

PII: S0040-4039(96)02376-3

Tandem and Two-Directional Asymmetric Catalysis of the Mukaiyama Aldol Reaction

Koichi Mikami,* Satoru Matsukawa, Masako Nagashima, Hiroshi Funabashi[†] and Hajime Morishima[†]

Department of Chemical Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152, Japan [†]Banyu Pharmaceutical Co. Ltd. Tsukuba Techno-Park, Ohno, Tsukuba 300-33, Japan

Abstract: Upon addition of an excess amount of an aldehyde 3, the Mukaiyama aldol reaction of a silyl enol ether 2 proceeds in tandem and two-directional fashion by the asymmetric catalysis of a binaphthol-derived chiral titanium complex (BINOL-Ti: 1) to give the silyl enol ether 4 in 77% isolated yield in more than 99% ee and 99% de. The present asymmetric catalytic Mukaiyama aldol reaction is characterized by amplification phenomena of the product chirality on going from the one-directional aldol intermediate 6 (98.5% ee, R) to the two-directional product 4 (99.6% ee, R,R). Further transformation of the pseudo C₂ symmetric product 4 (> 99% ee, > 99% de) in its' protected form as the silyl enol ether is established leading to a potentially potent analogue of HIVP inhibitor 9a. @ 1997, Elsevier Science Ltd. All rights reserved.

The aldol reaction constitutes one of the most fundamental bond construction processes in organic synthesis.¹ Therefore, a detailed understanding of the reaction mechanisms of aldol processes² and their asymmetric catalysis³ have attracted recent attention. In the course of our studies on the asymmetric catalysis of the Mukaiyama aldol reaction (the Lewis acid-promoted carbonyl-addition of silyl enol ethers of ketones),⁴ we made an unexpected observation: Upon addition of an excess amount of an aldehyde, the Mukaiyama aldol reaction proceeded in a two-directional fashion by the asymmetric catalysis of a binaphthol-derived chiral titanium complex (BINOL-Ti: 1)⁵ (Scheme 1). Tandem⁶ and two-directional prototropic ene-type^{7,8,9} aldol reactions are quite useful, because the regiochemical problem in enolate generation during the secondary step is inherently solved and, in addition, because the number of operations for carbon-carbon bond extention is reduced relative to the step-wise aldol reaction.¹⁰ The kinetic future and synthetic application of this tandem and two-directional asymmetric catalysis of the Mukaiyama aldol reaction is the subject of this communication.

Scheme 1

The reaction was carried out by adding the *tert*-butyldimethylsilyl enol ether 2 and an excess amount of glyoxylate 3 (2 equiv.) at 0 °C to a dichloromethane solution containing 10 mol% of the chiral titanium complex (1), that was prepared from (*R*)-binaphthol and diisopropoxytitanium dichloride as reported previously.¹¹ The reaction was completed within 3 h as determined by TLC monitoring. Hydrolytic work-up with saturated sodium bicarbonate at 0 °C followed by flash column chromatography gave the silyl enol ether 4 in 77% isolated yield as a 1 : 4 geometrical (*E* / *Z*) mixture.¹² The enantiomeric and diastereomeric purity of the product 4 was determined to be more than 99% ee and 99% de by chiral capillary GLC (CP-Cyclodextrin-B-2,3,6-M-19, 25 m) (t_R (155 °C): (*R*, *R*) - 5, 113.2 min; (*S*, *S*) - 5, 114.4 min; meso-5, 114.4 min. t_R (150 °C): (*R*, *R*) - 5', 89.4 min; (*S*, *S*) - 5', 92.6 min.) and ¹H NMR (300 MHz) analyses after hydrolysis to dihydroxyketone 5 or bis-silylation thereof to 5' with bis(trimethylsilyl)trifluoroacetamide (BSTFA).

Scheme 2

The two-directional asymmetric catalytic Mukaiyama aldol reaction is characterized by an unique kinetic feature of the one-directional aldol intermediates (R)- vs. (S)-6. Therefore, the amplification phenomena of the product chirality is observed on going from the one- (98.5% ee, R) to the two-directional product (99.6% ee, R,R) as shown in a control experiment (Scheme 2).¹³ The secondary aldol reaction of the primary ene-type aldol adduct (R)-6 in 98.5% ee was found, by catalysis of the (R)-catalyst (1), to provide 98.4% of the secondary product (R,R)-5 in 99.6% ee along with 1.6% of the meso-diastereomer (5). On the contrary, the secondary reaction of the (S)-enantiomer (6) (95.9% ee, S) by the same catalyst (R)-1 resulted mainly in the formation of meso-diastereomer 5 (94.1%) with 5.9% of the (S,S)-5. Thus, the secondary reaction of (R)-6 catalyzed by the (R)-catalyst (1) leading to (R,R)-5 is calculated to be 3.4 times as fast as the (S)-counterpart (6) to give the (S,S)-enantiomer and, therefore, the product chirality is amplified upon going from the one- to the two-directional product (Scheme 3).

