain respectable power, and we provide a relevant empirical example where finite
sample power of our test dominates finite sample power of HAC estimator tests. Given
that new tests compare favorably to HAC methods in finite samples and are simpler to
compute, they should become serious competitors to HAC estimator tests in practice.
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APPENDIX

Ž .PROOF OF THEOREM 1: Under the null hypothesis and Assumptions A1 and A2 it follows from 2
Ž .and 5 that

�1ˆ ˆ ˆŽ Ž .. � � Ž Ž ..F*�T R ��� � RBR� R ��� �q

�11�2 1�2ˆ ˆ ˆŽ Ž .. � � Ž Ž ..� RT ��� � RBR� RT ��� �q

�1�1 �1 �1 �1Ž Ž .. � � Ž .� RQ �W 1 � RQ �P ��Q R� RQ �W 1 �q.k k k

�1 Ž .Because the matrix RQ � has rank q and W r is a vector of independent Wiener processes and isk
�1 Ž . � Ž . � Ž . Ž .Gaussian, RQ �W r can be written as �*W r where W r is a q�1 vector of independentk q q

Ž . �1 �1Wiener processes, and �* is the q�q matrix square root of RQ ���Q R�. �* exists and is
�1 �1 �1 Ž .invertible because RQ ���Q R� is symmetric and full rank. Therefore, RQ �W 1 is equivalentk
� Ž . �1 �1 �in distribution to �*W r . In addition RQ �P ��Q R� is equivalent in distribution to �*P �*�q k q
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where

1� � � � �Ž Ž . Ž .. Ž Ž . Ž ..P � W r � rW 1 W r � rW 1 � dr .Hq q q q q
0

This follows because

RQ�1�P ��Q�1R�k

1�1 �1� Ž . Ž .� � Ž . Ž .��RQ � W r � rW 1 W r � rW 1 � dr ��Q R�H k k k k½ 5
0

1 �1 �1 �1 �1Ž Ž . Ž .. Ž Ž . Ž ..� RQ �W r � rRQ �W 1 RQ �W r � rRQ �W 1 � dr ,H k k k k
0

which is equivalent in distribution to

1 � � � � �Ž Ž . Ž ..Ž Ž . Ž ..�*W r � r�*W 1 �*W r � r�*W 1 � dr��*P �*�.H q q q q q
0

Ž �1 Ž .. � �1 �1 ��1 �1 Ž .Thus, RQ �W 1 � RQ �P ��Q R� RQ �W 1 �q is equivalent in distribution tok k k

�1� � � � ��1 �Ž Ž .. � � Ž . Ž . Ž .�*W 1 � �*P �*� �*W 1 �q�W 1 �P W 1 �q. Q.E.D.q q q q q q

PROOF THAT F* SATISFIES THE FRISCH�WAUGH�LOVELL THEOREM: This proof is simplified by
Ž .writing the model and F* in matrix notation. Write regression 1 as Y�X��u. Let G denote a

ˆŽ .T�T lower triangular matrix with elements along the diagonal and below all equal to one. Let U
ˆ ˆŽ . Ž .denote a T�T diagonal matrix with diagonal elements u , u , . . . , u . Define S�GUX. Simpleˆ ˆ ˆ1 2 T

T ˆ �̂ ˆ ˆ ˆ ˆ ˆ ˆ ˆ �2algebra gives Ý S S �S�S�X �UG�GUX�X �HX where H�UG�GU so that C�T X �HX.t�1 t t
Without loss of generality, partition X into X and X where X contains the first k columns of1 2 1 1
X, and X contains the last k�k columns of X. Partition � into � and � where � is a2 1 1 2 1
Ž . ŽŽ . .k �1 vector containing the first k elements of � , and � is a k�k �1 vector containing the1 1 2 1
last k�k elements of �. To show that F* satisfies the FWL Theorem we must show that F* for1

Ž .testing � �0 in regression 1 is computationally the same as F* for testing � �0 in the1 1
regression

˜ ˜Ž .A1 Y�X � �u ,˜1 1

˜ ˜ � �1 � ˜Ž .where Y�M Y, X �M X , u�M u, and M �I �X X X X . Let � denote the OLS˜2 1 2 1 2 2 T 2 2 2 2 1
Ž . � �estimate of � from regression A1 , and let R� I 0 . By the FWL Theorem the OLS1 k k�k1 1

Ž . Ž . Ž .residuals from regression 1 and A1 are the same. Therefore the H matrix in regression A1 is
Ž . Ž . Ž .the same as in regression 1 . Thus, the F* statistics from regressions 1 and A1 can be written

respectively as
�1�1 �1ˆ ˆŽ . Ž . � Ž . Ž . � Ž .A2 T R� � R X �X X �HX X �X R� R� �q ,

�1�1 �1� � � �˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜Ž . Ž . Ž .A3 T� X X X HX X X � �q.1 1 1 1 1 1 1 1

ˆ ˜ Ž . Ž .By the FWL Theorem R��� ; therefore, A2 and A3 are computationally equivalent if1
� 1 � 1 ˜� ˜ � 1 ˜� ˜� ˜ � 1Ž . Ž . Ž . Ž .R X �X X �HX X �X R� � X X X HX X X . It is sufficient to show that1 1 1 1 1 1
�1 ˜� ˜ �1 ˜�Ž . Ž .R X �X X �� X X X . From the partitioned matrix formula it follows that1 1 1

�1 �1�1 �1� � � �˜ ˜ ˜ ˜Ž . Ž . Ž . Ž . � �R X �X X �� X X , � X X X X X X X , X �1 1 1 1 1 2 2 2 1 2

�1 �1 �1� � � � � �˜ ˜ ˜ ˜Ž . Ž . Ž .� X X X � X X X X X X X1 1 1 1 1 1 2 2 2 2

�1 �1� � � �˜ ˜Ž . Ž Ž . .� X X X I �X X X X1 1 1 T 2 2 2 2

�1 �1� � � �˜ ˜ ˜ ˜ ˜Ž . Ž .� X X X M � X X X1 1 1 2 1 1 1

which completes the proof. Q.E.D.
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Ž . Ž .PROOF OF 11 AND 12 : The denominators of t and t* are invariant to c since they areH AC
functions of u , which is invariant to c by construction. It directly follows thatˆt

1�2 1�2�2 2 �2 �2 2 �2 2Ž . Ž .plim � � � � � � � ���� ,ˆ ˆ ˆx x x x x

Ž .and using 5 with simplifying algebra we have

1�21�2 1 2�2 �2 2ˆŽ . Ž . Ž Ž . Ž ..� C� � ��� W r � rW 1 dr .ˆ ˆ Hx x x 1 1
0

1�2 ˆŽ . Ž . Ž .Given these results, all that is needed to prove 11 and 12 is the limit of T ��� under the0
local alternative. Using Assumptions A1 and A2 we have

�1T T
1�2 �1 2 �1�2 2ˆŽ . Ž .T ��� �c� T x T x u �c�� W 1 �� .Ý Ý0 t t t 1 xž /

t�1 t�1

Simple algebra completes the proof. Q.E.D.
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