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Catalytic Enantioselective Alkylation of Aldehydes by Using Organozinc
Halide Reagents
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Recent advances in functionalized organometallic re-
agents have considerably increased the scope of carbon nu-
cleophiles, allowing short and efficient syntheses of poly-
functional target molecules without unproductive protec-
tion/deprotection steps.[1] Despite the progress in catalytic
enantioselective addition of functionalized aryl groups to al-
dehydes,[2] very few examples have been reported for the re-
action of functionalized alkyl reagents. Knochel and co-
workers reported the enantioselective addition of function-
alized dialkylzinc reagents, [FG-(CH2)n]2Zn (1), to alde-
hydes catalyzed by a chiral bis-triflylamide titanium com-
plex.[3,4] The zinc reagents 1 were prepared by CuI-catalyzed
I/Zn exchange of the corresponding iodo precursors with
Et2Zn followed by disproportionation of the resulting [FG-
(CH2)n]ZnEt by the subsequent removal of Et2Zn in vacuo
[Scheme 1, Eq. (1)].[3] Alternatively, such reagents can be
prepared by hydroboration of the terminal alkene precur-
sors with Et2BH and subsequent B/Zn transmetalation of
the resulting [FG-(CH2)n]BEt2 with Et2Zn followed by the
removal of surplus Et3B and Et2Zn [Scheme 1, Eq. (2)].[4]

We were attracted to the possible use of functionalized al-
kylzinc bromides, FG-(CH2)n-ZnBr (2), in the enantioselec-
tive carbonyl addition. The zinc reagents 2 possess superb
functional group tolerance.[1] They are readily prepared in
an atom-economical manner by oxidative addition of active
Rieke-zinc[5] to the alkyl bromides [Scheme 1, Eq. (3)].
More conveniently, the reaction can be carried out with zinc
dust in the presence of LiCl to give zinc reagent 2’ com-
plexed with LiCl [Scheme 1, Eq. (4)].[6] Taking advantage of
the intrinsic low reactivity, the zinc reagents have been uti-
lized in the formation of carbon–carbon bonds by transition-
metal catalysis as represented by the Negishi cross-coupling
reaction.[7,1] Recently, Knochel et al. reported that the addi-
tion of organozinc halides to aldehydes, ketones, and carbon
dioxide is accelerated significantly by mixing them with a
stoichiometric amount of MgCl2.

[8] However, to date, a cata-
lytic system has not been developed by which functionalized
alkylzinc halides undergo enantioselective addition to alde-
hydes.

Herein, we report the first successful example of catalytic
enantioselective alkylation of aldehydes by using functional-
ized alkylzinc halides 2 and 2’. The reactivity of the zinc re-
agents is shown to be enhanced by mixing them with [Ti-ACHTUNGTRENNUNG(OiPr)4] and MgBr2. In the presence of a chiral titanium cat-
alyst derived from (R)-DPP-H8-BINOL (3 d ; BINOL =bi-
naphthol, DPP= 3,5-diphenylphenyl; 5 mol %), a variety of
functionalized alkylzinc reagents, prepared from readily
available bromide precursors, underwent enantioselective
addition to aldehydes to give the corresponding functional-
ized alcohols in high enantioselectivity.

Recent reports from this laboratory showed that Grignard
reagents can be used in the enantioselective addition to al-
dehydes by using titanium(IV) catalysts derived from (R)-
DPP-BINOL (3 b) and (R)-DPP-H8-BINOL (3 d) in the
presence of excess [TiACHTUNGTRENNUNG(OiPr)4].[9,2l,m] In the present study, we
first examined butylation of 1-naphthaldeyde (4 a) by using
nBuZnBr (2 a) under similar conditions. Thus, when 4 a was
treated with a commercial THF solution of nBuZnBr
(2.4 equiv) in the presence of (R)-DPP-BINOL (3 b)
(5 mol%) and [Ti ACHTUNGTRENNUNG(OiPr)4] (7.2 equiv) at 0 8C for 24 h, buty-
lation product (R)-5 aa was obtained in 90 % ee (Table 1,
entry 1 and Scheme 2). However, the chemical yield was
moderate and aldehyde 4 a was recovered in 42 %.

