# Thermodynamically Unstable Fluorides of Nickel: NiF4 and NiF<sub>3</sub> Syntheses and Some Properties<sup>§</sup>

# B. Žemva,<sup>†</sup> K. Lutar,<sup>†</sup> L. Chacón,<sup>‡</sup> M. Fele-Beuermann,<sup>†</sup> J. Allman,<sup>‡</sup> C. Shen,<sup>‡</sup> and N. Bartlett<sup>‡,\*</sup>

Contribution from the "Jožef Stefan" Institute, University of Ljubljana, Jamova 39, 61111 Ljubljana, Slovenia, and Chemical Sciences Division, Lawrence Berkeley Laboratory, and Department of Chemistry, University of California, Berkeley, California 94720

Received June 5, 1995<sup>®</sup>

Abstract:  $F^-$  acceptors (BF<sub>3</sub>, AsF<sub>5</sub>, SbF<sub>5</sub>, or BiF<sub>5</sub>) added to solutions of NiF<sub>6</sub><sup>2-</sup> salts in anhydrous hydrogen fluoride (aHF) below -65 °C precipitate the tan solid NiF<sub>4</sub>. This solid, preserved at  $\leq -65$  °C, is quantitatively converted, by 2 equiv of  $F^-$  donor (XeF<sub>6</sub> or KF) in aHF, to dissolved NiF<sub>6</sub><sup>2-</sup>. Dry NiF<sub>4</sub> loses F<sub>2</sub> above -60 °C, the decomposition to nearly black NiF<sub>3</sub> becoming rapid at  $\sim 0$  °C. When the dry NiF<sub>4</sub> is prepared from K<sub>2</sub>NiF<sub>6</sub>, inclusion of some K<sup>+</sup> leads, on thermolysis at 0 °C, to a pyrochlore form of NiF<sub>3</sub> (P-NiF<sub>3</sub>). P-NiF<sub>3</sub> contains  $K^+$  in the open channels, with K<sub>x</sub>NiF<sub>3</sub>,  $x \approx 0.1$ . The nearly cubic *P*-NiF<sub>3</sub> unit cell is rhombohedral:  $a_0 = 9.933(3)$  Å,  $\alpha = 91.01(3)^\circ$ , V = 980 Å<sup>3</sup>, z = 16, with absent reflections coincident with those of the cubic space group  $O_h^7$ -Fd3m, appropriate for pyrochlore. Decomposition of NiF<sub>4</sub> in aHF begins at -65 °C and is rapid at 0 °C, giving black rhombohedral NiF<sub>3</sub> (*R*-NiF<sub>3</sub>) with  $a_0 = 5.168(2)$  Å,  $\alpha = 55.46(3)^\circ$ , V = 87.3 Å<sup>3</sup>, z = 2. When the NiF<sub>4</sub> is made and decomposed at ~20 °C, with K<sup>+</sup> present, a hexagonal tungsten bronze form of NiF<sub>3</sub> is precipated (H-NiF<sub>3</sub>), with  $a_0 = 7.074(6)$  Å,  $c_0 = 7.193(6)$  Å, V = 312Å<sup>3</sup>, z = 6. R- and H-NiF<sub>3</sub> can also be made by mixing solutions of Ni<sup>2+</sup> salts [e.g., Ni(AsF<sub>6</sub>)<sub>2</sub>] with NiF<sub>6</sub><sup>2-</sup> salts (e.g. K<sub>2</sub>NiF<sub>6</sub>) in aHF. All forms of the trifluoride (R, H, and P) lose F<sub>2</sub> on warming ( $R > 39^\circ$ ,  $H > 72^\circ$  and P > 138 °C) to yield NiF<sub>2</sub>, but an intermediate red-brown phase is observed for R-NiF<sub>3</sub>. R-NiF<sub>3</sub> at ~20 °C, oxidizes Xe to Xe(VI), perfluoropropene,  $C_3F_6$ , to perfluoropropane,  $C_3F_8$ , and solid LiCl with incandescence. H-NiF<sub>3</sub> and P-NiF<sub>3</sub> interact similarly but less energetically.

#### Introduction

At the centennial celebrations for the discovery of fluorine, Christe described<sup>1</sup> the first chemical route to fluorine. This was achieved via the release of thermally unstable MnF4 from K2-MnF<sub>6</sub> with the strong fluoride ion acceptor SbF<sub>5</sub>. It occurred to one of us (N.B.) that a modification of this approach to the synthesis of binary fluorides of low thermal stability, using the low melting solvent, liquid anhydrous hydrogen fluoride (aHF), might give, at low temperatures, from such a solution, access to binary fluorides that are thermodynamically unstable with respect to  $F_2$  and a lower fluoride. The syntheses of the thermodynamically unstable fluorides AgF<sub>3</sub>, NiF<sub>4</sub>, and NiF<sub>3</sub> were quickly achieved as a result of that approach.<sup>2,3</sup>

The idea was not new however. Court and Dove in 1971 had described<sup>4</sup> both the precipitation, at 20 °C, of MnF<sub>4</sub> from solutions of K<sub>2</sub>MnF<sub>6</sub> in aHF, and a black precipitate, claimed to be NiF<sub>3</sub>, from a like solution of  $K_2NiF_6$ , using AsF<sub>5</sub> as the F<sup>-</sup> acceptor. This black NiF<sub>3</sub> was described as decomposing to NiF<sub>2</sub> when the  $AsF_6^-$  salt produced along with it was extracted with aHF at 20 °C. In addition they remarked explicity that NiF<sub>4</sub> was not produced from the K<sub>2</sub>NiF<sub>6</sub> with AsF<sub>5</sub> reaction.

<sup>®</sup> Abstract published in Advance ACS Abstracts, September 15, 1995. (1) Christe, K. Inorg. Chem. 1986, 25, 3721.

It is clear from their later detailed descriptions<sup>5</sup> that they had indeed achieved a preparation of NiF<sub>3</sub>, but their materials were always heavily contaminated with the coproduced potassium salts (KBF<sub>4</sub> or KAsF<sub>6</sub>) and the oxidation state in their (mostly brown) precipitates was never as high as +3. Unfortunately they did not succeed in obtaining meaningful X-ray powder diffraction patterns for their novel solid products. In the light of the work described in this paper, it is difficult to understand why Court and Dove failed to observe NiF4, or isolate the relatively long-lived NiF<sub>3</sub>, which is thermally stable at 20 °C, when dry.

The interest in nickel fluorides higher than NiF<sub>2</sub> had been much stimulated by the development, by Simons, of the process<sup>6,7</sup> for the anodic fluorination of organic compounds. Simons had found that this was particularly efficient with a nickel anode and this had prompted Haszeldine and his co-workers,<sup>8</sup> and Burdon and Tatlow, in their review<sup>9</sup> of the Simons process chemistry, to conjecture on the possible role of a higher fluoride of nickel at the Ni anode, in that chemistry. Both Page<sup>10</sup> and Stein<sup>11</sup> carried out electrochemical oxidation studies with attention to the possibility of preparing a higher nickel fluoride. Stein convincingly demonstrated that a brown solid, formed using a nickel anode in aHF (with KF or NH<sub>4</sub>F electrolyte) had "appreciable oxidizing power (0.30-0.48 equiv of iodine per mole of nickel)". Stein noted similar brown

(8) Gramstead, T.; Haszeldine, R. N. J. Chem. Soc. 1956, 173. Haszeldine, R. N.; Nyman, F. J. Chem. Soc. 1956, 2684.

(11) Stein, L.; Neil, J. M.; Alms, G. R. Inorg. Chem. 1969, 11, 2472.

<sup>&</sup>lt;sup>§</sup> Dedicated to the memory of fluorine chemist Warren E. Falconer (d. Aug 8, 1995). <sup>+</sup> University of Ljubljana.

<sup>&</sup>lt;sup>‡</sup> University of California, Berkeley.

<sup>(2)</sup> Žemva, B.; Lutar, K.; Jesih, A.; Casteel, W. J., Jr.; Bartlett, N. J. Chem. Soc., Chem. Commun. 1989, 346.

<sup>(3)</sup> Žemva, B.; Lutar, K.; Jesih, A. Casteel, W. J., Jr.; Wilkinson, A. P.; Cox, D. E.; Von Dreele, R. B.; Borrmann, H.; Bartlett, N. J. Am. Chem. Soc. 1991, 113, 4192.

<sup>(4)</sup> Court, T. L.; Dove, M. F. A. J. Chem. Soc. Chem. Commun. 1971, 726.

<sup>(5)</sup> Court, T. L.; Dove, M. F. A. J. Chem. Soc. Dalton Trans. 1973, 1995

<sup>(6)</sup> Simons, J. H. J. Electrochem. Soc. 1949, 95, 47.

<sup>(7)</sup> Simons, J. H. Fluorine Chemistry; Academic Press: New York, NY, 1950; Vol. I, pp 414-422.

<sup>(9)</sup> Burden, J.; Tatlow, J. C. Adv. Fluorine Chem. 1969, 1, 129.

<sup>(10)</sup> Page, M. C.R. Acad. Sc. 1967, 264C, 2094.

precipitates from  $K_3NiF_6$  in aHF. He did not report black solids (appropriate for NiF<sub>3</sub> forms) nor was he able to obtain any X-ray powder diffraction information from any of his brown solids. Although Page claimed<sup>10</sup> a red impure nickel "perfluoride" from the electrolysis of a KF•3HF melt, with nickel electrodes, this material was otherwise uncharacterized.

In this paper, we provide evidence for the existence of NiF<sub>4</sub>, which can be kept indefinitely as a dry solid at -55 °C and below. In addition, three forms of NiF<sub>3</sub> have been prepared, their structures identified, these related to other first transition series trifluoride structures, and the oxidizing properties briefly described. NiF<sub>4</sub> and the three known forms of NiF<sub>3</sub> are seen to be thermodynamically unstable with respect to loss of F<sub>2</sub> at 20 °C.

## **Results and Discussion**

Nickel Tetrafluoride Synthesis. The precipitation of a tan solid on introduction of BF<sub>3</sub> to an aHF solution of K<sub>2</sub>NiF<sub>6</sub> at -65 °C was the first indication of the possible existence of NiF<sub>4</sub>. Since  $F_2$  was evolved from this solid well below 0 °C (the tan solid then becoming black) experiments to settle the composition of the solid were carried out initially on solutions of the salt,  $(Xe_2F_{11})_2NiF_6$ , in aHF at -65 °C.<sup>12</sup> This system provided for the easy removal of XeF5AsF6, which is highly soluble in aHF even at -65 °C. In this set of experiments, AsF<sub>5</sub> was employed as the F<sup>-</sup> acceptor and was measured out tensimetrically for delivery to the solution of  $(Xe_2F_{11})_2NiF_6$  in aHF. As AsF<sub>5</sub> was added to the solution a tan precipitate was formed at the gas-solution interface, but this rapidly disappeared on agitation of the solution. At the point where 2 equiv of AsF<sub>5</sub> had been added, this dissolution needed vigorous mixing and the next AsF<sub>5</sub> addition resulted in a permanent tan precipitate. Clearly, the first 2 equiv of AsF<sub>5</sub> merely neutralized the second  $XeF_6$  molecule of the complex cation:

$$(Xe_2F_{11})_2NiF_6 + 2AsF_5 \rightarrow (XeF_5)_2NiF_6 + 2XeF_5AsF_6$$
(1)

An additional AsF<sub>5</sub> was added, and more tan precipitate formed, the red solution color, characteristic of  $NiF_6^{2-}$ , paled, and at the point where 4 equiv of AsF<sub>5</sub> had been added, the supernatant solution had only a pale-straw color, typical for solutions of XeF<sub>5</sub>AsF<sub>6</sub> in aHF:

$$(XeF_5)_2NiF_6 + 2AsF_5 \rightarrow NiF_4 \downarrow + 2XeF_5AsF_6 \qquad (2)$$

Quenching this system to -196 °C showed that there was no  $F_2$  present. The solution of XeF<sub>5</sub>AsF<sub>6</sub> in aHF was removed by decantation from the precipitate, which was then washed twice with aHF, all of these operations being carried out at -65 °C. Removal of remaining aHF under dynamic vacuum at -55 °C left a tan powder. This powder did not lose  $F_2$  or discolor during several hours at -60 °C. With the powder again in suspension in aHF, XeF<sub>6</sub> was added tensimetrically. Addition of 2 equiv of XeF<sub>6</sub> dissolved all of the tan solid to a red solution, from which (XeF<sub>5</sub>)<sub>2</sub>NiF<sub>6</sub> was recovered:

$$NiF_4 + 2XeF_6 \rightarrow (XeF_5)_2NiF_6$$
(3)

This established that the tan solid is NiF<sub>4</sub> and that it retains its integrity at -60 °C, since NiF<sub>2</sub> does not interact with XeF<sub>6</sub> in aHF, nor dissolve in that solution.<sup>12</sup> This did not prove, however, that the tan precipitate, obtained from interaction of K<sub>2</sub>NiF<sub>6</sub> with BF<sub>3</sub> in aHF, was also NiF<sub>4</sub>, since earlier studies

of the  $K_2PdF_6/BF_3$  in aHF system,<sup>13</sup> had shown the existence of KPdF<sub>5</sub> as a precursor to PdF<sub>4</sub>.

