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COVARIANCE MATRIX ESTIMATION AND THE POWER OF THE
OVERIDENTIFYING RESTRICTIONS TEST

BY ALASTAIR R. HALL1

1. INTRODUCTION

Ž . Ž Ž ..GENERALIZED METHOD OF MOMENTS GMM Hansen 1982 has been widely applied to
estimate the parameters of economic and statistical models based on time series data.2 In
many cases of interest, the parameter vector is overidentified and so inference is based

Ž .on the two-step estimator proposed by Hansen 1982 . The second step of this procedure
requires the construction of a positive semidefinite consistent estimator of the long run
covariance matrix of the sample moment. Unless the economic model implies a certain
form for this covariance matrix, it is desirable to use an estimator that is consistent under
the weakest possible conditions. This requirement has motivated the development of the

Ž .class of heteroscedasticity and autocorrelation consistent covariance HACC matrix
estimators that are now routinely used by practitioners in the calculation of the two-step
GMM estimator. In applications, it is customary to assume the model is correctly
specified during the estimation, and only to assess the specification after the second-step
using a statistic such as the overidentifying restrictions test. One important consequence
of this methodology is that the HACC estimator is calculated under the assumption that
the model is correctly specified.

In this paper, we examine the implications of model misspecification for the HACC
covariance matrix estimator and the overidentifying restrictions test. It is shown that the
HACC estimator is asymptotically equivalent to the sum of two matrices: one of these

Ž . Ž .matrices is nonsingular and O 1 ; the other is of rank one and O b where b is theT T
bandwidth used in the HACC estimator. It is shown that this structure implies the
inverse of the HACC estimator converges to a singular matrix as b �� with T , and thisT
limiting matrix has rank q�1 where q is the dimension of the moment condition. It is
shown that this limiting behavior translates into an overidentifying restrictions test that is

Ž .O T�b . In contrast, it is shown that the overidentifying restrictions test is consistentp T
Ž .and O T if the covariance matrix estimator is consistent under both null and alterna-p

tive. This can be achieved by constructing the HACC estimator using the sample moment
in mean deviation form.3

1I am grateful for useful conversations about this work with Peter Burridge, Atsushi Inoue, and
Ada Wossink, and for the comments from seminar participants at the Departments of Economics at
Cornell University, North Carolina State University, Pennsylvania State University, and the Univer-
sity of Arizona. This paper has also greatly benefited from the comments of Don Andrews and three
anonymous referees. Part of this work was undertaken while the author was a visiting research
fellow at the Department of Economics at the University of Birmingham, UK, and this support is
gratefully acknowledged.

2 Ž . Ž .For example, see the citations in the review articles by Hall 1993 and Ogaki 1993 .
3Since this research was undertaken, Don Andrews has drawn my attention to footnote 3 in his

Ž Ž ..paper Andrews 1999 on moment selection in which it is recommended that variances be
calculated using the data in mean deviation form. However, as he also pointed out to me, he
provides neither a citation nor analysis to support the recommendation in his paper.
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An overview of the paper is as follows. Section 2 presents a brief review of the two-step
GMM estimator and HACC estimators. Section 3 examines the properties of these
estimators and the overidentifying restrictions test when the model is misspecified. All
proofs and certain other technical details are relegated to an Appendix.

2. TWO-STEP GMM ESTIMATION IN CORRECTLY SPECIFIED MODELS

Consider the case in which a model implies the p�1 vector of parameters, � , and a0
set of observed variables, � , satisfy the q�1 population moment conditiont

Ž . � Ž .�1 E f � , � �0.t 0

Ž .The GMM estimator of � based on 1 is defined to be0

ˆŽ . Ž . Ž .2 � �Argmin g � �W g �T � �� T T T

Ž . �1 T Ž .where g � �T Ý f � , � and W is a positive semidefinite weighting matrix thatT t�1 t T
converges in probability to a positive definite matrix of constants. If q�p, then the
choice of W becomes important because it determines the asymptotic covariance matrixT

ˆ Ž .of � . In these circumstances, Hansen 1982 proves that the optimal choice of weightingT
matrix converges in probability to S�1 where

Ž . � 1�2 Ž .�3 S� lim var T g � .T 0
T� �

�̂1 ˆThis limit can be achieved by setting W �S where S is a positive semidefiniteT T T
consistent estimator of S. Since S typically depends on � , the use of this optimal0
weighting matrix necessitates a two step estimation procedure. In this paper, we consider