To improve the conversion of the aldehyde, the effect of
metal salt additives was examined. Of these, magnesium hal-
ides were particularly effective in accelerating the reac-
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Scheme 1. Preparation of functionalized alkylzinc reagents.
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tion.[10] In the presence of MgBr2 (2.4 equiv), 5 aa was ob-
tained in high yield within 3 h, but in decreased enantiose-
lectivity (entry 2). The enantioselectivity was improved by
using the mixed reagent of nBuZnBr (2 a), [Ti ACHTUNGTRENNUNG(OiPr)4], and
MgBr2 after removal of THF in vacuo followed by dissolu-
tion in CH2Cl2 or in Et2O (entries 3 and 4). Further im-
provements in the enantioselectivity were attained by reduc-
ing the amount of MgBr2 (1.2–0.6 equiv) (entries 5 and 7)
and by using a titanium catalyst derived from (R)-DPP-H8-
BINOL (3 d) (entry 8). The reaction was slow when using
less polar toluene as a solvent (entry 6), decreasing the
amount of [Ti ACHTUNGTRENNUNG(OiPr)4] to 3.6 equiv (entry 9), applying a 4:1
ratio of 2 a/MgBr2 (entry 7), and using MgCl2 instead of the
bromide (entry 12). The use of parent BINOL (3 a) and H8-
BINOL (3 c) resulted in significant decrease in the product
yield and enantioselectivity (entries 13 and 14). It should be
noted that, in the absence of the catalyst, butylation pro-
ceeded slowly to give racemic 5 aa in moderate yield

(entry 15). When nBuZnBr·LiCl (2 a’), prepared either from
2 a and LiCl (entry 10) or from butyl bromide, zinc dust, and
LiCl (entry 11),[6] was employed, 5 aa was obtained without
a significant decrease in the chemical yield and enantioselec-
tivity.

Under the conditions of entry 8 in Table 1, the scope of
the present reaction for aldehydes was examined in the re-
action using BuZnBr (2 a) and BuZnBr·LiCl (2 a’) (Table 2).

The reaction of benzaldehyde (4 b) and its para- and meta-
substituted derivatives (4 c–e) afforded the corresponding
butylation products in high yields and in high selectivities
(86–92 % ee) either with 2 a or with 2 a’ (entries 2–5). On the
other hand, moderate enantioselectivity was observed for
ortho-substituted derivative 4 f (entry 6). For the reaction of
heteroaromatic aldehyde 4 g and a,b-unsaturated aldehyde
4 h, satisfactory yields and selectivities could be attained by
applying a 4:1 ratio of 2 a (or 2 a’)/MgBr2 with a longer reac-
tion time (entries 8 and 10). Aliphatic aldehyde 4 i was con-
siderably less reactive. However, the reaction at 5 8C for
4 days afforded butylation product 5 ia in relatively high
enantioselectivity (entry 11).

Reactions were then carried out with a variety of zinc re-
agents 2 b–k’ that were prepared from bromide precursors
by treatment with zinc dust in the presence of LiCl
(Table 3).[6] Zinc reagents, prepared from a long-chain alkyl
bromide, homoallyl and bis-homoallyl bromide, and an w-
chloroalkyl bromide, all underwent smooth addition to aro-
matic aldehydes 4 to furnish the corresponding secondary al-
cohols in high selectivity (86–93 % ee) (entries 1–4). w-Sily-
loxy- and alkoxy-substituted alkylzinc reagents 2 f’–h’ also
underwent enantioselective addition to give the correspond-
ing mono-protected diols of high 90–92 % ee (entries 5–7).

Table 1. Optimization of reaction conditions for catalytic enantioselec-
tive butylation of aldehyde 4a by using nBuZnBr (2 a).[a]

Ligand MgBr2 [equiv] Solvent Yield [%] ee [%]

1[b] 3b 0 THF 55 90
2 3b 2.4 THF 94 55
3 3b 2.4 CH2Cl2 96 87
4 3b 2.4 Et2O 92 87
5 3b 1.2 CH2Cl2 97 92
6 3b 1.2 toluene 65 88
7 3b 0.6 CH2Cl2 45 92
8 3d 1.2 CH2Cl2 95 93
9[c] 3d 1.2 CH2Cl2 64 82

10[d] 3d 1.2 CH2Cl2 88 93
11[e] 3d 1.2 CH2Cl2 87 91
12[f] 3d 0 CH2Cl2 60 90
13 3a 1.2 CH2Cl2 58 76
14 3c 1.2 CH2Cl2 66 71
15[g] – 1.2 CH2Cl2 38 –

[a] Unless otherwise noted, reactions were carried out with 4a (0.42 m),
2a (2.4 equiv), MgBr2, [Ti ACHTUNGTRENNUNG(OiPr)4] (7.2 equiv), and ligand 3 (5 mol %) at
0 8C for 3 h. [b] The reaction was carried out at 0.21 m of 4 a in THF for
24 h. [c] The reaction was carried out with [Ti ACHTUNGTRENNUNG(OiPr)4] (3.2 equiv). [d] The
reaction was carried out in the presence of LiCl (2.4 equiv). [e] BuZnBr·-
LiCl prepared in THF from nBuBr, Zn, and LiCl was used. [f] MgCl2

(1.2 equiv) was added. [g] The reaction was carried out in the absence of
a ligand.

Scheme 2. Catalytic enantioselective butylation of aldehyde 4a by using
BuZnBr (5 a).