Precipitation of the tan solid at -65 °C, with BF<sub>3</sub>, from a K<sub>2</sub>NiF<sub>6</sub> solution in aHF, has established, from gravimetry, that 2 mol of KBF<sub>4</sub> are formed from 1 mol of K<sub>2</sub>NiF<sub>6</sub>:

$$K_2 NiF_6 + 2BF_3 \rightarrow NiF_4 \downarrow + 2KBF_4$$
 (4)

The tan solid, mixed with colorless KBF<sub>4</sub>, obtained from this preparation, was found to lose  $F_2$  slowly above -55 °C but very rapidly at  $\sim -1$  °C.

The low kinetic stability of NiF<sub>4</sub> has hampered the structural and magnetic investigations of the material, but as its ready liberation of F<sub>2</sub> implies, it is a powerful oxidizer and fluorinator. It has already been shown<sup>14</sup> to dissolve in aHF in the presence of excess acid to give yellow-brown solutions of cationic Ni(IV) which are able to electron-oxidize  $PtF_6^-$  or  $RuF_6^-$  to form the neutral hexafluorides:

$$NiF_3^{+} + MF_6^{-} \rightarrow NiF_3 + MF_6$$
 (5)

It is therefore, with cationic  $Ag^{III}$ ,<sup>14</sup> the most powerful electron oxidizer known to date.

Nickel Trifluoride Syntheses. As a dry solid, NiF<sub>4</sub> decomposed to produce a dark brown (nearly black) material which gave an X-ray powder diffraction pattern which showed it to have a rhombohedral variant of the pyrochlore structure (see below and Table 1):

$$\operatorname{NiF}_{4} \operatorname{solid} \xrightarrow{>-55 \, ^{\circ} \mathrm{C}} P \operatorname{-NiF}_{3} + \frac{1}{2} F_{2} \tag{6}$$

A pyrochlore form of FeF<sub>3</sub> is known,<sup>15</sup> having been obtained by topotactic oxidation of NH<sub>4</sub>Fe<sub>2</sub>F<sub>6</sub> with Br<sub>2</sub> in CH<sub>3</sub>CN, the product being cubic, with  $a_0 = 10.325(2)$  Å. In the instance of *P*-NiF<sub>3</sub>, this poorly packed structure probably arises as a consequence of the release of F<sub>2</sub> from its dry NiF<sub>4</sub> precursor, there being no solvent to provide for recrystallization to a more thermodynamically stable form.

The decomposition of NiF<sub>4</sub> in aHF at 0 °C proceeds smoothly, in several hours (in the presence of a  $F^-$  acceptor), to a black solid which has the approximately hexagonally close-packed structure (*R*-NiF<sub>3</sub>, Table 2) common to the late transition series element trifluorides:

$$\operatorname{NiF}_{4} \xrightarrow{\operatorname{aHF, 0 °C}} R \operatorname{-NiF}_{3} + \frac{1}{2}F_{2}$$
(7)

Suspensions of *R*-NiF<sub>3</sub> at 20 °C slowly evolve  $F_2$  over several days to give yellow-brown NiF<sub>2</sub>. This loss of  $F_2$  in aHF at 20 °C may be the cause of the formation of a hexagonal tungsten bronze form<sup>16</sup> of the trifluoride (*H*-NiF<sub>3</sub>) when the tetrafluoride is decomposed, in aHF, at 20 °C rather than at 0 °C:

NiF<sub>4</sub> 
$$\xrightarrow{aHF, 20 °C}_{K^+}$$
 *H*-NiF<sub>3</sub> + <sup>1</sup>/<sub>2</sub>F<sub>2</sub> (8)

This form of the trifluoride is not made when potassium salts are absent from solution. Moreover analytical and other data (see below) indicate that there is K<sup>+</sup> in the hexagonal tunnels of the structure, with a composition close to  $K_{0.12}$ NiF<sub>3</sub>. This requires some additional Ni<sup>II</sup> (~0.12 per mole of Ni) in the lattice, above that required to balance any Ni<sup>IV</sup>. The formation

<sup>(12)</sup> Jesih, A.; Lutar, K.; Leban, I.; Žemva, B. Inorg. Chem. 1989, 28, 2911.

<sup>(13)</sup> Casteel, W. J., Jr. Ph.D. Thesis, University of California at Berkeley, September 1992; LBL Report, LBL-32892, pp 58-60.

<sup>(14)</sup> Lucier, G.; Shen, C.; Casteel, W. J., Jr.; Chacón, L.; Bartlett, N. Collected Papers of the International Conference on Fluorine Chemistry Kyoto 1994, July 1994, Kyoto, Japan; J. Fluorine Chem. **1995**, in press.

<sup>(15)</sup> dePape, R.; Ferey, G. *Mater. Res. Bull.* **1986**, *21*, 971.

<sup>(16)</sup> Magnéli, A. Acta Chem. Scand. 1953, 7, 315.

**Table 1.** X-ray Powder Diffraction Data (Cu K $\alpha$  radiation, Ni filter) for Pyrochlore NiF<sub>3</sub> (Unit cell:  $a_0 = 9.933(3)$  Å;  $\alpha = 91.01(3)^\circ$ ; V = 980(2) Å<sup>3</sup>; Z = 16; V/Z = 61.25(13) Å<sup>3</sup>)

|                  | $1/d_{hkl}^2$ | $\times 10^4$ |                   |               |               |
|------------------|---------------|---------------|-------------------|---------------|---------------|
| I/I <sub>o</sub> | obsd          | calcd         | h                 | k             | l             |
| 100              | 300           | 300           | 1                 | 1             | ī             |
| 100              | 317           | 315           | 1                 | 1             | 1             |
| 20               | 408           | 405           | 2                 | 0             | 0             |
| w <sup>a</sup>   | 803           | b             |                   |               | -             |
| 70               | 1104          | <b>∫</b> 1097 | 3                 | $\frac{1}{1}$ | 1             |
|                  |               |               | 3                 | l             | 1             |
| 30               | 1141          | 1140          | $\frac{3}{2}$     | 1             | 1             |
| 80               | 1197          | 1202          | 2                 | 2             | 2             |
| 30               | 1257          | 1260          | 2                 | 2             | 2             |
| -                | _             | 1893          | 3                 | 3             | 1             |
| _                |               | 1937          | 3                 | 3             | 1             |
| 5                | 1993          | 1980          | 3                 | 3             | 1             |
| VW <sup>a</sup>  | 2246          |               | -                 | _             | _             |
| 20               | 2403          | <b>[</b> 2389 | 4                 | 2             | 2             |
| 20               | 2105          | L2418         | 4                 | 2             | 2             |
| 5                | 2510          | 2505          | 4                 | 2             | 2             |
| 50               | 2701          | 2704          | 3                 | 3             | 3             |
| 20               | 2841          | 2835          | <u>3</u>          | 3             | 3             |
| 60               | 3181          | 3185          | 4                 | 4             | 0             |
| 60               | 3307          | 3302          | 4                 | 4             | 0             |
| 20               | 3485          | ∫3485         | 5                 | <u>3</u>      | 1             |
| 20               | 5405          | L3500         | 5                 | 3             | <u>1</u>      |
| 10               | 3564          | 3573          | 5                 | 3             | 1             |
| 10               | 3632          | 3631          | <u>5</u>          | 3             | 1             |
| 5                | 4020          | 4010          | 6                 | 2             | 0             |
| 5                | 4112          | 4098          | 6                 | 2             | 0             |
| 10               | 4290          | 4281          | 5                 | <u>3</u>      | 3             |
| -                | _             | 4325          | 5                 | 3             | 3             |
| _                | _             | 4386          | 6                 | 2             | 2             |
| 20               | 4446          | 4445          | 6                 | 2             | 2             |
| 10               | 1562          | <b>∫</b> 4501 | 5                 | 3             | 3             |
| 10               | 4002          | 14562         | <u>6</u>          | 2             | 2             |
| 10               | 4812          | 4806          | 4                 | 4             | 4             |
| 20               | 5069          | 15078         | <del>4</del><br>5 | 5             | 4             |
| -                | -             | 5121          | Ī                 | <u>1</u>      | 1             |
| 5                | 5212          | 5165          | 7                 | 1             | 1             |
| -                | J 44 1 44     | L5224         | 7                 | 1             | 1             |
| 5                | 5295          | 5297          | 5                 | 5             | 1             |
| 20               | 5896          | 5888          | 7                 | 3             | 1             |
| 5                | 6030          | <b>∫</b> 5918 | 7                 | 3             | $\frac{1}{1}$ |
| 0                | 0020          | L6020         | 7                 | 3             | 1             |
| _                |               | 6093          | 7                 | 3             | 1             |
| 10               | 6481          | 6486          | 8                 | 0             | 0             |

<sup>a</sup> Line due to a small R-NiF<sub>3</sub> impurity. <sup>b</sup> Systematic absences obey F with *hkl*: *h*, *k*, l = 2n + 1, or *h*, *k*, l = 4n + 2, or *h*, *k*, l = 4n.

of some Ni<sup>II</sup> in the presence of  $K^+$  (the latter accommodating well with the *H*-NiF<sub>3</sub> structure), may combine to favor the precipitation of this form of the trifluoride.

In order to provide a simple and direct approach to the synthesis of NiF<sub>3</sub>, a Ni<sup>2+</sup> salt in aHF was added to a solution of K<sub>2</sub>NiF<sub>6</sub> in aHF. At 0 °C, with slow mixing, this gives predominantly *R*-NiF<sub>3</sub>, but when the solutions are mixed at 20 °C the dominant phase is *H*-NiF<sub>3</sub>:

$$Ni(MF_6)_2 (M = As, Sb, Bi) + K_2NiF_6 \rightarrow 2NiF_3 + 2KMF_6$$
(9)

The relatively high solubility of  $KBiF_6$  in aHF eases the purification of the NiF<sub>3</sub> prepared using Ni(BiF<sub>6</sub>)<sub>2</sub>.