ˆ Ž .the case in which the first step estimator, � 1 , is used to construct the following HACCT
estimator:

T�1
ˆ ˆŽ . Ž .4 S � � i�b �ÝT T i

i��T�1

where

T
�1ˆ ˆ ˆŽ Ž .. Ž Ž ..� �T f � , � 1 f � , � 1 � for i	0,Ýi t T t� i T

t� i�1

T
�1 ˆ ˆŽ Ž .. Ž Ž ..�T f � , � 1 f � , � 1 � for i�0,Ý t�i T t T

t��i�1

Ž .and the kernel, � � , and bandwidth, b , satisfy certain restrictions given below. TheT
ˆ �̂1Ž . Ž . Ž .second step or optimal estimator, � 2 , is then calculated using W �S in 2 .T T T

Up to this point, the model is assumed to be correctly specified. It is only after the
second step estimation that credence is given to the possibility of misspecification, and
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Ž .the overidentifying restrictions test is applied to assess the validity of 1 . This statistic is
ˆ Ž .conveniently calculated as T times the second-step GMM minimand evaluated at � 2 ,T

namely

ˆ �̂1 ˆŽ . Ž Ž .. Ž Ž ..5 J �Tg � 2 �S g � 2 .T T T T T T

Ž . Ž . 2Hansen 1982 shows that if 1 holds, then J converges to a 	 distribution. ThisT q�p
sequence of events has the important consequence that in many applications the HACC
estimator used in the second step estimation, and hence the overidentifying restrictions

Ž .test, is calculated under the assumption that 1 holds.

3. TWO STEP GMM ESTIMATION IN MISSPECIFIED MODELS

In this section, we consider the case where the original population moment condition
Ž .in 1 is invalid. Certain assumptions are required to facilitate the analysis. However, for

brevity, we only highlight in the text those assumptions that are relevant to the exposition
and relegate the rest to the mathematical Appendix.

Ž .Following Hansen 1982 , we impose the following condition on � .t

� 4ASSUMPTION 1: � �VV , t�1, 2, . . . is a sequence of strictly stationary and ergodict
random �ectors where VV
� s.

Ž .If the original population moment condition in 1 is invalid, then there must be no
value of � at which the population moment condition is satisfied. So, if we define

Ž . � Ž .� Ž .6 E f � , � �
 � ,t

then model misspecification is captured by the following assumption.

q � Ž .�ASSUMPTION 2: 
: ��� such that 
 � �0 for all ��� .

To deduce the impact of this misspecification on the HACC estimator and the
overidentifying restrictions test, it is necessary to begin with the first step estimator. Let
W denote the weighting matrix for the first step estimation. For completeness, weT
formally impose the conditions described in the previous section.

ASSUMPTION 3: W is a positi�e semidefinite matrix that con�erges in probability to theT
positi�e definite matrix of constants W.

So, the first step estimator is defined as

ˆŽ . Ž . Ž . Ž .7 � 1 �Argmin g � �W g �T � �� T T T

p ˆ Ž .where ��� . To establish that � 1 converges to a probability limit, it is necessary toT
impose an identification condition.4

4Assumption 4 is similar to the ‘‘identifiable uniqueness’’ condition that underpins Gallant and
Ž .White’s analysis of misspecified models; see Gallant and White 1988, p. 19 .
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Ž . Ž . � 4ASSUMPTION 4: There exists � �� such that Q � �Q � , ����� � , where� 0 � 0 �
Ž . � Ž .� � Ž .�Q � �E f � , � �W E f � , � .0 t t

Notice that in general � depends on W, although we suppress this dependence for�
ease of notation. Once this identification condition is imposed, we can appeal to a

Ž . Ž .combination of Newey and McFadden’s 1994 Theorem 2.1 and Wooldridge’s 1994
Theorem 7.1 to deduce the following result.5

LEMMA 1: If Assumptions 1�4, and Assumptions A.1�A.4 in the Appendix hold, then
p

ˆ Ž .� 1 � � .T �

After the first step estimation, it is the behavior of the population moment condition at
� that becomes important. Consequently, we introduce the notation�

Ž . � Ž .�8 E f � , � �
 .t � �

Notice that Assumption 2 implies 
 �0.�
We now turn to the impact on misspecification on both the HACC estimator and its

inverse because it is the latter that appears in the overidentifying restrictions test. For
this analysis, it is necessary to impose certain additional restrictions. First we limit
attention to HACC estimators whose kernels and bandwidths satisfy the following
properties.