Table 2. Catalytic enantioselective butylation of aldehydes 4 by using
nBuZnBr (2 a) or nBuZnBr·LiCl (2 a’).[a]

Aldehyde Zinc
reagent

Product Yield
[%]

ee
[%]

1 1-NaphCHO (4a) 2 a 5aa 95 93
2 PhCHO (4b) 2 a’ 5ba 87 86
3 p-MeC6H4CHO (4 c) 2 a 5ca 86 89
4 p-ClC6H4CHO (4 d) 2 a’ 5da 92 92
5 m-MeOC6H4CHO (4 e) 2 a 5ea 82 91
6 o-BrC6H4CHO (4 f) 2 a 5 fa 72 44
7 2-ThienylCHO (4g) 2 a 5ga 69 78
8[b] 71 86
9 PhCH=CHCHO (4 h) 2 a 5ha 75 74

10[b] 2 a’ 84 83
11[c] PhCH2CH2CHO (4 i) 2 a 5 ia 51 83

[a] Unless otherwise noted, reactions were carried out with aldehydes 4
(0.42 m), 2a or 2a’ (2.4 equiv), MgBr2 (1.2 equiv), [Ti ACHTUNGTRENNUNG(OiPr)4] (7.2 equiv),
and 3d (5 mol %) in CH2Cl2 at 0 8C for 3 h. [b] The reaction was carried
out with MgBr2 (0.6 equiv) for 21 h. [c] The reaction was carried out with
MgBr2 (0.6 equiv) at 5 8C for 4 d.
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An exception was 3-methoxypropyl derivative 2 i’, for which
a non-enantioselective reaction was observed (entry 8). It is
probable that a background racemic reaction was promoted
by an intramolecular coordination of the zinc atom of 2 i’ by
the neighboring methoxy group. Zinc reagents 2 j and 2 k’
bearing a remote tertiary amide and cyano group, respec-
tively, could be used in the present reaction (entries 9 and
10).[11] The corresponding functionalized secondary alcohols
were obtained in high yields and good enantioselectivities.

In a relevant enantioselective alkylation of aldehydes with
diorganozincs (R2Zn) in the presence of [TiACHTUNGTRENNUNG(OiPr)4], it has
been proposed that [RTiACHTUNGTRENNUNG(OiPr)3], formed in equilibrium at

lower concentration, is an
active alkylating agent.[12] By
analogy, it is likely that alkyl-
zinc bromides 2 react reversibly
with [Ti ACHTUNGTRENNUNG(OiPr)4] to generate the
alkyltitanium intermediates
[Scheme 3, Eq. (5)], which un-
dergo enantioselective addition
to aldehydes by the catalysis of
a 3 d-based titanium complex.
In the absence of MgBr2 addi-
tive, the rate of alkylation was
slowed down at a relatively
lower conversion, resulting in
low product yield even after a
longer reaction time (24 h;
Table 1, entry 1). Although we
have no experimental evidence,
a possible interpretation for this
phenomena is that zinc reagent
2 is consumed additionally by
aggregation with (iPrO)ZnBr,
produced from Equation (5)
given in Scheme 3, to form di-
nuclear zinc complex 6
[Eq. (6)]. In the presence of
MgBr2, zinc reagent 2 might
form hetero-dinuclear complex
7 as suggested by a recent struc-
tural study [Eq. (7)].[13] The ob-
served enhancement in the re-
action rate, leading to the rapid
conversion of aldehydes within
3 h, might be due to the genera-
tion of the alkyltitanium re-
agent at higher concentration in
equilibrium [Scheme 3,
Eq. (8)], in which co-produced
(iPrO)ZnBr is complexed with
MgBr2.

Table 3. Catalytic enantioselective addition of functionalized alkyl groups to aldehyde by using zinc reagents
2’.[a]

Aldehyde RZnBr·LiCl Product Yield
[%]

ee
[%]

1 4 a C12H23ZnBr·LiCl (2b’) 5ab 76 91

2 4 a CH2=CHACHTUNGTRENNUNG(CH2)2ZnBr·LiCl (2c’) 5ac 96 93

3 4 d CH2=CHACHTUNGTRENNUNG(CH2)3ZnBr·LiCl (2d’) 5dd 81 91

4 4 a ClC4H8ZnBr·LiCl (2 e’) 5ae 91 86

5 4 e TIPSO ACHTUNGTRENNUNG(CH2)3ZnBr·LiCl (2 f’) 5ef 96 91

6 4 d TIPSO ACHTUNGTRENNUNG(CH2)6ZnBr·LiCl (2g’) 5dg 92 90

7 4 a TrOACHTUNGTRENNUNG(CH2)6ZnBr·LiCl (2h’) 5ah 77 92

8 4 a MeO ACHTUNGTRENNUNG(CH2)3ZnBr·LiCl (2 i’) 5ai 93 3

9 4 a PipCOC10H20ZnBr·LiCl (2j’) 5aj 87 85

10 4 a (NC)C8H16ZnBr·LiCl (2k’) 5ak 80 86

[a] Reactions were carried out with aldehydes 4 (0.42 m), 2’ (2.4 equiv), [Ti ACHTUNGTRENNUNG(OiPr)4] (7.2 equiv), and 3d
(5 mol %) at 0 8C for 3 h in CH2Cl2. [b] Pip=piperidin-1-yl.