Thermal and Solution Stability of R-, H-, and P-NiF<sub>3</sub>. All forms of dry solid NiF<sub>3</sub> (R, H, and P) lose F<sub>2</sub> when the solids are warmed (R- > 39 °C, H- > 72 °C, and P-NiF<sub>3</sub>, > 138 °C) and there is X-ray powder diffraction evidence for the red-brown solid, derived from the pyrolysis of R-NiF<sub>3</sub> at 83 °C being similar to that remaining from the reduction of solid R-NiF<sub>3</sub> by

**Table 2.** X-ray Powder Diffraction Data (Cu K $\alpha$  radiation, Ni Filter) for Rhombohedral NiF<sub>3</sub> (Unit cell:  $a_0 = 5.168(2)$  Å;  $\alpha = 55.46(3)^\circ$ ; V = 87.3(2) Å<sup>3</sup>; Z = 2)

|              | $1/d_{hkl}^2$ | × 10 <sup>4</sup> |     |                |                |
|--------------|---------------|-------------------|-----|----------------|----------------|
| <i>I/I</i> 0 | obsd          | calcd             | h   | k              | l              |
| vs           | 810           | 810               | · 1 | 1              | 0              |
| m            | 1515          | 1512              | 2   | 1              | <u>1</u>       |
| vw           | 1728          | 1729              | 1   | 0              | 1              |
| S            | 2257          | 2256              | 2   | 0              | $1^a$          |
| vvw          | 2538          | 2540              | 2   | 0              | 0              |
| w            | 3243          | 3242              | 2   | 2              | 0              |
| s            | 3843          | 3835              | 3   | 2              | 1              |
| w            | 4265          | 4269              | 2   | 1              | ī              |
| w            | 4314          | 4320              | 3   | 3              | 2              |
| vw           | 4987          | 4971              | 3   | 1              | 0              |
| w            | 5178          | 5188              | 2   | ī              | ī              |
| vvw          | 6036          | 6049              | 4   | 2              | 2              |
| vw           | 6455          | <b>{</b> 6425     | 4   | 3              | 3              |
|              | <b>CO14</b>   | L0407             | 4   | 3              | ž              |
| vvw          | 0914          | 091/              | 2   | 0              | $\frac{2}{1a}$ |
| vvw          | /412          | 7444              | 3   | 1              | <u>1</u> "     |
| vw           | 7767          | 1//28             | 3   | 0              | 1              |
|              |               | L///8<br>[9420    | 4   | 2              | $\frac{1}{1}$  |
| vvw          | 8411          | 18430             | 3   | 2<br>4         | 1              |
| vvw          | 9031          | 9023              | 4   | 2              | ō              |
| vvw          | 9463          | 9457              | 2   | $\overline{2}$ | ž              |
| vvw          | 9891          | 9884              | 5   | 3              | 2              |
|              |               |                   |     |                |                |

<sup>a</sup> F-only reflections; these also obey h + k + l = 3(2n + 1). The hexagonal cell has  $a_0 = 4.809(4)$  Å;  $c_0 = 13.076(2)$  Å; V = 261.9(5) Å<sup>3</sup>; Z = 6; V/Z = 43.65(8) Å<sup>3</sup>; c/a = 2.72.

gaseous xenon at 20 °C. The composition of this phase is not known, but lies between  $NiF_3$  and  $NiF_2$ .

In suspension in liquid aHF at  $\sim 20$  °C all forms of NiF<sub>3</sub> are observed to evolve F<sub>2</sub> over several days to finally produce NiF<sub>2</sub>:

*R*-, *H*-, and *P*-NiF<sub>3</sub> 
$$\xrightarrow{\text{aHF, 20 °C}}$$
 NiF<sub>2</sub> +  $\frac{1}{2}$ F<sub>2</sub> (10)

the *R*-NiF<sub>3</sub> decomposing most rapidly and *P*-NiF<sub>3</sub> least. When a good  $F^-$  donor is also present (e.g. KF or XeF<sub>6</sub>)<sup>17</sup> in the aHF, NiF<sub>3</sub> is partially converted in a disproportionation reaction to the appropriate NiF<sub>6</sub><sup>2-</sup> salt:

$$2\mathrm{NiF}_{3} + 2\mathrm{F}^{-\frac{\mathrm{aHF}, 20\,^{\circ}\mathrm{C}}{-}} \mathrm{NiF}_{6}^{2-} + \mathrm{NiF}_{2} \qquad (11)$$

but this reaction is slow, and the decomposition represented in eq 10 competes with it. The greatest yield of  $\text{NiF}_6^{2-}$  occurs with *R*-NiF<sub>3</sub> (approximately two-thirds of that expected for eq 11) and the least with *P*-NiF<sub>3</sub>.

Some Oxidizing Properties of R-, H-, and P-NiF<sub>3</sub>. An instance of both the oxidizing power of R-NiF<sub>3</sub> and the disproportionation reaction indicated by eq 11 is seen in the interaction of a multimolar excess of R-NiF<sub>3</sub> in aHF, at ~20 °C, with xenon. The xenon is oxidized, by the abundant oxidizer, to XeF<sub>6</sub>, which, acting as a F<sup>-</sup> donor (eq 11), converts the remaining R-NiF<sub>3</sub> to (XeF<sub>5</sub>)<sub>2</sub>NiF<sub>6</sub> and NiF<sub>2</sub>:

$$14R-\mathrm{NiF}_3 + 2\mathrm{Xe} \xrightarrow{\mathrm{aHF}, 20\,^{\circ}\mathrm{C}} (\mathrm{XeF}_5)_2\mathrm{NiF}_6 + 13\mathrm{NiF}_2 \quad (12)$$

When excess xenon is used, all forms of NiF<sub>3</sub> yield XeF<sub>2</sub>, *H*and *P*-NiF<sub>3</sub> reacting relatively slowly and both *R*-NiF<sub>3</sub> and *H*-NiF<sub>3</sub> also oxidize XeF<sub>2</sub> to XeF<sub>4</sub>:

$$2\mathrm{NiF}_3 + \mathrm{Xe} \xrightarrow{\mathrm{aHF, 20 \ °C}} 2\mathrm{NiF}_2 + \mathrm{XeF}_2$$
(13)

<sup>(17)</sup> Bartlett, N.; Sladky, F. O. J. Am. Chem. Soc. 1968, 90, 5316.

$$XeF_2 + 2R$$
- or  $H$ -NiF<sub>3</sub>  $\xrightarrow{aHF, 20 \circ C} XeF_4 + 2NiF_2$  (14)

Although R-NiF<sub>3</sub> as a dry solid, is unable to oxidize xenon it does so when it has been exposed to HF vapor ( $\sim 100$  Torr). This reaction (to produce  $XeF_2$ ), unlike the formation of  $XeF_2$ from xenon and F<sub>2</sub>, does proceed in the dark. The R-NiF<sub>3</sub> therefore behaves much more like a fluorine atom source. It is of interest that studies<sup>18-21</sup> in the early 1960s showed that the interaction of xenon with F2 in nickel vessels occurred via a  $NiF_x$  intermediate. The red-brown nickel fluoride remaining from the R-NiF<sub>3</sub> reduction by xenon may have a composition  $Ni_2F_5$ . It possesses a distinctive (but unknown) structure; see Table 4.

As expected for such a strong oxidizer, R-NiF<sub>3</sub> was found to be a very effective fluorinator of perfluoropropene,  $C_3F_6$ , and even though the interaction between the solid and the  $C_3F_6$ vapor, at  $\sim 20$  °C, was exothermic, there was only slight carbon-carbon bond cleavage, the great bulk of the product being perfluoropropane. The interaction in aHF solution, at 20  $^{\circ}$ C, was more controlled, with no trace of CF<sub>4</sub>:

$$CF_3 \cdot CF = CF_2 + 2R \cdot NiF_3 \xrightarrow{aHF, 20 \circ C} C_3F_8 + 2NiF_2 \quad (15)$$

A more surprising observation was the violence of the interaction of solid R-NiF<sub>3</sub> with solid lithium chloride, which occurred with incandescence when the solids were ground together. In aHF solution the LiCl (HCl present) reacted more placidly with each of the NiF<sub>3</sub> forms to release chlorine and form NiF<sub>2</sub>. It was expected that this reaction

LiCl + *R*-, *H*-, and *P*-NiF<sub>3</sub> 
$$\xrightarrow{\text{aHF, 20 °C}}$$
 LiHF<sub>2</sub> + NiF<sub>2</sub> +  $\frac{1}{2}$ Cl<sub>2</sub> (16)

might result in some Li<sup>+</sup> incorporation into the H- or P-NiF<sub>3</sub> but no evidence for this was found.

Since dry acetonitrile is an effective solvent for many strongly oxidizing materials (e.g. XeF<sub>2</sub>) it was tested for use with the nickel fluorides, but was found to be too easily oxidized to be of value. The interaction with R-NiF<sub>3</sub> was violent even at  $\sim -40$ °C, but H- and P-NiF<sub>3</sub> interacted very slowly even at 20 °C, but with eventual reduction of the NiF<sub>3</sub> to NiF<sub>2</sub>. In the instance of the reaction with P-NiF<sub>3</sub> this released potassium fluoride, which provided a measure of the potassium content of that fluoride (approximately  $K_{0,1}NiF_3$ ).

The small  $K^+$  content of both H-NiF<sub>3</sub> ( $\sim K_{0.12}NiF_3$ ) and *P*-NiF<sub>3</sub>, ( $\sim K_{0,1}$ NiF<sub>3</sub>) and the attendant requirement of that same amount of Ni<sup>II</sup>, probably has an important role in the lower oxidizing power of these forms relative to R-NiF<sub>3</sub>, in which all of the nickel is formally Ni<sup>III</sup>. These K<sub>x</sub>NiF<sub>3</sub> forms may also have lower solubility in the aHF and lower tendency to disproportionate than does R-NiF3, and these differences could also diminish their oxidizing potency relative to the R-NiF<sub>3</sub>.

Structural Features in R-, H-, and P-NiF<sub>3</sub>. The three observed forms of NiF<sub>3</sub> have their counterparts in other trifluorides, both those of the transition and non-transition elements.<sup>22</sup> Since neither single crystals nor even highly microcrystalline samples of any one of the NiF<sub>3</sub> forms has been



Figure 1. Representation of the hexagonal close-packed F-ligand array in the R-MF<sub>3</sub> typified by NiF<sub>3</sub>. M's are located in octahedral hole sites. Heavy shading of interatom connectors shows the puckered eightmembered M<sub>4</sub>F<sub>4</sub> rings.

obtained, the F-atom positions and interatomic distances in the structures are not known with precision, but the rough structural outlines at least are clear.

The R-NiF<sub>3</sub> represents the commonly available form of a transition metal trifluoride,<sup>23</sup> usually made under conditions which favor the thermodynamically preferred material. In almost every first transition series case the metal atom resides in octahedral hole sites, in a nearly close-packed F-atom array<sup>24</sup> shown in Figure 1. The unit cell parameters of R-NiF<sub>3</sub> are not very different from those of R-CoF<sub>3</sub>, but the formula unit volume (FUV) of 43.7 Å is smaller, and the least of any other known trifluoride except<sup>25</sup> AlF<sub>3</sub> (FUV = 43.6 Å<sup>3</sup>). This demonstrates that the effective nuclear charge of the metal atom in R-NiF<sub>3</sub> must be high. The plot of FUV for each of the first transitionseries trifluorides against atomic number is displayed in Figure 2. The simple crystal-field, d orbital configuration is displayed for each M<sup>III</sup> species, and the FUV is seen to correlate well with that configuration. From ScF3 to CrF3 the FUV decreases sharply and in almost linear relationship with increase in atomic number z of M. This FUV decrease with increase in z must represent the change in effective nuclear charge at M<sup>III</sup>. Evidently the  $t_{2g}^*$  electrons (which have  $\pi^*$  character) have little screening effect on z. With Mn<sup>III</sup> and Fe<sup>III</sup> the FUV increases incrementally and this must arise from impact of the antibonding- $\sigma$ ,  $e_g^*$  electron population, in these M<sup>III</sup> species. The decrease in FUV from FeF<sub>3</sub> to CoF<sub>3</sub> is attributable to the eg\* population, being the same in both, the additional electron of the Co<sup>III</sup> d<sup>6</sup> configuration being placed in the t<sub>2g</sub>\* orbital set. The absence of Jahn-Teller distortion in R-NiF3 and the value of its FUV are in harmony with a Ni<sup>III</sup> species d electron configuration  $t_{2g}^{*5}e_{g}^{*2}$ . However the blackness of the material and the magnetic behavior (see below) could indicate a contribution from a mixed-valence formulation Ni<sup>II</sup>Ni<sup>IV</sup>F<sub>6</sub>.