Ž . � Ž . � Ž . Ž . Ž . Ž .ASSUMPTION 5: i For all x�� , � x 
1, � �x �� x , � 0 �1, � x is continu-
Ž .2 Ž . �i x �ous at zero and for almost all x�� , H � x dx��, H � x e dx	0 for all ���;� �

Ž . Ž 1�2 . Ž . Ž .ii b �o T and b ��; iii H � x dx�c where 0�c��.T T �

ŽIt can be verified that Assumption 5 is satisfied by the Bartlett Newey and West
Ž .. Ž Ž .. Ž Ž ..1987 , Parzen Gallant 1987 , or the quadratic spectral Andrews 1991 kernels.

It is also necessary to assume the following.

� �1�2 T Ž Ž . .�ASSUMPTION 6: V� lim var T Ý f � , � �
� is a positi�e definite matrixT �� t�1 t �
of constants.

Ž .We can now appeal to Gallant and White’s 1988 Theorem 6.8 to deduce the
following lemma.6

LEMMA 2: If Assumptions 1�6 and A.1�A.8 in the mathematical Appendix hold, then
ˆ � T�1Ž . Ž .S �V�M �o 1 where M �B 
 
 , B �Ý � i�b , and hence B �b �cT T p T T � � T i��T�1 T T T

Ž . Ž .�o 1 for c defined in Assumption 5 iii .

5Our identification condition is different from Wooldridge’s but his proof is easily adapted to take
Ž .account of this difference. Note that Wooldridge’s result is based on Newey and McFadden’s 1994

Theorem 2.1 and these authors employ an analogous identification context to Assumption 4 albeit in
the context of correctly specified models.

6 Ž . Ž 1�4 .Strictly, Gallant and White 1988 only prove their result for b �o T and kernels of theT
Ž . Ž 1�2 .form � x �0 for x�1. However, it is straightforward to extend the result to b �o T andT

Ž . Ž .kernels satisfying Assumption 5 i using Andrews’s 1991 Theorem 1.
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ˆLemma 1 indicates that the large sample behavior of S is identical to the behavior ofT
Ž .V�M . The matrix V is positive definite and O 1 ; the matrix M has rank equal to oneT T

�̂1and increases at rate b . We now consider the implications of Lemma 2 for S .T T

THEOREM 1: If Assumptions 1�6 and A.1�A.8 hold then:
Ž .i

p 1
��1 �1 �1 �1Ŝ � S �V � V 
 
 V ;T � � �� �1
 V 
� �

Ž .ii S is a positi�e semidefinite matrix with rank equal to q�1 and a nullspace spanned�
by 
 .�

We now consider how this behavior impacts the properties of the overidentifying
restrictions test.

Ž .THEOREM 2: If Assumptions 1�6 and A.1�A.8 hold, then J �O T�b .T p T

This result states that the overidentifying restrictions test can not increase faster than
rate T�b . By itself, Theorem 2 does not imply J is a consistent test; however this is inT T
fact the case.7

Inspection of the proof reveals that this dependence on b stems directly from theT
invalid assumption that the model is correctly specified. Therefore it seems intuitively
reasonable that a more powerful test will be obtained if the HACC matrix is constructed
in such a way that it is consistent regardless of whether or not the population moment
condition is correct. This can be achieved by using the estimator

T�1
ˆ ˜Ž . Ž .9 V � � i�b �ÝT T i

i��T�1

where
T

�1˜ ˆ ˆ� Ž Ž .. Ž Ž ..�� �T f � , � 1 �g � 1Ýi t T T T
t� i�1

�ˆ ˆ� Ž Ž .. Ž Ž ..�� f � , � 1 �g � 1 for i	0,t�i T T T

T
�1 ˆ ˆ� Ž Ž .. Ž Ž ..��T f � , � 1 �g � 1Ý t�i T T T

t��i�1

�ˆ ˆ� Ž Ž .. Ž Ž ..�� f � , � 1 �g � 1 for i�0.t T T T

For the rest of the paper, we consider the properties of the GMM estimator and
overidentifying restrictions test when this ‘‘centered’’ version of the HACC estimator is