Scheme 3. Formation of alkyltitanium species in equilibrium.
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In summary, we have demonstrated that alkylzinc bro-
mide reagents can be used in the enantioselective alkylation
of aldehydes with a titanium(IV) catalyst derived from a H8-
BINOL derivative in the presence of [TiACHTUNGTRENNUNG(OiPr)4] and MgBr2.
At the low catalyst loading (5 mol %), a variety of function-
alized alkylzinc reagents, prepared readily from the corre-
sponding bromide precursors, underwent enantioselective
addition to aromatic, heteroaromatic and a,b-unsaturated
aldehydes to provide the corresponding functionalized alco-
hols in high enantioselectivity.

Experimental Section

(R)-1-(3-Methoxyphenyl)-4-triisopropylsilanyloxybutan-1-ol (5 ef): Typi-
cal procedure for enantioselective alkylation of aldehyde by using func-
tionalized zinc reagents 2’ prepared from bromide precursors; A two-
layer mixture of MgBr2 in Et2O (1 mL) was prepared by the reaction of
Mg turnings (15 mg, 0.6 mmol) with 1,2-dibromoethane (0.6 mmol,
52 mL). Freshly prepared TIPSO ACHTUNGTRENNUNG(CH2)3ZnBr·LiCl (2 f’) (0.68 m in THF,
1.8 mL, 1.2 mmol)[6] and [Ti ACHTUNGTRENNUNG(OiPr)4] (1.07 mL, 3.6 mmol) were added to
this mixture at room temperature. After being stirred for 10 min, solvents
were removed quickly in vacuo (0.05 mmHg, 2 min) and the resulting
oily residue was dissolved in CH2Cl2 (1.2 mL) to form clear solution.
Then, ligand 3 d (13.1 mg, 0.025 mmol) and m-anisaldehyde (4e) (68 mg,
0.50 mmol) were added to this solution at 0 8C. After being stirred for 3 h
at 0 8C, the reaction mixture was quenched by the addition of aqueous
1n HCl and extracted with ethyl acetate (3 � 20 mL). The organic layers
were washed successively with aqueous 5% NaHCO3 and brine, dried
over MgSO4, and concentrated in vacuo. Purification of the residue by
flash chromatography on silica gel (ethyl acetate/hexane 1:99) afforded
167 mg (95 % yield, 91% ee) of 5ef. [a]25

D = 21.4 (c= 1.25 in CHCl3);
1H NMR (500 MHz, CDCl3): d =1.04–1.15 (m, 21 H), 1.62–1.77 (m, 2H),
1.80–1.94 (m, 2 H), 2.53 (br, 1 H), 3.73–3.78 (m, 2H), 3.82 (s, 3 H), 4.71
(dd, J= 4.8, 8.0 Hz, 1H), 6.80 (ddd, J =0.8, 2.6, 8.1 Hz, 1H), 6.94 (m,
2H), 7.24 ppm (t, J= 8.3 Hz, 1H); 13C NMR (125.8 MHz, CDCl3): d=

12.0, 18.0, 29.4, 36.8, 55.2, 63.6, 74.1, 111.2, 112.8, 118.2, 129.3, 146.8,
159.7 ppm; HRMS (FAB): m/z calcd for C20H36O3Si: 352.2434; found:
352.2434. Enantioselectivity was determined by HPLC analysis (Chiralcel
OD-H column, iPrOH/hexane=2:98; flow rate: 1 mL min�1, tR =17.8 min
(major R enantiomer); 19.7 min (minor S enantiomer). The absolute ster-
eochemistry was assumed by analogy.
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Asymmetric Catalysis
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Catalytic Enantioselective Alkylation
of Aldehydes by Using Organozinc
Halide Reagents

Functionalized alkylzinc halides can be
employed in the enantioselective addi-
tion to aldehydes by using a titaniu-
m(IV) catalyst derived from a H8-
binaphthol derivative in the presence
of [Ti ACHTUNGTRENNUNG(OiPr)4] and MgBr2. A range of
functionalities, including olefin, chlor-

ine atoms, protected alcohols, amides,
and cyano groups, are tolerated in the
present reaction, providing the corre-
sponding functionalized alcohols in
high yields and enantioselectivities
(see scheme).
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