<sup>(18)</sup> Baker, B. G.; Fox, P. G. Nature 1964, 204, 466.

<sup>(19)</sup> Weaver, E. E.; Weinstock, B.; Knop, C. P. J. Am. Chem. Soc. 1963, 85, 111.

<sup>(20)</sup> Davis, B. H.; Wishlade, J. L.; Emmett, P. H. J. Catal. 1968, 10, 26Ġ.

<sup>(21)</sup> Weaver, C. F. Ph.D. Thesis, University of California at Berkeley, (22) Babel, D.; Tressaud, A. In *Inorganic Solid Fluorides*; Hagenmueller,

P., Ed.; Academic Press: New York, 1985; pp 77-203.

<sup>(23)</sup> Edwards, A. J. Adv. Inorg. Radiochem. 1983, 27, 83.

<sup>(24)</sup> Hepworth, M. A.; Jack, K. H.; Peacock, R. D.; Westland, G. J. Acta Crystallogr. 1957, 10, 63.

<sup>(25)</sup> Hoppe, R.; Kissel, D. J. Fluor. Chem. 1984, 24, 327.



Figure 2. Formula unit volume (Å<sup>3</sup>) for each of the known forms of the first-transition series trifluorides, plotted as a function of atomic number.  $\Delta = R$ -MF<sub>3</sub>,  $\bullet = H$ -MF<sub>3</sub>, and  $\Box = P$ -MF<sub>3</sub> 491, 199 (1982). References: (R-ScF<sub>3</sub>) Lösch, R.; Hebecker, C.; Ranft, Z. Z. Anorg. Chem. 1982, 491, 199. (R-TiF<sub>3</sub>) Ehrlich, P.; Pietzka, G. Z. Anorg. Chem. 1954, 275, 121. (R-VF<sub>3</sub>) Gutmaun, V.; Jack, K. H. Acta Crystallogr. 1951, 4, 244. (R-CrF<sub>3</sub>) Jack, K. H.; Maitland, R. Proc. Chem. Soc. 1957, 232. (MnF<sub>3</sub>, monoclinic) Hepworth, M. A.; Jack, K. H. Acta Crystallogr. 1957, 10, 345. (R-FeF<sub>3</sub> and R-CoF<sub>3</sub>) ref 24. (H-VF<sub>3</sub> and H-CrF<sub>3</sub>) ref 29. (H-FeF<sub>3</sub>) ref 28. (P-FeF<sub>3</sub>) ref 15.

Although neutron diffraction data for R-NiF<sub>3</sub> have been collected, the sample was not sufficiently crystalline to distinguish unambiguously between  $R\overline{3}c$  and  $R\overline{3}$ . For high-spin electron configurations such as Ni<sup>III</sup>  $t_{2g}^{*5}e_{g}^{*2}$ , Ni<sup>II</sup>  $t_{2g}^{*6}e_{g}^{*2}$ , and  $Ni^{IV} t_{2g}^{*4} e_{g}^{*2}$  there would in any case be only subtle differences in size, since the eg\* electron population, which is the same for all, would have prime impact on effective size.<sup>26</sup> The lowspin d electron configuration for  $Ni^{IV}$ ,  $t_{eg}$ <sup>\*6</sup>, would surely signify a smaller Ni species, but it is not certain that the Ni-F interatomic distance in the Ni<sup>IV</sup>F<sub>6</sub> octahedron would be very much smaller than for the high spin relative, since the FUV for R-NiF<sub>3</sub> is near the lower limit for known close-packed trifluorides. Even in the ruthenium and rhodium fluorides, where the  $MF_6$  octahedra are much larger than here,<sup>27</sup> the hard-ligand nature of the F-ligand leads, via cis F-ligand repulsion, to the bridging M-F-M distances being slightly longer in the pentafluorides than in the trifluorides. In R-NiF<sub>3</sub>, the F-F repulsive interactions must be highly resistant to further volume diminution. A low-spin Ni<sup>IV</sup> species  $(t_{2g}*6)$  could therefore rattle in its octahedral hole.

The *H*-NiF<sub>3</sub> form has the structure first described<sup>16</sup> by Magneli for the tungsten bronzes,  $M_xWO_3$  (M a heavier alkali metal). As with Magneli's bronzes, *H*-NiF<sub>3</sub> has hexagonal symmetry, as may be seen from the XRPP data in Table 3. A hexagonal tungsten bronze form has also been reported for *H*-FeF<sub>3</sub> derived from (H<sub>2</sub>O)<sub>0.33</sub>FeF<sub>3</sub> by Leblanc *et al.*<sup>28</sup> In their study of the hexagonal tungsten bronze forms of CrF<sub>3</sub> and VF<sub>3</sub>, however, de Pape *et al.*<sup>29</sup> have shown that these particular materials are not hexagonal, but orthorhombic, in space group *Cmcm*, with *b/a* close to  $\sqrt{3}$ , and therefore pseudo-hexagonal.

**Table 3.** X-ray Powder Diffraction Data (Cu K $\alpha$  radiation, Ni filter) for the Hexagonal Tungsten Bronze Form of NiF<sub>3</sub> (Unit cell:  $a_{\circ} = 7.074(6)$  Å;  $c_{\circ} = 7.193(6)$  Å; V = 311.7(8) Å; Z = 6; V/Z = 51.95(13) Å<sup>3</sup>)

|                    | $1/d_{hk}^2$ | $_{l} \times 10^{4}$ |        |        |        |
|--------------------|--------------|----------------------|--------|--------|--------|
| I/I <sub>o</sub> a | obsd         | calcd                | h      | k      | l      |
| s                  | 264          | 266                  | 1      | 0      | 0      |
| <b>S</b>           | 772          | 773                  | 0      | 0      | 2      |
| w                  | 806          | 799                  | 1      | 1      | 0      |
| vs (br)            | 1052         | ${1040 \\ 1066}$     | 1<br>2 | 0<br>0 | 2<br>0 |
| m                  | 1566         | 1573                 | 1      | 1      | 2      |
| m                  | 1840         | 1839                 | 2      | 0      | 2      |
| m (br)             | 2019         | ${2006 \\ 2058}$     | 1<br>2 | 0<br>1 | 3<br>1 |
| w                  | 2390         | 2398                 | 3      | 0      | 0      |
| ms                 | 3096         | 3093                 | 0      | 0      | 4      |
| ms                 | 3179         | {3171<br>{3197       | 3<br>2 | 0<br>2 | 2<br>0 |
| w                  | 3362         | 3359                 | 1      | 0      | 4      |
| vvw                | 3468         | 3464                 | 3      | 1      | 0      |
| m (—sh)            | 3943         | {3892<br>3971        | 1<br>2 | 1<br>2 | 4<br>2 |
| ms (+sh)           | 4151         | ${4158 \\ 4237}$     | 2<br>3 | 0<br>1 | 4<br>2 |
| -                  |              | 4263                 | 4      | 0      | 0      |
| w (br)             | 5000         | 5036                 | 4      | 0      | 2      |
| vw (br)            | 5469         | 5491                 | 3      | 0      | 4      |
| vw (br)            | 5773         | 5789                 | 4      | 1      | 1      |
| w (br)             | 6264         | 6290                 | 2      | 2      | 4      |
| vvw                | 6695         | 6697                 | 2      | 1      | 5      |

<sup>a</sup> For  $I/I_o$ , vs > s > ms > m > w > vw > vvw; br = broad line;  $\pm$  sh = a shoulder on the high (+) or low (-) angle side.

**Table 4.** X-ray Powder Diffraction Data (Cu K $\alpha$  radiation, Ni filter) for NiF<sub>x</sub> (2 < x < 3) (Heavy Background and Broad Lines Indicative of Small Particle Size in Each Sample)<sup>*a*</sup>

|                         | $1/d_{hkl}^2 \times 10^4$ |                    |            |        |              | $1/d_{hki}^2 \times$ | : 104 |                    |
|-------------------------|---------------------------|--------------------|------------|--------|--------------|----------------------|-------|--------------------|
| <i>I/I</i> <sub>o</sub> | obsd                      | calcd <sup>b</sup> | h          | k      | l            | <i>I/I</i> ₀         | obsd  | calcd <sup>c</sup> |
| s                       | 780                       | 772                | 1          | 0      | 1            | -                    | _     | 744                |
| w                       | 1465                      | 1468               | 1          | 0      | 2            | -                    |       | 1412               |
| m                       | 1634                      | 1620               | 1          | 1      | 0            | w                    | 1581  | 1566               |
| vs                      | 2162                      | 2160               | 2          | 0      | 0            | m                    | 2088  | 2088               |
| vw                      | 2395                      | 2392               | 2          | 0      | 1            |                      |       | 2310               |
| vw                      | 3187                      | 3088               | 2          | 0      | 2            |                      | -     | 2978               |
| vs                      | 3712                      | 3712               | 0          | 0      | 4            | s                    | 3588  | 3712               |
| m.                      | 4968                      | ${4860 \\ 5092}$   | ${3 \\ 3}$ | 0<br>0 | ${}^{0}_{1}$ | vw                   | 4814  | {4698<br>{4920     |

<sup>*a*</sup> The data on the left are from the solids remaining after the thermal decomposition of *R*-NiF<sub>3</sub> up to 83 °C, and the data on the right are from the residue from the reaction of Xe with dry *R*-NiF<sub>3</sub>. <sup>*b*</sup> Based on a hexagonal cell with  $a_0 = 4.97(2)$  Å;  $c_0 = 6.57(2)$  Å, V = 140.4 Å<sup>3</sup>; volume fits ~9 F atoms, with 4 Ni. <sup>*c*</sup> Based on a hexagonal cell with  $a_0 = 5.05(2)$  Å;  $c_0 = 6.71(2)$  Å; V = 148.3 Å<sup>3</sup>; volume fits ~10 F atoms with 4 Ni.

Since high-quality neutron or X-ray diffraction data have not been available so far for H-NiF<sub>3</sub>, because of the relatively poor microcrystallinity of the samples, it has not been possible to establish beyond doubt that the H-NiF<sub>3</sub> is not orthrhombic, and therefore merely pseudo-hexagonal.

The structure of H-NiF<sub>3</sub> must be essentially as represented in Figure 3. Since the value for  $c_0$  is 7.193(6) Å, the unit cell must involve two layers. These are probably related by a mirror plane perpendicular to c, in which the F atoms that link the octahedra along c, are placed. This allows for tilting of the octahedra, but all Ni atoms are likely to remain coplanar in each sheet, nearest-neighbor Ni atoms being  $a_0/2$  (i.e. 3.537 Å) apart. The analytical data, and the KH<sub>2</sub>F<sub>3</sub> recovered on reduction of H-NiF<sub>3</sub> with Xe, indicate that the K<sup>+</sup> content, x in K<sub>x</sub>NiF<sub>3</sub>,  $\approx$ 0.12; only abut one third of that allowed by the structure, since

<sup>(26)</sup> Einstein, F. W. B.; Rao, P. R.; Trotter, J.; Bartlett, N. J. Chem. Soc. A 1967, 418.