ˆused instead of the ‘‘uncentered’’ version, S . Therefore we now consider the second stepT
GMM estimator

˜ �̂1Ž . Ž . Ž . Ž .10 � 2 �Argmin g � �V g �T � �� T T T

p7 Ž .In an earlier version of this paper, it is shown that b �T J � a where a is a finite positiveT T
constant, and hence that the test is consistent. However, this analysis was dropped for brevity on the
advice of the editor and referees.
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and its associated overidentifying restrictions test

˜ ˜ �̂1 ˜Ž . Ž Ž .. Ž Ž ..11 J �Tg � 2 �V g � 2 .T T T T T T

ˆ ˜ ˜Ž .The following theorem establishes the properties of V , � 2 , and J . However, beforeT T T
these results can be presented it is necessary to introduce the following identification
condition.

˜ ˜Ž . Ž . � 4ASSUMPTION 7: There exists � �� such that Q � �Q � , ����� � and�� 0 �� 0 ��
˜ �1Ž . � Ž .� � Ž .�Q � �E f � , � �V E f � , � .0 t t

p p
ˆ ˜Ž . Ž . Ž .THEOREM 3: If Assumptions 1�7 and A.1�A.9 hold, then: i V � V; ii � 2 � � ;T T ��

p
�1 ˜Ž .iii T J � 
 for some finite positi�e constant 
 .T

˜Ž .Theorem 3 iii implies that J is consistent and increases at rate T , which, fromT
˜Theorem 2, is faster than J . Therefore J is more powerful than J in large samples.T T T

To conclude this paper, we present the results from a simulation study designed to
illustrate the extent to which our asymptotic results manifest themselves in finite
samples.8 Data were generated from the following model:

y �x �� z �u ,t t 1, t t

x �z �z �e ,t 1, t 2, t t

Ž . Ž .for t�1, 2 . . . T where z , z , u , e �	IN 0,� and � is the symmetric matrix with1, t 2, t t t
i-jth element � whose nonzero upper triangular elements are given by � �1 fori j ii
i�1, 2 . . . 4, � �� �0.5. GMM estimation of a scalar parameter � is performed under12 34
the assumption that the following population moment condition holds:

Ž . � Ž .� � Ž .�12 E f � , � �E z y �x � �0t t t t

Ž . Ž .where z � z , z �. Notice that if ��0, then 12 holds at ��1; otherwise the modelt 1, t 2, t
is misspecified. Simulation results reported in an earlier version of this paper indicate

ˆ ˆ� Ž Ž ..� � Ž . �that both g � 1 and � 1 �1 increase monotonically with � over the range ofT T T
˜values considered. On each replication, both J and J are calculated using a HACCT T

estimator with the Bartlett kernel and a bandwidth chosen via the data based method
Ž .proposed by Newey and West 1994 . To present this method, it is notationally conve-

nient to consider the generic case in which it is desired to estimate the long run variance
� �1�2 T �lim var T Ý d for some random vector d .T �� t�1 t t

Ž . 9Newey and West’s 1994 bandwidth selection method

1. Construct the scalar random variable h �w�� d where w is a prespecified vectort t
of constants discussed below.

Ž .�1 T2. Construct � � T�1 Ý h h for j�0, 1, . . . n.ĵ t� j�2 t t� j
3. Calculate sŽ� .�2Ýn j� and sŽ0.�� �2Ýn � .ˆ ˆ ˆ ˆ ˆj�1 j 0 j�1 j

�� Ž� . Ž0.42 �1�34. Calculate ��1.1447 s �s .ˆ ˆ ˆ
� 1�345. Set b � int � T .ˆT

8All calculations are performed using MATLAB.
9 Ž .It should be noted that Newey and West 1994 actually recommend the use of a prewhitened

and recolored covariance matrix estimator. However, this step is omitted in our design to highlight
more clearly the impact of misspecification on HACC estimators.
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TABLE I

SUMMARY STATISTICS FOR BANDWIDTH AND OVERIDENTIFYING RESTRICTIONS TEST AT T�300

ˆ ˜ ˜ ˜Ž . Ž . Ž . Ž . Ž . Ž .c � Med b Med J Pow J Med b Med J Pow JT T T T T T

4 0.000 4 0.476 0.051 4 0.481 0.061
0.125 4 1.310 0.186 4 1.353 0.213
0.250 4 4.736 0.600 4 5.296 0.631
0.375 5 9.474 0.923 4 12.016 0.934
0.500 6 13.744 0.996 4 20.721 0.997