Scheme 3

The pseudo C₂ symmetric nature of the two-directional product (> 99% ee and > 99% de) in its' protected form as the silyl enol ether should provide valuable synthetic applications in the context of the synthesis of C₂ symmetric HIV protease (HIVP) inhibitors $9.^{14}$ The complex of 9a with HIVP is calculated to be more stable by 6.76 kcal/mol than the HIVP/L-700,417 complex. Thus, the synthesis of the potentially potent¹⁵ homologue (9a) of the HIVP inhibitor, L-700,417^{16,17} was established by hydrogenation (H₂/Rh-Al₂O₃, ethyl acetate), alkylation (BnBr/Ag₂O, ether), hydrolysis (LiOH/methanol-H₂O (3 : 1)), amide formation by the mixed anhydride method following the literature procedure¹⁷ and de-silylation (TBAF, THF). A similar transformation produced other HIVP inhibitor analogues with different side chains ($9b \sim 9e$).

Scheme 4

In summary, we have uncovered the first example of the tandem and two-directional asymmetric catalysis of the Mukaiyama aldol reaction with complete control of the absolute and relative stereochemistries of the pseudo C_2 -symmetric product. We have further disclosed the amplification phenomena of the product chirality on going from the one-directional aldol intermediate to the two-directional aldol product.

References and Notes

- Reviews: (a) Paterson, I.; Goodman, J. M.; Lister, M. A.; Schumann, R. C.; McClure, C. K.; Norcross, R. D. Tetrahedron 1990, 46, 4663. (b) Heathcock, C. H. In Asymmetric Synthesis; Morrison, J. D., Ed.; Academic Press: New York, 1984, Vol. 3; Chapter 2. (c) Evans, D. A.; Nelson, J. V.; Taber, T. R. Top. Stereochem. 1982, 13, 1. (d) Masamune, S.; Choy, W.; Peterson, J.; Sita, L. R. Angew. Chem. 1986, 97, 1; Angew. Chem. Int. Ed. Engl. 1986, 24, 1.
- 2 Computational approaches to the transition state geometries of aldol reactions: (a) Li, Y.; Paddon-Row, M. N.; Houk, K. N. J. Org. Chem. 1990, 55, 481. (b) Bernardi, A.; Capelli, A. M.; Gennari, C.; Goodman, J. M.; Paterson, I. J. Org. Chem. 1990, 55, 3576. (c) Denmark, S. E.; Henke, B. R. J. Am. Chem. Soc. 1991, 113, 2177. (d) Electron transfer process of the Mukaiyama aldol reaction in the presence of magnesium perchlorate: Fukuzumi, S.; Okamoto, T.; Otera, J. J. Am. Chem. Soc. 1994, 116, 5503. (e) A rapid injection NMR study of the chelation controlled Mukaiyama aldol addition mediated by LiClO4 and TiCl4: Reetz, M. T.; Raguse, B.; Marth, C. F.; Hugel, H. M.; Bach, T.; Fox, D. N. A. Tetrahedron 1992, 48, 5731.
- (a) Kobayashi, S.; Uchiro, H.; Fujishita, Y.; Shiina, I.; Mukaiyama, T. J. Am. Chem. Soc. 1991, 113, 4247.
 (b) Parmee, E. R.; Tempkin, O.; Masamune, S.; Abiko, A. J. Am. Chem. Soc. 1991, 113, 9365.
 (c) Furuta, K.; Maruyama, T.; Yamamoto, H. J. Am. Chem. Soc. 1991, 113, 1041.
 (d) Corey, E. J.; Cywin, C. L.; Roper, T. D. Tetrahedron Lett. 1992, 33, 6907.
 (e) Kiyooka, S.; Kaneko, Y.; Kume, K. Tetrahedron Lett. 1992, 33, 4927.
 (f) Mikami, K.; Matsukawa, S. J. Am. Chem. Soc.

1994, *116*, 4077. (g) Carreira, E. M.; Singer, R. A.; Lee, W. J. Am. Chem. Soc. **1994**, *116*, 8837. (h) Keck, G. E.; Krishnamurthy, D. J. Am. Chem. Soc. **1995**, *117*, 2363.