<sup>(27)</sup> Casteel, W. J., Jr.; Wilkinson, A. P.; Borrmann, H.; Serfass, R. E.; Bartlett, N. Inorg. Chem. 1992, 31, 3124.

<sup>(28)</sup> Leblanc, M.; Ferey, G.; Chevallier, P.; Calage, Y.; de Pape, R. J. Solid State Chem. 1983, 47, 53.

<sup>(29)</sup> dePape, R.; LeBail, A.; Lubin, F.; Ferey, G. Rev. Chim. Minér. 1987, 24, 545.



**Figure 3.** Representation of a single idealized sheet of the hexagonal tungsten bronze *H*-MF<sub>3</sub> structure. Open circles represent the F ligands close to the plane containing the M atoms (small black spots). MF<sub>6</sub> octahedra represented by the squares, crossed diagonally, are tilted in the direction indicated by the short arrows. Shaded circles indicate  $K^+$  sites at  $c_0/4$  above or below the plane of the M atoms.

this could accommodate a composition  $K_{1/3}NiF_3$ . As the *H*-NiF<sub>3</sub> is formed in the aHF solution it must take HF into the hexagonal cavities as well as  $K^+$ , since on removal of the HF from the precipitated *H*-NiF<sub>3</sub>, the particles of that solid rapidly outgas and propel themselves about the evacuated container. The hexagonal cavities are large enough in diameter to accommodate either  $K^+$  or HF. It is probable that in each of the hexagonal channels running parallel to *c* that the  $K^+$  are occupying approximately one-third of the available sites in the center of the channels in the mirror planes perpendicular to *c*. An ordered distribution to maximize their separation would be expected but it is unlikely that this occupancy is correlated with that in other channels in the structure. Therefore the overall distribution would appear to be simply statistical. This fits the small hexagonal unit cell.

If the *H*-NiF<sub>3</sub> is truly hexagonal, the tilting of the octahedra will be as indicated by the arrows in Figure 3. If the octahedra are regular, the  $a_0$  and  $c_0$  dimensions give us both the tilt angle (t) and the Ni-F interatomic distance, since  $c_0 = [4 \times \text{Ni}-\text{F}]$ distance  $\times \cos t$ ] and  $a_0 = [\sqrt{2} \times \text{Ni}-\text{F}]$  distance  $\times (1 + \sqrt{3} \cos t)$ ]. This requires  $t = 17.60^\circ$  (i.e. a Ni-F-Ni bridging angle along c of 145°) and Ni-F = 1.887 Å. Some distortion of the octahedra probably occurs, therefore, these values are only a rough assessment. Indeed, the careful X-ray powder diffraction study of Jack and his co-workers<sup>24</sup> had found for *R*-FeF<sub>3</sub> and *R*-CoF<sub>3</sub>, the interatomic distances Fe-F = 1.92 and Co-F = 1.89 Å, therefore a somewhat smaller average value than 1.887 Å might be anticipated for Ni-F in each of the NiF<sub>3</sub> forms.

The change in structure from *R*-NiF<sub>3</sub> to *H*-NiF<sub>3</sub> results in a FUV increase of 8.3 Å<sup>3</sup>, (comparison of Figures 1 and 3 reveals the close ligand packing in *R*- and its absence in *H*-NiF<sub>3</sub>) this being associated with the open hexagonal channels of *H*-NiF<sub>3</sub>, of effective dinner close to 2.6 Å. This poorly packed arrangement probably arises from the advantageous lattice energy associated with incorporation of  $xK^+$  in the channels, these compensating for additional Ni<sup>II</sup> over the mixed-valence requirement, in the NiF<sub>3</sub><sup>x-</sup> network. Dielectric screening of the K<sup>+</sup> by HF molecules also incorporated into the channels, must further benefit the energetics. It is seen in Figure 2 that this



**Figure 4.** A tetrahedral cluster of  $MF_6$  octahedra, representative of the *P*-NiF<sub>3</sub> structure. All Ni are linked through F bridges to other Ni in Ni<sub>3</sub>F<sub>3</sub> rings. Open hexagonal channels (at ~109° 28' to one another) run through the structure and in *P*-NiF<sub>3</sub> are partially occupied by K<sup>+</sup>.

FUV increase, of *H* over *R* forms, is typical of that reported for other first transition series trifluorides, and it is also seen that the trend in *H*-MF<sub>3</sub> FUV, across the period, is the same as for *R*-MF<sub>3</sub>. Although the Ni species in *R*- and *H*-NiF<sub>3</sub> are each octahedrally coordinated by F ligands and each F ligand is shared (bridges) with two Ni species, the structures differ greatly. In the close-packed *R*-NiF<sub>3</sub>, the octahedra are linked through bridging F ligands, in 8 membered Ni<sub>4</sub>F<sub>4</sub> rings (alternating Ni and F) as seen in Figure 1. As shown in Figure 3 NiF<sub>6</sub> octahedra in *H*-NiF<sub>3</sub> are linked by corner sharing in the *ab* plane, in 3–fold sets. All Ni species in the *ab* plane are therefore in six-membered Ni<sub>3</sub>F<sub>3</sub> rings with alternating Ni and F. It is this closer grouping of the octahedra in *H*-NiF<sub>3</sub> that provides for the "open" hexagonal channels that run parallel to *c*.

For the *P*-NiF<sub>3</sub>, the clustering of octahedra of NiF<sub>6</sub> is in tetrahedral sets, illustrated in Figure 4. The unit cell must be similar to that of the cubic pyrochlore described for *P*-FeF<sub>3</sub> by dePape *et al.*<sup>15</sup> It is also similar in size to the cell described<sup>30</sup> by Cowley and Scott for a hydroxy aluminum fluoride. In such a structure the Ni species are each connected via F ligands to neighboring Ni species in six-membered rings, like those of the networks in *H*-NiF<sub>3</sub> perpendicular to *c*. Because of the small K<sup>+</sup> content, Ni<sup>II</sup> must be present in like concentration. If there is a mixed-valence contribution to the *P*-NiF<sub>3</sub>, the Ni<sup>II</sup> will exceed the Ni<sup>IV</sup> by that same amount. It is not known if there is any ordering of the positioning of these different Ni species. Such ordering could be responsible for the slight departure from cubic symmetry.

**The Magnetic Behavior of** *R***-**, *H***-**, **and** *P***-NiF**<sub>3</sub>. In all three forms of NiF<sub>3</sub>, field dependence of the magnetic susceptibility is observed but the ordering temperature below which this occurs is dramatically different, see Figure 5, being  $\sim 250$  K in *R*-NiF<sub>3</sub> but  $\sim 120$  K in *H*-NiF<sub>3</sub> and only  $\sim 50$  K in *P*-NiF<sub>3</sub>. This is very like the change in the three-dimensional ordering temperature observed by Ferey and his co-workers,<sup>31</sup> for the three forms of FeF<sub>3</sub>, where the transition temperatures are *R*-FeF<sub>3</sub>, 365 K; *H*-FeF<sub>3</sub>, 110 K; and *P*-FeF<sub>3</sub>, 20 K.

In *R*-NiF<sub>3</sub> like *R*-FeF<sub>3</sub>, each metal center is linked by bridging F ligands in eight-membered rings, as illustrated in Figure 1. For the high-spin d<sup>5</sup> configuration of Fe<sup>III</sup>, the strong antiferromagnetic coupling, predicted by Goodenough's rules,<sup>32</sup> accounts for the observed high magnetic ordering temperature.

<sup>(30)</sup> Cowley, J. M.; Scott, T. R. J. Am. Chem. Soc. 1948, 70, 105.

<sup>(31)</sup> Ferey, G.; De Pape, R.; Leblanc, M.; Pannetier, J. *Rev. Chim. Miner.* **1986**, *23*, 474.

<sup>(32)</sup> Goodenough, J. B. Magnetism and the Chemical Bond; Wiley-Interscience: New York, 1963; p 170.



**Figure 5.** Magnetic susceptibility data at two fields ( $\Delta$  5 kg,  $\blacksquare$  40 kg) as a function of temperature (K) for (a) *R*-NiF<sub>3</sub>, (b) *H*-NiF<sub>3</sub>, and (c) *P*-NiF<sub>3</sub> (a Curie-Weiss plot).

The strong field dependence is due to the canting of the Fe<sup>III</sup> spins, as established by Ferey and his co-workers.<sup>31</sup>

The qualitative similarity of the magnetic behavior of *R*-NiF<sub>3</sub> to *R*-FeF<sub>3</sub> suggests antiferromagnetic coupling of Ni<sup>III</sup> species of configuration  $t_{2g}s_{eg}^{*2}$ , at temperatures below ~250 K, these canted magnets producing the observed field dependence. A mixed-valence formulation Ni<sup>II</sup>  $t_{2g}s_{eg}^{*2}$ , Ni<sup>IV</sup>  $t_{2g}s_{eg}^{*0}$  could also contribute, but by itself would merely provide for weak ferromagnetism akin to that discussed<sup>33</sup> by Tressaud and Dance for Pd<sup>II</sup>Pd<sup>IV</sup>F<sub>6</sub> and Pt<sup>II</sup>Pt<sup>IV</sup>F<sub>6</sub> (the second<sup>34,35</sup> and third<sup>36,37</sup> transition series analogues of Ni<sup>III</sup>Ni<sup>IV</sup>F<sub>6</sub>) where the  $T_c$  values are 10 and 16 K, respectively. The magnetic behavior of a high-spin mixed-valence formulation, Ni<sup>II</sup>  $t_{2g}s_{eg}^{*2}$ , Ni<sup>IV</sup>  $t_{2g}s_{eg}^{*2}$  would be qualitatively like that of high spin Ni<sup>III</sup>. But in this case the field dependence below the magnetic ordering temperature would result from the ferrimagnetism deriving from these antiferromagnetically coupled mixed-valence configurations.

The evidence for antiferromagnetically coupled high-spin Ni<sup>III</sup> being the dominant species in these fluorides is more decisively made by the behavior of *H*- and *P*-NiF<sub>3</sub>.

Because, in *H*-NiF<sub>3</sub>, the Ni species, in the *ab* plane, are linked via F-ligand bridges to four other Ni species, but always in sixmembered Ni<sub>3</sub>F<sub>3</sub> rings (see Figure 3), the antiferromagnetic coupling in these *ab* plane rings must be highly frustrated, as discussed for the general case by Ferey *et al.*<sup>38</sup> As a consequence of this, the only antiferromagnetic coupling of the Ni<sup>III</sup>  $t_2g^5e_g^{*2}$  species that would be effective, would be that parallel to *c*. Such a coupling situation occurs<sup>31,39</sup> in *H*-FeF<sub>3</sub>, which exhibits much weaker antiferromagnetic coupling  $(T_N = 110 \text{ K})$  than *R*-FeF<sub>3</sub>  $(T_N = 365 \text{ K})$ . The magnetic behavior of *P*-NiF<sub>3</sub> is also consistent with frustrated coupling of Ni<sup>III</sup> high-spin species.

As is shown in Figure 5c, by the nearly Curie–Weiss dependence of the reciprocal of susceptibility on temperature, the *P*-NiF<sub>3</sub> is almost a simple paramagnet, field dependence being apparent only below 50 K. This is in accord with the highly frustrated situation associated with antiferromagnetic coupling of Ni species in a pyrochlore structure. The magnetic frustration occurring in the *ab* planes of *H*-NiF<sub>3</sub>, is everywhere present in the *P*-NiF<sub>3</sub>. This is a consequence of the tetrahedral clustering of the octahedra as illustrated in Figure 4, since each Ni species is now linked to each of its six nearest Ni neighbors, as a component of a six-membered Ni<sub>3</sub>F<sub>3</sub> ring.