10.00 10 21.661 1.000 4 110.900 1.000
12 0.00 11 0.501 0.046 12 0.518 0.078

0.125 11 1.341 0.171 12 1.473 0.241
0.250 12 4.300 0.563 12 5.702 0.651
0.375 15 7.389 0.905 11 12.867 0.940
0.500 18 9.228 0.993 11 22.059 0.997

10.00 24 11.370 1.000 12 116.227 1.000

Ž . Ž .Notes: Med J denotes the median of the statistic J ; Pow J denotes the power of the test based on J with nominal
size 0.05.

ˆŽ Ž ..If the HACC is calculated with uncentered data, then d � f � , � 1 and the selectedt t T
ˆbandwidth is denoted b . If the HACC is calculated with centered data, then d �T t

ˆ ˆ ˜Ž Ž .. Ž Ž ..f � , � 1 �g � 1 , and the selected bandwidth is denoted b . To implement thist T T T T
Ž . �Ž .2�94approach, it is necessary to specify w and n. We set w� 1, �1 �, n�cint T�100 ,

and consider two values for c, that is c�4, 12.10

For brevity, we only report results in Table I for ��0.0, 0.125, 0.25, 0.375, 0.5, 10.00 and
T�300, but summarize corresponding results for T�1000 in the text. All calculations

Ž .are based on 10,000 replications. First consider the size properties of the test i.e. ��0 .
˜At T�300, the empirical sizes of J and J tend to be closer to their nominal value ofT T

0.05 with c�4 than with c�12. Of the two statistics, J exhibits empirical size closer toT
the nominal value as would be expected since it is based on the HACC estimator, which

Ž .exploits the information in 1 . By T�1000, the empirical sizes of J with c�4, 12 andT
J̃ with c�4 are within two simulation standard errors of the nominal value; theT

˜corresponding quantity for J with c�12 is slightly more than three simulation standardT
Ž .errors from the nominal value. Now consider the power properties of the test i.e. ��0 .

˜Three features stand out. First, J is more powerful than J and sometimes by as muchT T
ˆas approximately 10%. Second, the median of b increases with the degree of misspeci-T

˜Ž .fication i.e. � but the median of b is unaffected. The difference is even more strikingT
ˆat T�1000: when ��10, the medians of b with c�4 and c�12 are respectively 16T

˜and 36, whereas the corresponding medians of b are 4 and 12 respectively. Third, theT
˜median of J increases far more rapidly than the median of J . Again, the contrast isT T

˜ Ž .more striking at T�1000. For ��10, the median of J is 359.637 c�4 and 363.018T

10 Ž .The values of n are chosen to mimic those employed in Newey and West’s 1994 simulation
study. The choice of w requires a little more explanation. It turns out that within our simulation

Ž . Ž .design the moment condition approximately takes the form k,�k �. Therefore, if we set w� 1, 1 �
Ž .�which is similar to the choice used by Newey and West 1994 in their simulations�then h ist

essentially the same process regardless of whether the data are centered or not. Since this is just an
Ž .artifact of the simulation design, we set w� 1,�1 in order to illustrate the potential impact of

misspecification on Newey and West’s method procedure for calculating the bandwidth.
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Ž .c�12 . The corresponding figures for J are 51.346 and 25.755. This evidence suggestsT
the use of Newey and West’s bandwidth selection method without the mean correction
can lead to relatively large values of the bandwidth, and hence exacerbate the problems
caused by the failure to account for misspecification in the construction of the HACC
estimator.

Dept. of Economics, North Carolina State Uni�ersity, Box 8110, Raleigh, NC 27695-8110,
U.S.A.; alastair hall@ncsu.edu�

Manuscript recei�ed April, 1998; final re�ision recei�ed August, 1999.

MATHEMATICAL APPENDIX

We first list the additional assumptions for the Lemmas and Theorems presented in the paper.

ASSUMPTION A.1: f : VV ���� q.

ASSUMPTION A.2: � is a compact set.

Ž . Ž .ASSUMPTION A.3: f �, � is measurable for each ��� and f � ,� is continuous on � for e�ery
� �VV .