- Mukaiyama, T. Org. React. 1982, 28, 203. Mukaiyama, T. Angew. Chem., Int. Ed. Engl. 1977, 16, 818. Mukaiyama, T.; Narasaka, K.; Banno, K. J. Am. Chem. Soc. 1974, 96, 7503. Mukaiyama, T.; Banno, K.; Narasaka, K. Chem. Lett. 1973, 1011.
- 5 Reviews on asymmetric catalysis by chiral titanium complexes: Duthaler, R. O.; Hafner, A. Chem. Rev. 1992, 92, 807. Mikami, K.; Terada, M.; Narisawa, S.; Nakai, T. Synlett 1992, 255. Mikami, K.; Terada, M.; Nakai, T. J. Synth. Org. Chem. Jpn. 1991, 49, 566. Reetz, M. T. "Organotitanium Reagents in Organic Synthesis", Springer-Verlag: Berlin 1986. Seebach, D.; Weidmann, B.; Widler, L. In Modern Synthetic Methods Vol. 3, Scheffold, R. Ed., Springer: Berlin; 1983, p217.
- Reviews of tandem reaction sequences as a combination of multiple reactions in single operation in order to maximize synthetic efficiency: (a) Posner, G. Chem. Rev. 1986, 86, 831. (b) Ziegler, F. Chem. Rev. 1988, 88, 1423. (c) Mikami, K.; Nakai, T. Synthesis 1991, 594. Nakai, T.; Mikami, K. Org. React. 1994, 46, 105. (d) Waldmann, H.; Nachr. Chem. Techn. Lab. 1992, 40, 828. (e) Ho, T.-L. Tandem Organic Reactions, Wiley: New York, 1992. (f) Tietze, L. F.; Beifuss, U. Angew. Chem. 1993, 105, 137; Angew. Chem. Int. Ed. Engl. 1993, 32, 131. (g) Special issue: Wender, P. A. ed. Chem. Rev. 1996, 96, No. 1.
- Reviews on ene reactions: (a) Mikami, K.; Shimizu, M. Chem. Rev. 1992, 92, 1021. (b) Snider, B. B. in "Comprehensive Organic Synthesis"; Trost, B. M.; Fleming, I., Eds.; Pergamon: London, 1991; Vols. 2 and 5. (c) Oppolzer, W.; Snieckus, V. Angew. Chem. 1978, 90, 506; Angew. Chem. Int. Ed. Engl., 1978, 17, 476. (d) Hoffmann, H. M. R. Angew. Chem. 1969, 81, 597; Angew. Chem. Int. Ed. Engl. 1969, 8, 556.
- 8 The formation of ene-type adducts has been reported in the reaction of silyl enol ether with CH2=O·Me3Al complex: Snider, B. B.; Phillips, G. B. J. Org. Chem. 1983, 48, 2789. For the use of methylaluminum bis(2,6-diphenylphenoxide), instead of Me3Al, see: Maruoka, K.; Concepcion, A. B.; Hirayama, N.; Yamamoto, H. J. Am. Chem. Soc. 1990, 112, 7422.
- 9 An asymmetric catalysis of prototropic ene-type Mukaiyama aldol reaction, see: (a) Mikami, K.; Matsukawa, S. J. Am. Chem. Soc. 1993, 115, 7039. (b) Carreira, E. M.; Lee, W.; Singer, R. A. J. Am. Chem. Soc. 1995, 117, 3649.
- Reviews of a two-directional chain synthesis: (a) Schreiber, S. L. Chemica Scripta 1987, 27, 563. (b)
 Poss, C. S.; Schreiber, S. L. Acc. Chem. Res. 1994, 27, 9. (c) Magnuson, S. R. Tetrahedron 1995, 51, 2167.
- Mikami, K.; Terada, M.; Nakai, T. J. Am. Chem. Soc. 1990, 112, 3949; 1989, 111, 1940. Mikami, K.; Terada, M.; Narisawa, S.; Nakai, T. Org. Synth. 1993, 71, 14.
- 12 The Z-geometry was confirmed by ¹³C NMR analysis through comparison with the *E*-isomer. The C-3 of the Z-isomer absorbs downfield than that of the *E*-diastereomer.
- 13 The ee's of the <u>primary</u> products have been reported to increase on progress in enantiotopic <u>group</u> selective reaction rather than this type of <u>face</u> selective reaction: (a) Wang, Y.-F.; Chen, C.-S.; Girdaukas, G.; Sih, C. J. J. Am. Chem. Soc. 1984, 106, 3695. (b) El-Baba, S.; Poulin, J.-C.; Kagan, H. B. Tetrahedron 1984, 40, 4275. (c) Dokuzokic, Z.; Roberts, N. K.; Sawyer, J. F.; Whelan, J.; Bosnich, B. J. Am. Chem. Soc. 1986, 108, 2034. (d) Schreiber, S. L.; Schreiber, T. S.; Smith, D. B. J. Am. Chem. Soc. 1987, 109, 1525. (e) Hayashi, T.; Niizuma, S.; Kamikawa, T.; Suzuki, N.; Uozumi, Y. J. Am. Chem. Soc. 1995, 117, 9101.
- 14 Reviews: Huff, J. R. J. Med. Chem. 1991, 34, 6305. Erickson, J. et al. Science 1990, 249, 527.
- 15 The HIVP/9a complex was initialized by the replacement of L-700,417 with 9a in the X-ray analysis data for HIVP/L-700,417 complex (ref. 16) after elimination of the water molecules except for the one in the active site. The HIVP/9a complex was then energy-minimized by QUANTA/CHARMm under the following conditions (Nonbonded Cutoff Distance: 15 Å, Adopted Bases-sets Newton-Raphson, 0.01 rmsd).
- 16 Bone, R.; Vacca, J. P.; Anderson, P. S.; Holloway, M. K. J. Am. Chem. Soc. 1991, 113, 9382.
- 17 Askin, D.; Wallace, M. A.; Vacca, J. P.; Reamer, R. P.; Volante, R. P.; Shinkai, I. J. Org. Chem. 1992, 57, 2771.

(Received in Japan 13 November 1996; revised 26 November 1996; accepted 29 November 1996)