The magnetic properties of all three forms of NiF<sub>3</sub> are therefore seen to be consistent with high-spin Ni<sup>III</sup>  $t_{2g}$ <sup>5</sup> $e_g$ <sup>\*2</sup> species, although some contribution from mixed-valence Ni<sup>II</sup>-Ni<sup>IV</sup>F<sub>6</sub> cannot be ruled out.

## **Experimental Section**

A. Apparatus and Technique. A metal vacuum line, fluorine handling equipment, bomb reactors, and valves were as previously described.<sup>40</sup> In the experimental work involving aHF, the apparatus was constructed from FEP tubing (CHEMPLAST, Inc., Wayne NJ 07470). The commonly used reactor was constructed from two  $1/_2$  in. o.d. FEP tubes, each drawn down to  $3/_8$  in. o.d. on one end and sealed at the other. These were joined at right angles by a Teflon Swagelok T compression fitting and joined to a Teflon valve (previously described<sup>40</sup>) by a small section of  $3/_8$  in. tubing drawn down to  $1/_4$  in. i.d. This entire T-shaped assembly was connected to the gas handling and vacuum system via ~1 ft length  $1/_4$  in. o.d. FEP tubing. This facilitated the decanting of the aHF solutions, from one tube to that at right angles to it in the T-assembly. The T-reactors were passivated with F<sub>2</sub> (~2 atm) for several hours, then evacuated before use.

Washing of precipitates, to dissolve aHF - soluble salts, was achieved by back distilling the aHF from the decanted solution, under static vacuum, to the limb containing the precipitate, cooled to -196 °C. The precipitate was mixed, by agitation, with the aHF at a suitable temperature for the washing, and the solution, because of the low surface tension of the aHF solution was usually cleanly decanted into the other limb. This back-distillation and washing could be repeated as many times as needed. All solid starting materials and products were handled in the dry argon atmosphere of a Vacuum Atmosphere DRILAB.

X-ray powder patterns (XRPP) and IR and Raman spectra were obtained as previously described.<sup>40,41</sup>

Magnetic Susceptibility. Magnetic susceptibility data were obtained on a SQUID magnetometer with a gaseous He cooling jet. The cylindrical sample container, of length 0.8 in. and diameter 0.16 in.,

<sup>(33)</sup> Tressaud, A.; Dance, J. M. In Inorganic Solid Fluorides; Hagenmuller, P.; Ed.; Academic Press: New York, 1985; pp 371-394.

<sup>(34)</sup> Bartlett, N.; Rao, P. R. Proc. Chem. Soc. 1964, 393.
(35) Tressaud, A.; Wintenberger, M.; Bartlett, N.; Hagenmuller, P. C.R. Acad. Sci. 1976, 282C, 1069.

<sup>(36)</sup> Tressaud, A.; Pintchovski, F.; Lozano, L.; Wold, A.; Hagenmuller, P. Mater. Res. Bull. 1976, 11, 689.

<sup>(37)</sup> Lorin, D.; Dance, J. M.; Soubeyroux, J. L.; Tressaud, A.; Hagenmuller, P. J. Magn. Mater. 1981, 23, 92.

<sup>(38)</sup> Ferey, G.; Leblanc, M.; dePape, R.; Pannetier, J. In *Inorganic Solid Fluorides*; Hagenmuller, P., Ed.; Academic Press: New York, 1985; pp 395-414.

<sup>(39)</sup> Leblanc, M.; DePape, R.; Ferey, G. Solid State Commun. 1986, 58, 171.

<sup>(40)</sup> Žemva, B.; Hagiwara, R.; Casteel, W. J., Jr.; Lutar, K.; Jesih, A.; Bartlett, N. J. Am. Chem. Soc. 1990, *12*, 4846.

<sup>(41)</sup> Lutar, K.; Jesih, A.; Lebau, I.; Žemva, B.; Bartlett, N. Inorg. Chem. 1989, 28, 3467.

Table 5

| quired weight for the stated solid products mg |  |
|------------------------------------------------|--|

| starting weight of                          |                      | observed weight for  |                                                     |                      |                       |
|---------------------------------------------|----------------------|----------------------|-----------------------------------------------------|----------------------|-----------------------|
| K <sub>2</sub> NiF <sub>6</sub> , mg (mmol) | (1) $KNiF_5 + KBF_4$ | (2) $KNiF_4 + KBF_4$ | $(3) \operatorname{NiF}_4 + 2 \operatorname{KBF}_4$ | (4) $NiF_3 + 2KBF_4$ | the solid product, mg |
| (a) 383.3 (1.53)                            | 487.6                | 457.9                | 591.4                                               | 561.5                | 559.2                 |
| (b) 527.5 (2.10)                            | 669.3                | 630.1                | 811.7                                               | 772.7                | 761.1                 |

consisted of a Kel-F base with a threaded neck and a screw-in cap. Inside the DRILAB, a known quantity of material was packed into the bucket with a Kel-F packing tool. The screw cap was then tightened down with an aluminum screwdriver to achieve an air-tight seal. The container was immediately transported to the magnetometer, where it was suspended in the He atmosphere by a cotton thread. Prior to their use with the nickel fluorides, both the SQUID container and the packing tool were passivated with ~2 atm of F<sub>2</sub> for 12 h.

B. Materials. K<sub>2</sub>NiF<sub>6</sub> (Ozark-Mahoning Pennwalt) was heated in  $F_2$  (20-30 atm) at 300 °C for 1-2 days in a copper-gasket Monel bomb. To extract KF impurity from the K<sub>2</sub>NiF<sub>6</sub>, enough aHF ( $\sim 4-5$ mL) was added to  $K_2NiF_6$  (~2-3 g) in an FEP T-reactor, to dissolve all of it. This solution was reduced to  $\sim 0.5$  mL by vacuum removal of aHF and was then decanted from the crystallized K<sub>2</sub>NiF<sub>6</sub>. This was repeated twice, and then the K<sub>2</sub>NiF<sub>6</sub> was dried under a dynamic vacuum. To remove any insoluble phase from the K<sub>2</sub>NiF<sub>6</sub>, the tube containing the KF-free K<sub>2</sub>NiF<sub>6</sub> was placed on a second Teflon T-reactor with a  $5-10 \mu$  porous Teflon filter (Berghof-America) inserted in the neck of the "T". The K<sub>2</sub>NiF<sub>6</sub> was dissolved in aHF, any insoluble material being allowed to settle to the bottom of the tube, following which the solution was decanted through the filter to the other arm of the reactor. Removal of aHF gave a XRPP of the solid entirely attributable to  $K_2NiF_6$  (yield ~1.5-2 g). BiF<sub>5</sub> (Ozark-Mahoning Pennwalt) was fluorinated under the same conditions as the K2NiF6, and then recrystallized from aHF following decantation of the solution from any insoluble material. BF3 (Matheson) was used as supplied.

C. Preparation of NiF<sub>4</sub> and Evidence for its Composition. NiF<sub>4</sub> from  $K_2NiF_6$  with BF<sub>3</sub>. Solutions of  $K_2NiF_6$  in aHF at -78 °C were exposed to BF3 until the solutions no longer took up the gas. The aHF and remaining BF3 were removed under dynamic vacuum at -45 °C to leave a tan solid mixed with a colorless solid. The mixture of solids was warmed to room temperature. This produced fluorine gas and the tan solid became black. Residual solids were weighed. XRPP of the solids revealed KBF4 and either an amorphous or poorly crystalline P-NiF<sub>3</sub> (q.v.) phase. Two reactions were followed gravimetrically as shown in Table 5. Washing with aHF at  $\sim 20$  °C extracted the KBF<sub>4</sub> to leave poorly crystalline P-NiF<sub>3</sub>. NiF<sub>4</sub> from (Xe<sub>2</sub>F<sub>11</sub>)<sub>2</sub>NiF<sub>6</sub> with AsF<sub>5</sub>.  $(Xe_2F_{11})_2NiF_6$  prepared as previously described<sup>12</sup> was dissolved in aHF. AsF<sub>5</sub>, measured out tensimetrically, was slowly admitted via a Teflon valve to the red solution at -65 °C. Three separate experiments gave essentially the same observations as described under Results and Discussion.

**D.** Synthesis of *R*-NiF<sub>3</sub>. K<sub>2</sub>NiF<sub>6</sub> with BF<sub>3</sub>. K<sub>2</sub>NiF<sub>6</sub> (790 mg; 3.15 mmol) was dissolved in aHF (4–5 mL) in one arm of an FEP T-reactor, which was cooled to 0 °C. A 2-fold molar excess of BF<sub>3</sub> (measured out tensimetrically) was added to the solution over a span of 2 h. A tan precipitate of NiF<sub>4</sub> settled to the bottom of the reactor, below a clear, slightly yellow-tinted solution. The tan color changed to black as F<sub>2</sub> evolved. Decomposition was considered to be complete when F<sub>2</sub> evolution had ceased (~2 h). The byproduct, KBF<sub>4</sub>, was extracted by decantation of its solution in aHF at 0 °C followed by back distillation of the aHF and further washing at 0 °C under dynamic vacuum. This yielded black *R*-NiF<sub>3</sub> (346 mg, 2.99 mmol, 95% yield), represented by the XRPP given in Table 2.

**K<sub>2</sub>NiF<sub>6</sub> with BiF<sub>5</sub>.** K<sub>2</sub>NiF<sub>6</sub> (309 mg; 1.23 mmol) was loaded into one arm of an FEP T-reactor and BiF<sub>5</sub> (754 mg; 2.48 mmol) into the other. Each reactant was dissolved in aHF ( $\sim$ 3 mL each). Both solutions were cooled to 0 °C. The solution of BiF<sub>5</sub> was decanted dropwise into the solution of K<sub>2</sub>NiF<sub>6</sub> to precipitate tan NiF<sub>4</sub>. When the addition was complete, the supernatant solution was colorless, and the tan color slowly changed to black over 6 h, at 0 °C, with evolution of F<sub>2</sub>. Cessation of F<sub>2</sub> evolution signaled completion of the reaction. The byproduct, KBiF<sub>6</sub> was extracted by decantation of its aHF solution at 0 °C (with two back-distillations and washings) and the black residue was dried at 0 °C under dynamic vacuum. This gave R-NiF<sub>3</sub> (142 mg; 1.23 mmol, 99% yield).

**E.** Synthesis of *H*-NiF<sub>3</sub>. The preparation of the hexagonal tungsten bronze form of NiF<sub>3</sub> (designated *H*-NiF<sub>3</sub>) involved essentially the same experimental conditions as for the *R*-NiF<sub>3</sub> except that for *H*-NiF<sub>3</sub>, the preparation temperature was  $\sim$ 20 °C, with slow addition of the acid.

K<sub>2</sub>NiF<sub>6</sub> with BF<sub>3</sub>. K<sub>2</sub>NiF<sub>6</sub> (595 mg; 2.37 mmol) in aHF (4-5 mL) gave 225 mg of nearly black solid, characterized by the XRPP in Table 3 as H-NiF<sub>3</sub> (82% yield).

**K<sub>2</sub>NiF<sub>6</sub> with BiF<sub>5</sub>.** K<sub>2</sub>NiF<sub>6</sub> (351 mg; 1.40 mmol) and BiF<sub>5</sub> (860 mg; 2.83 mmol), each reactant in aHF ( $\sim$ 3 mL) gave 160 mg *H*-NiF<sub>3</sub> (from XRPP in Table 3), a yield of 98%.