Ž .ASSUMPTION A.4: f � , � satisfies the Uniform Weak Law of Large Numbers on � .t

Ž . Ž .ASSUMPTION A.5: f � , � is continuously differentiable with respect to � on int � and this
Ž . Ž .differential � f �, � ��� � is measurable on VV for each �� int � .

Ž . � Ž . � Ž . � Ž . �ASSUMPTION A.6: There exists a measurable function b � such that f � , � �b � , � f � , � ���i i j
Ž . � Ž .2 ��b � for all i, j�1, 2 . . . q and E b � �D, a finite constant; there exist constants D, ��0 and

�� � Ž . �44Ž r�� . �r	1 such that E sup f � , � �D.i i �

Ž .ASSUMPTION A.7: � is an �-mixing sequence with size �3r� r�1 , r�1.t

ASSUMPTION A.8: � is an interior point of � .�

ASSUMPTION A.9: � is an interior point of � .��

More primitive conditions for the Central Limit Theorem and the Uniform Weak Law of Large
Ž .Numbers can be found in inter alia Woolridge 1994 .

Ž .PROOF OF THEOREM 1: The proof of part i is broken down into two parts. We first show that
�̂1 �1 � 11 �1Ž .S �S �o 1 where S �V�B 
 
 . We then use the form of S to deduce the resultT T p T T � � T

stated in the theorem.
� �The proof is based on two matrix results, which for convenience are stated first. Let A

' Ž . Ž . Ž .� tr A� A , and � A , � A denote the largest and smallest eigenvalues of A respectively.max min

11 I am greatly indebted to an anonymous referee for suggesting the strategy used to prove this
statement.
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It can be shown that for q�q symmetric matrices A and B:12

Ž . � � Ž .13 A 
q� A ,max

Ž . � Ž . Ž . � � �14 � A �� B 
 A�B .min min

To begin the proof, note that for any T , we have13

BT ��1 �1 �1 �1Ž .15 S �V � V 
 
 VT � �� �11�B 
 V 
T � �

�1 ˆ� � Ž . � � Ž .and so S �O 1 . Now, Lemma 2 implies that S �S �o 1 . Since V is positive definite, itT T T p
Ž . Ž .follows that � S �0; see Magnus and Neudecker 1991, p. 208 . These two properties combinedmin T

ˆŽ . � Ž . �with 14 imply that lim P � S �0 �1, and soT �� min T

�1�1 �1ˆ ˆ ˆŽ . � � Ž . � Ž .4 Ž .16 S 
q� S �q � S �O 1 .T max T min T p

Therefore,

�̂1 �1 �̂1 ˆ �1 �̂1 ˆ �1� � � Ž . � � � � � � �S �S � S S �S S 
 S S �S ST T T T T T T T T T

Ž . Ž . Ž . Ž .�O 1 o 1 O 1 �o 1p p p

�̂1 �1 Ž . Ž .and so we have established that S �S �o 1 . To complete the proof of part i note that asT T pp
� ��1 �1Ž . Ž .T��, we have B � 1�B 
 V 
 � 1� 
 V 
 . The desired result then follows directlyT T � � � �

Ž .from 15 .
Ž .The proof of part ii follows immediately from

�1�1�2 � �1�2Ž . Ž .17 S �V I �x x�x x� V� q

�1 �2 Ž . �1 �1�2 � �1�2 �1�2where V is the q�q matrix that satisfies V �V V and x�V 
 .�

14 Ž .PROOF OF THEOREM 2: Let the minimand on the second step GMM estimation be Q � . ByT
ˆŽ Ž .. Ž . Ž . Ž .definition Q � 2 
Q � , and so it is sufficient to prove that TQ � �O T�b . By theT T T � T � p T

Cauchy-Schwarz inequality and Lemma 2, we have

Ž . Ž . � � � Ž . � � � � Ž . �18 TQ � 
 T�B B Q � 
 T�b b �B B Q � .T � T T T � T T T T T �

Ž . Ž . Ž .Since T�b �O T�b we need to show that the remaining two terms in 18 are O 1 . We firstT T p
Ž . Ž . Ž .show that b �B �O 1 . Let c �B �b . From Assumption 5 iii it follows that c �c�o 1T T T T T T

�1 Ž Ž ..�1 �1 Ž . Ž .where 0�c��. Therefore b �B �c � c�o 1 �c �o 1 �O 1 because c is a finiteT T T
Ž . Ž .positive constant. We now show that B Q � �O 1 . SinceT T � p

