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Abstract—The reactivity of a chiral nonracemic glyoxylic azomethine imine has been investigated. This species reacts with a wide
range of dipolarophiles, with a complete regio- and facial stereoselectivity. The introduction of an electron-withdrawing substituent
on the ylide leads to a lower endo selectivity with electron-withdrawing dipolarophiles, but to an improved exo selectivity with
styrene derivatives when compared to the reactivity of aliphatic- or aromatic-substituted ylides.
� 2004 Elsevier Ltd. All rights reserved.
1,3-Dipolar cycloadditions are reactions of considerable
interest in diversity-oriented synthesis (DOS),1 since
they can provide access to polyfunctional molecules with
overall good control of the relative configuration of
several consecutive asymmetric centres, under relatively
simple and scalable experimental procedures.2 In a series
of papers, we have reported that chiral nonracemic
cyclic hydrazine 1 reacts with aliphatic or aromatic
aldehydes, generating azomethine imine ylides capable
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of undergoing highly regio- and stereoselective cyclo-
addition with a wide range of olefins, and delivering
polyfunctional pyrazolidines 2 in good yield (Scheme
1).3 We have also demonstrated that polyfunctional 1,3
diamines could be obtained from these intermediates in
a short synthetic sequence.4

We now report in this paper the results of our investi-
gations into the formation and reactivity of the ylide
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Figure 1. ORTEP diagram of compound 6.
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Scheme 3. Reagents and conditions: (a) dimethyl maleate (3 equiv),

toluene, 80 �C, 8 days, 84%, de¼70%; (b) dimethyl fumarate (3 equiv),

toluene, 80 �C, 7 days, 71%, de¼32%; (c) N-phenyl maleimide

(4 equiv), toluene, 3 days, 80 �C, 73%, de¼49%; (d) methyl crotonate

(4 equiv), toluene, 11 days, 80 �C, 71%, de¼18%.
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derived from the condensation of hydrazine 1 with ethyl
glyoxylate (Scheme 1).

While the use of aromatic and, in a lesser extent, ali-
phatic aldehydes is well documented for the generation
of azomethine ylides, reports on the preparation and
reactivity of ylides resulting from a condensation with
alkylglyoxylates are scarce.5 Works of the Harwood�s
group have shown that good selectivity could be
achieved in some cases, despite a lower reactivity of the
ylide.5d

A more contrasted behaviour has been reported by the
group of Grigg5c and Risch and co-workers.5f In both
cases, only electron poor olefins were used as standard
dipolarophiles. On the contrary, good results have been
described with achiral azomethine imines by Khau and
Martinelli.5e

First attempts to perform the cycloaddition under
standard conditions proved to be unsuccessful, leading
mainly to starting material or degradation.6 We then
tried to prepare oxadiazolidine 5, in order to generate
the reactive ylide by a cycloreversion process. While
thermal or protic activation failed, we were pleased to
see that a diastereomeric mixture of 5 could be obtained
in good yield in the presence of magnesium bromide
etherate (Scheme 2).7

The tandem cycloreversion–cycloaddition was then
investigated in the presence of various electron poor
dipolarophiles, leading to cycloadducts 6–9 in 71–83%
yield (Scheme 3).

While the endo selectivity was usually excellent with
ylides generated from aliphatic or aromatic aldehydes, a
lower selectivity was observed in the glyoxylic series.
The approach of dimethylmaleate proved to be mostly
endo, as depicted by crystal structure X-ray analysis of
compound 6 (Fig. 1),8 whereas the use of dimethyl-
fumarate led to the exo adduct 7 as a major diastereo-
mer. In all the cases, the facial selectivity was excellent,
leading to a single epimer at the C7-position (Scheme 3),
as a result of a dipolarophile approach from the less
sterically hindered face of a S-shape ylide.

This loss of endo selectivity is not unexpected, since the
lowering of the HOMO level of the dipole by an elec-
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tron-withdrawing group should lead to a lower
HOMOdipole–LUMOdipolarophile control.9 This hypothesis
was confirmed by cycloadditions with styrene deriva-
tives (Scheme 4).

With electron rich olefins, cycloadducts 10–12 could be
obtained in 48–65% yield, with diastereoselectivities
greater than 85%. In all cases, the reaction was com-
pletely regioselective and led to the exo adduct as a
major diastereomer. This stereoselectivity enhancement,
when compared to the results obtained with ylides pre-
pared from aliphatic or aromatic aldehydes, as well
as the regioselective formation of C7, C9 cis substi-
tuted compounds, is typical for a LUMOdipole–
HOMOdipolarophile controlled condensation, which can be
expected with ylides bearing an electron-withdrawing
substituent. These results are noteworthy, since they
enable a formal access to diamino substrates having an
ester and an aromatic substituent in a 1,3 arrangement,
whereas the use of aromatic aldehydes and unsaturated
esters should deliver diamines with these two function-
alities in a 1,2-position.
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Scheme 4. Reagents and conditions: (a) styrene (10 equiv), toluene,

7 days, 75 �C, 48%, de¼90%; (b) 4-vinylanisole (8 equiv), toluene,

12 days, 70 �C, 51%, de¼94%; (c) 4-vinyl-methylbenzoate (8 equiv),

toluene, 12 days, 70 �C, 65%, de¼85%.
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In conclusion, the ylide derived from the condensation
of hydrazine 1 with ethyl glyoxylate can be generated by
a cycloreversion reaction, and reacts with a wide range
of dipolarophiles.10 The regio- and facial selectivity of
the cycloadditions are perfectly controlled in all of the
cases. When compared to the alkyl- or aromatic series,
the glyoxylic ylide led to a lower endo selectivity with
dipolarophiles bearing electron-withdrawing groups,
but to an improved exo selectivity with styrene deriva-
tives. These results broaden the scope of this three-
component asymmetric condensation, and increase the
molecular diversity that can be generated with this
reaction.
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5H), 4.90 (d, J ¼ 8:7Hz, 1H), 4.45 (dd, J ¼ 10:9, 10.7Hz,
1H), 4.15 (dd, J ¼ 11:2, 3.1Hz, 1H), 4.09 (dd, J ¼ 10:5,
3.1Hz, 1H), 4.09 (d, J ¼ 11:2Hz, 1H), 3.85 (dd, J ¼ 11:2,
8.7Hz, 1H), 3.80 (s, 3H), 3.75 (m, 1H), 3.68 (s, 3H), 3.27
(dq, J ¼ 10:7, 7.1Hz, 1H), 0.9 (t, J ¼ 7:1Hz, 3H). 13C
NMR (75.43MHz): d 169.6, 168.3, 167.1, 149.1, 132.3,
128.9–129.7, 72.2, 67.4, 65.5, 61.7, 59.7, 53.0, 52.7, 49.2,
13.5. MS (CI): 407 (MHþ). IR (cm�1): 1747, 1700.
Elemental analysis. Calcd: C, 56.15; H, 5.46; N, 6.89.
Found: C, 56.04; H, 5.49; N, 6.92.
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