F. Synthesis of P-NiF<sub>3</sub>. Purified K<sub>2</sub>NiF<sub>6</sub> (856.7 mg; 3.41 mmol) in one arm of an FEP T-reactor was dissolved in aHF (8 mL), cooled to -65 °C, and a 2-fold molar excess of BF<sub>3</sub> added to the solution, at that temperature, over 2 h, tan NiF<sub>4</sub> precipitated, the supernatent solution having a pale-yellow tint. The BF3 was removed at -65 °C and the aHF solution became turbid brown as the BF3 was removed. The bulk of the aHF was taken off under dynamic vacuum, at or below -50 °C, over a period of 24 h and to ensure complete aHF removal the temperature was raised to -45 °C for 3 h. The dry solid which resulted was warmed at a rate of ~1 °C per hour over 88 h, to 24 °C. The solid product was dark brown.  $F_2$  (formed from the decomposition of NiF<sub>4</sub>) was removed and aHF (8 mL) was added. KBF<sub>4</sub> was extracted at -30 °C with seven washings with the aHF (back-distilled). The brown (nearly black) trifluoride, KBF4 free (XRPP), was characterized by the rhombohedral XRPP (nearly cubic) represented in Table 1, with  $a_0 = 9.933(3)$  Å,  $\alpha = 9101(3)$ , indicative of a pyrochlore type structure, yield P-NiF<sub>3</sub> = 294.9 mg, i.e. 2.47 mmol K<sub>0.1</sub>NiF<sub>3</sub>, 72% yield.

G. Preparation of R- and H-NiF<sub>3</sub> from  $Ni(MF_6)_2$  (M = As, Sb, Bi) +  $K_2NiF_6$  in aHF. Ni(MF<sub>6</sub>)<sub>2</sub>, prepared by dissolving NiF<sub>2</sub> in aHF containing 2 equiv of MF<sub>5</sub> (M = As, Sb, Bi) at 20 °C, was in each case highly soluble in aHF and gave a yellow solution. The Ni(MF<sub>6</sub>)<sub>2</sub> salt was loaded in one arm of a T-reactor and an equimolar quantity of purified K<sub>2</sub>NiF<sub>6</sub> in the other. The solution of Ni(MF<sub>6</sub>)<sub>2</sub> in aHF was poured slowly into a solution of the K<sub>2</sub>NiF<sub>6</sub>, to produce a black precipitate. When the solutions had been completely mixed the supernatant solution was colorless. When the mixing was carried out slowly at 0 °C the predominant phase was R-NiF3 and when done at 20 °C H-NiF<sub>3</sub> was the major product. The NiF<sub>3</sub> product was in each case washed with back-distilled aHF at 0 °C to minimize NiF2 production. Example: Ni(AsF<sub>6</sub>)<sub>2</sub> (1330.3 mg; 3.048 mmol) +  $K_2NiF_6$  $(764.6 \text{ mg}; 3.048 \text{ mmol}) \rightarrow 2H\text{-NiF}_3 \text{ (found: } 700.8 \text{ mg}; 6.058 \text{ mmol})$ + 2KAsF<sub>6</sub> (slightly contaminated by *H*-NiF<sub>3</sub> transferred in the multiple decantations).

H. Thermal Decomposition of *R*-, *H*-, and *P*-NiF<sub>3</sub>. *R*-NiF<sub>3</sub>. The release of  $F_2$  from *R*-NiF<sub>3</sub> on heating was detected by the formation of  $I_2$  from KI. The KI was incorporated into a column made from 1/4 in. FEP tubing containing a section of NaF (~1 in.) followed by KI (~12 in.), held in place with a plug of quartz wool at each end. This column was evacuated to  $10^{-7}$  Torr before use. The sample was placed in a small Pyrex glass tube connected to this column, heated in an oil bath, with the column opened slightly to a dynamic vacuum. A yellowing of the column occurred near 39 °C, which intensified and coincided with the black solid becoming brown. Rapid formation of  $I_2$  at 52-53 °C signaled major decomposition of the *R*-NiF<sub>3</sub> at that temperature. No further major  $I_2$  release occurred to 83 °C. The remaining solid was dark red-brown and was characterized by low crystallinity (XRPP tabulated in Table 4). This resembles the material remaining after the interaction of solid *R*-NiF<sub>3</sub> with a molar excess of Xe gas (q.v.).

*H*-NiF<sub>3</sub>. The pyrolysis of *H*-NiF<sub>3</sub> was examined similarly. No  $F_2$  was observed until ~72 °C, and that was slight. Much  $F_2$  was formed at ~103 °C, and was especially abundant at 135 °C.

*P***-NiF<sub>3</sub>**. F<sub>2</sub> release from *P*-NiF<sub>3</sub> was not seen until  $\sim$ 138 °C at which temperature the dark brown solid became lighter in color.

**I.** Decomposition in aHF at ~20 °C. *R*-NiF<sub>3</sub>. When prepared from K<sub>2</sub>NiF<sub>6</sub> with BF<sub>3</sub> at 0 °C, the decomposition of *R*-NiF<sub>3</sub> in aHF, at 20 °C, was usually complete within 24 h, but in the instance of the *R*-NiF<sub>3</sub> precipitated by a stoichiometric quantity of BiF<sub>5</sub> the decomposition was much slower as follows: aHF (1.5 mL) agitated with *R*-NiF<sub>3</sub> (83.2 mg; 0.72 mmol) showed little evidence of change for 2 days, but after 9 days, the entire sample was pale tan in color. Highly crystalline NiF<sub>2</sub>, identified by XRPP (71.5 mg; 0.74 mmol) was recovered.

**H-NiF<sub>3</sub>.** *H*-NiF<sub>3</sub> (68.7 mg; 0.59 mmol if NiF<sub>3</sub>) in aHF (3 mL) became red-brown after 8 days and pale tan after 15 days. The supernatant aHF solution was decanted from the tan residue. XRPP showed it to be NiF<sub>2</sub> (57.3 mg; 0.59 mmol).

**P-NiF<sub>3</sub>.** *P*-NiF<sub>3</sub> (15.8 mg) held at 20 °C in aHF for 10 days gave a colorless supernatant over a yellow-brown solid. The decantate and washings from the yellow-brown NiF<sub>2</sub> (XRPP) on removal of aHF gave KH<sub>2</sub>F<sub>3</sub> (1.7 mg) from which the K content of the *P*-NiF<sub>3</sub> is 0.68 mg, indicating composition K<sub>0.13</sub>NiF<sub>3</sub>. The *P*-NiF<sub>3</sub> (0.131 mmol of K<sub>0.13</sub>NiF<sub>3</sub>) should yield 0.131 mmol of NiF<sub>2</sub>, 12.6 mg. Found "NiF<sub>2</sub>", 13.6 mg.

J. Analysis of NiF<sub>3</sub>. Analysis of R-NiF<sub>3</sub>. The major difficulty associated with the analysis of samples of R-NiF<sub>3</sub> (most of which were prepared from K<sub>2</sub>NiF<sub>6</sub>) lay in the removal of the K<sup>+</sup> salts generated simultaneously with the R-NiF3. Washing with aHF at  $\sim 20~^\circ C$  to remove these salts was advantageous in that the K<sup>+</sup> salt solubility was greater at this temperature than at 0 °C, but the rate of decomposition to F<sub>2</sub> and lower fluoride was also greater at the higher temperature. The R-NiF<sub>3</sub> was therefore usually washed at 0 °C, but removal of the salts was then slow. The complete removal of the salts was often associated with some NiF2 production (as revealed by XRPP). Removal of salts was greatly aided by bringing the entire reaction product (R-NiF<sub>3</sub> and KX) to dryness before washing with aHF. (This probably crystallized  $K^+$  and  $X^-$  adsorbed on the R-NiF<sub>3</sub>.) For samples for analysis, care was taken to minimize the NiF2 formation, but KX salt removal was in such instances rarely complete. R-NiF<sub>3</sub> (prepared from K<sub>2</sub>NiF<sub>6</sub> and BF<sub>3</sub>, with XRPP showing only the lines of the rhombohedral phase). Found: F, 49.7, 49.9; Ni, 48.6, 48.6; K, 0.4; B 1.6%. NiF<sub>3</sub>, plus 0.04KBF<sub>4</sub> impurity, requires: F, 49.7; Ni, 48.6, K, 1.3; B, 0.4%. NiF<sub>3</sub> requires: F, 49.3; Ni 50.7%. The low K and high B content could signify some NiF BF4 impurity in the case of this analyzed sample but the presence of such an impurity was not otherwise indicated.

Note on Analysis of the *H*- and *P*-NiF<sub>3</sub> Solids. Conventional analysis of the "trifluoride" forms prepared in the presence of potassium salts proved to be ambiguous because of the frequent presence of occluded K<sup>+</sup> salts (KBF<sub>4</sub>, KAsF<sub>6</sub>, etc.) produced on addition of the F<sup>-</sup> acceptor (BF<sub>3</sub>, AsF<sub>5</sub>, etc.) to the aHF solution of K<sub>2</sub>NiF<sub>6</sub>. It was found that a more reliable indicator of the K<sup>+</sup> present in the hexagonal channels of the *H*- or *P*-NiF<sub>3</sub> was given by the formation of KH<sub>2</sub>F<sub>3</sub> (highly soluble in aHF) as the trifluoride was reduced. Three sets of observations were employed for this: (1) the decomposition of the trifluoride with xenon (faster); and (3) the reduction of the *P*-NiF<sub>3</sub> with CH<sub>3</sub>CN (moderately fast).

Analysis of H-NiF<sub>3</sub>. This material decomposed less quickly in 20 °C aHF and was therefore more easily washed than R-NiF<sub>3</sub>. Found: F, 47.1; 47.0; Ni, 48.3; 48.3; K 4.07; B, 0.62%. H-NiF<sub>3</sub> (contaminated with 0.0074 mmol KBF<sub>4</sub> impurity) having a composition  $K_{0.12}$ -NiF<sub>3</sub>·0.0074KBF<sub>4</sub>, requires: F, 47.4; Ni, 48.4; K, 4.09; B, 0.07%.

K. Some Chemical Reactions of *R*-, *H*-, or *P*-NiF<sub>3</sub>. 1. Interaction of *R*-, *H*- and *P*-NiF<sub>3</sub> with CH<sub>3</sub>CN at ~20 °C. R-NiF<sub>3</sub>. CH<sub>3</sub>-CN was condensed onto the dry *R*-NiF<sub>3</sub> at -196 °C and as it thawed (~-45 °C) it reacted exothermically to give NiF<sub>2</sub> and fluorination products of the CH<sub>3</sub>CN.

*H*-NiF<sub>3</sub>. The solid reacted slowly with CH<sub>3</sub>CN at  $\sim$ 20 °C over 30 min to give a paler solid (NiF<sub>2</sub>).

**P-NiF<sub>3</sub>.** *P*-NiF<sub>3</sub> (59.1 mg) was stirred in contact with CH<sub>3</sub>CN for 30 min and the solid rapidly became yellow-green (NiF<sub>2</sub> by XRPP) as the CH<sub>3</sub>CN was oxidized. Remaining CH<sub>3</sub>CN and volatile oxidation products were removed under dynamic vacuum and the residual solid was washed with aHF to extract KH<sub>2</sub>F<sub>3</sub>. The yield of KH<sub>2</sub>F<sub>3</sub> (by XRPP) 4.0 mg signified 0.041 mmol, 1.59 mg of K<sup>+</sup> in the *P*-NiF<sub>3</sub> and a composition  $K_{0.08}NiF_3$ .