1�2 �̂1 1�2Ž . Ž . Ž .B Q � �B g � �S B g � ,T T � T T � T T T �

1�2 Ž .we first consider B g � . By definition, we haveT T �

T
1�21�2 1�2 �1�2Ž . Ž . Ž . � Ž . �19 B g � �B 
 � B �T T f � , � �
 .ÝT T � T � T t � �

t�1

�1 �2 T � Ž . � Ž .Under our conditions T Ý f � , � �
 �O 1 , and so it follows from Assumptiont�1 t � � p
Ž . Ž . Ž . 1�2 Ž . 1�2 Ž .5 ii � iii and 19 that B g � �B 
 �o 1 . Therefore, it follows thatT T � T � p

� �̂1Ž . Ž . Ž .20 B Q � �B 
 S 
 �o 1T T � T � T � p

� �1 � �̂1 �1Ž . Ž . Ž .21 �B 
 S 
 �B 
 S �S 
 �o 1 .T � T � T � T T � p

12 Ž . Ž . Ž .Equation 13 follows from Magnus and Neudecker 1991, Theorem 14, p. 211 . Equation 14
Ž .follows from Golub and van Loan 1989, Corollary 8.1.3, p. 411 .

13 Ž .For example, see Morrison 1976, p. 69 .
14 I am greatly indebted to two anonymous referees whose comments greatly shortened this proof.
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Ž .Using 15 it can be shown that

B 
� V�1
T � �� �1B 
 S 
 � �n , say.T � T � 1, T� �11�B 
 V 
T � �

Ž .Assumption 5 iii and Lemma 2 together imply that B �� as T�� and so lim n �1. NowT T �� 1, T
Ž .consider the second term in 21 , that is

� �̂1 �1 � �̂1 ˆ �1Ž . Ž .B 
 S �S 
 �B 
 S S �S S 
 �n , say.T � T T � T � T T T T � 2, T

Ž . Ž . Ž . �1 �1 � ŽUsing 16 and Lemma 2, it follows that n �O 1 o 1 B S 
 . Now B S 
 � B � 1�2, T p p T T � T T � T
� �1 .� �1 Ž . Ž .B 
 V 
 V 
 �O 1 and so n �o 1 . Therefore, we haveT � � � 2, T p

Ž . Ž . Ž . Ž .B Q � �n �n �o 1 �n �o 1 �O 1T T � 1, T 2, T p 1, T p p

Ž .and so the desired result follows from 18 .

ˆ ˆ ˆŽ . Ž Ž .. Ž Ž ..PROOF OF THEOREM 3: Part i : To simplify the presentation let f � f � , � 1 , f�g � 1 ,t t T T T
�1 T ˆŽ . Ž Ž ..and f � T� i Ý f � , � 1 . Using these definitions, it can be shown thati t� i�1 t T

˜ ˜ 0 �Ž .22 � �� �A �C �Ci i i , T i , T i , T

where

T� i T� i
� � � � � � � �A � f�
 f�
 � and C � f �
 f�
 �.i , T � � i , T i � �T T

Ž .Using similar arguments to Andrews’ 1991 proof of this Theorem 1, it can be shown that

T�1 p
0˜Ž . Ž .23 � i�b � � V .Ý T i

i��T�1

Therefore, the desired result will follow if

T�1 p
Ž . Ž .24 A� � i�b A � 0,Ý T i , T

i��T�1

T�1 p
Ž . Ž .25 C� � i�b C � 0.Ý T i , T

i��T�1

Ž . Ž .Equations 24 and 25 can be deduced from the following properties that are implied by the
conditions of the theorem:

T�1 T� i
Ž . Ž . Ž .a � i�b �O b ;Ý T TTi��T�1

�1 �2Ž . Ž .b f�
 �O T ;� p

�1 �2Ž . Ž .c f �
 �O T , for all i�1, 2 . . . b .i � p T

Ž . Ž . Ž 1�2 . Ž . Ž .It is easily shown that a � c plus b �o T and b �� imply 24 and 25 .T T
Ž . Ž .Part ii : This follows directly from Wooldridge’s 1994 Theorem 7.1.
Ž . Ž . Ž .Part iii : From parts i and ii it follows that

�1 ˜ � �1 Ž .T J �
 V 
 �o 1 .T �� �� p

Assumptions 2 and 6 together imply that 
�
� V�1
 �0.�� ��
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