2. Interaction of dry R-, H-, and P-NiF<sub>3</sub> with gaseous Xe at  $\sim$  20 °C. Dry R-, H-, and P-NiF<sub>3</sub> do not interact with gaseous Xe at 20

**Table 6.** Results of the Interaction of R-, H-, and P-NiF<sub>3</sub> with Xe in aHF, at  $\sim 20 \text{ °C}^a$ 

|                                                              | _              |                               | $R-NiF_3$                              |                                            |                         |  |
|--------------------------------------------------------------|----------------|-------------------------------|----------------------------------------|--------------------------------------------|-------------------------|--|
| reacta                                                       | nts            |                               | prod                                   | ucts                                       |                         |  |
| R-NiF3         Xe           108         (0.93)         (0.2) |                | Xe product                    | KH <sub>2</sub> F <sub>3</sub> product | N                                          | JiF <sub>x</sub>        |  |
|                                                              |                | 41, XeF <sub>4</sub><br>(0.2) | none                                   | 95 obs<br>(0.8NiF <sub>2</sub> ) +<br>92.4 | $(0.13 \text{NiF}_3) =$ |  |
|                                                              |                |                               | H-NiF3                                 |                                            |                         |  |
|                                                              | reacta         | ants                          |                                        | products                                   |                         |  |
| H-Nil                                                        | F <sub>3</sub> | Xe                            | $\overline{\text{XeF}_2 + \text{KH}}$  | $_{2}F_{3} + KBF_{4}$                      | NiFx                    |  |
| 180                                                          |                | excess                        | 93                                     | 93.2                                       |                         |  |
|                                                              |                |                               | P-NiF3                                 |                                            |                         |  |
|                                                              | read           | ctants                        |                                        | products                                   |                         |  |
| P-NiF <sub>3</sub>                                           |                |                               | 5, XeF <sub>2</sub>                    | 3, KH <sub>2</sub> F <sub>3</sub>          | NiF <sub>2</sub> yield  |  |
| 23.3                                                         | mu             | ltimolar exce                 | ss (0.03)                              | (0.031)                                    | no recorded             |  |

<sup>a</sup> Quantities not in parentheses are in milligrams; quantities in parentheses are in millimoles.

°C, but if *R*-NiF<sub>3</sub> is first exposed to HF vapor (100 Torr) it is converted within a few hours to a homogeneous light red-brown solid in an exothermic interaction with a multimolar excess of Xe (~1 atm). (This reaction even proceeds in the dark.) XeF<sub>2</sub> was identified by IR<sup>42</sup> and XRPP<sup>43</sup> as the oxidation product. The XRPP of the light red-brown nickel fluoride showed a broad line pattern like that from the thermal decomposition of NiF<sub>3</sub> at 83 °C (q.v.) given in Table 4.

3. Interaction of R-, H-, and P-NiF<sub>3</sub> with Xe in aHF, at ~20 °C. The trifluoride in suspension in aHF (typically 2.5 mL) in one arm of a T reactor was agitated with a known quantity of gaseous xenon for ~8 h. In each case the trifluoride was converted to a tan solid. Colorless soluble products were obtained by decanting the aHF solution to the other arm, aHF being removed under vacuum at -50 °C. Results are in Table 6.

Assuming the composition from the analysis for H-NiF<sub>3</sub> i.e.  $K_{0.12}$ NiF<sub>3</sub>·0.0074KBF<sub>4</sub>: there are 1.484 mmol of H-NiF<sub>3</sub>. There must be 1.484 mmol of NiF<sub>x</sub> in the product, which must therefore have a composition NiF<sub>2.16</sub>. Neglecting loss of F<sub>2</sub> by decomposition of the H-NiF<sub>3</sub> in the aHF, the yield of XeF<sub>2</sub> is expected to be 0.534 mmol = 90.4 mg. Expected KH<sub>2</sub>F<sub>3</sub> = 17.5 mg and KBF<sub>4</sub> = 0.9 mg. Total XeF<sub>2</sub> + KH<sub>2</sub>F<sub>3</sub> + KBF<sub>4</sub> = 108.8 mg. Results are in Table 6.

Since 23.3 mg of P-NiF<sub>3</sub> contain 1.20 mg of K (based on 0.031 mmol of KH<sub>2</sub>F<sub>3</sub>), the empirical formula is K<sub>0.16</sub>NiF<sub>3</sub> (formula weight 122.05). Results are in Table 6.

**Excess R-NiF<sub>3</sub>.** Introduction of Xe to a multimolar excess of *R*-NiF<sub>3</sub> suspended by agitation in aHF at ~20 °C produced a red solution which deepened in color as Xe was introduced [but the Xe added was always much less than required for  $2Xe + 14NiF_3 \rightarrow (XeF_5)_2NiF_6 + 13 NiF_2$ ] and removal of aHF yielded red crystals of  $(XeF_5)_2NiF_6$  (by XRPP).<sup>12</sup> When slightly larger xenon quantities were used than required for  $(XeF_5)_2NiF_6$  formation, the evaporation of the red aHF solution also gave high purity XeF<sub>4</sub> (XeF<sub>2</sub> and XeF<sub>6</sub> absent).

L. Reaction of R- or H-NiF<sub>3</sub> with XeF<sub>2</sub> in aHF. R-NiF<sub>3</sub>. A solution of XeF<sub>2</sub> in aHF at ~20 °C added quickly to an equivalent quantity of R-NiF<sub>3</sub> under aHF at ~20 °C, with agitation, produced a tan solid in less than 6 h. Decantation of the colorless supernatant aHF solution followed by washing left a tan solid (XRPP indicating NiF<sub>2</sub>) and evaporation of aHF from the combined decantate and washings at ~-40 °C yielded a nearly colorless sublimable solid identified<sup>43</sup> (XRPP) as XeF<sub>4</sub>.

**H-NiF<sub>3</sub>.** 1. XeF<sub>2</sub> (67 mg; 0.40 mmol) in aHF (2.5 mL) added to H-NiF<sub>3</sub> (92 mg; 0.80 mmol) with vigorous stirring, resulted in the black H-NiF<sub>3</sub> becoming a red-brown solid in ~50 min. The colorless supernatant and three washings yielded, on removal of aHF at -47 °C a nearly colorless solid identified<sup>43</sup> by XRPP as XeF<sub>4</sub> (66 mg; 0.32 mmol). The XRPP of the reddish-brown residue showed it to contain

<sup>(42)</sup> Yeranos, W. A. Mol. Phys. 1967, 12, 529.

<sup>(43)</sup> Siegel, S.; Gebert, E. J. Am. Chem. Soc. 1963, 85, 240.

**Table 7.** Results of the Interaction of R-, H-, or P-NiF<sub>3</sub> with aHF Solutions of KF<sup> $\alpha$ </sup> R-NiF<sub>3</sub>

| react              | tants  |                  | products                        |   |                                |
|--------------------|--------|------------------|---------------------------------|---|--------------------------------|
| R-NiF <sub>3</sub> | KF     | NiF <sub>2</sub> | K <sub>2</sub> NiF <sub>6</sub> | + | KH <sub>2</sub> F <sub>3</sub> |
| 1.109              | 56     | 59 observed      | 104 observed                    |   |                                |
| (0.94)             | (0.96) | (0.61)           | (0.33)                          |   | (0.30)                         |
|                    |        |                  | 82.8                            |   | 29.4                           |
|                    |        |                  | 112.2 required                  |   |                                |
| 2.97.2             | 53.7   | 47.8 observed    | 107.4 observed                  |   |                                |
| (0.84)             | (0.92) | (0.497)          | (0.343)                         |   | (0.234)                        |
| ` '                | · · /  |                  | 85.96                           |   | 22.96                          |
|                    |        |                  | 108.9 required                  |   |                                |

H-NiF<sub>3</sub>

| react                        | tants            |                    | pro                                  | duct             | :s                             |   |                                |
|------------------------------|------------------|--------------------|--------------------------------------|------------------|--------------------------------|---|--------------------------------|
| H-NiF3                       | KF               | NiF <sub>2</sub>   | $K_2NiF_6$                           | +                | KH <sub>2</sub> F <sub>3</sub> | + | KBF <sub>4</sub>               |
| 1. 136.3                     | 75.3             | 99.9<br>observed   | 135.4<br>observed                    |                  |                                |   |                                |
| (1.123) <sup>b</sup>         | (1.296)          | (1.033)            | (0.090)<br>22.6<br>146.2<br>required |                  | (1.250)<br>122.6               |   | (0.0083)<br>1.0                |
| 2. 151.9                     | 86.9             | 110                | 164.7<br>observed                    |                  |                                |   |                                |
| (1.252) <sup>b</sup>         | (1.498)          | (1.138)            | (0.114)<br>28.6<br>169.1<br>required |                  | (1.420)<br>139.3               |   | (0.0093)<br>1.2                |
|                              |                  |                    | P-NiF3                               |                  |                                |   |                                |
| rea                          | actants          |                    | р                                    | rod              | ucts                           |   |                                |
| P-NiF <sub>3</sub>           | K                | F NiF <sub>2</sub> | K <sub>2</sub> N                     | liF <sub>6</sub> | +                              |   | KH <sub>2</sub> F <sub>3</sub> |
| 92.7<br>(0.760) <sup>•</sup> | c 70.9<br>c (1.2 | 65.2<br>20) (0.674 | 149.7 of<br>4) (0.086)<br>21.6       | oser             | ved                            |   | (1.170)                        |

<sup>*a*</sup> Quantities no in parentheses are in milligrams; quantities in parentheses are in millimoles. <sup>*b*</sup>  $K_{0.12}$ NiF<sub>3</sub>·0.0074KBF<sub>4</sub> from analysis. <sup>*c*</sup>  $K_{0.16}$ NiF<sub>3</sub> composition from reduction with Xe in aHF.

136.3 required

 $NiF_2$  (82 mg; 0.85 mmol) although the color and gravimetry indicated a higher F content.

2. XeF<sub>2</sub> (48 mg; 0.28 mmol) and *H*-NiF<sub>3</sub> (130 mg; 1.12 mmol) were loaded into opposite arms of a reactor and aHF (2.5 mL) was condensed onto the XeF<sub>2</sub>, and the resulting solution poured onto the *H*-NiF<sub>3</sub>. After 1 h, the black solid had become reddish-brown. Removal of aHF below -39 °C gave an almost colorless residue (XRPP indicated XeF<sub>4</sub>, 46 mg; 0.22 mmol). The XRPP of the reddish-brown residue (121 mg) showed *H*-NiF<sub>3</sub> and NiF<sub>2</sub>. Required for 0.56 mmol NiF<sub>2</sub>, 54 mg; and (0.56 mmol) *H*-NiF<sub>3</sub>, 67.9 mg; total 122.1 mg.

M. Interaction of R-, H-, or P-NiF<sub>3</sub> with aHF Solutions of KF. A known weight of the trifluoride (R, H, or P) was combined with an approximately equimolar quantity of KF, accurately weighed; aHF ( $\sim$ 2 mL) was added and the mixture agitated for a period of one to several days at ~20 °C. In all cases  $K_2NiF_6$  formation was signaled by the red coloration of the aHF and this was confirmed subsequently for the solid product by gravimetry which also indicated  $KH_2F_3$  and  $NiF_2$ . The  $K_2NiF_6$  and  $KH_2F_3$  were separated from the  $NiF_2$  by decantation of their aHF solution, with several washings. It was observed that the R-NiF<sub>3</sub> produced  $K_2NiF_6$  the reaction being effectively complete in 1 day. H-NiF<sub>3</sub> and P-NiF<sub>3</sub> produced the  $K_2NiF_6$  much more slowly, the intensity of the solution color growing steadily over two or more days. The results are shown in Table 7.

**N.** Oxidation of LiCl by *R*- or *H*-NiF<sub>3</sub>. *R*-NiF<sub>3</sub>. When an equimolar mixture of *R*-NiF<sub>3</sub> and LiCl were ground together in an agate mortar in the Drilab they interacted with incandescense, the yellow green product being (XRPP) a mixture of NiF<sub>2</sub> and LiF. The interaction was much more controlled when an aHF solution, at 0 °C, of LiCl was added slowly to *R*-NiF<sub>3</sub> under aHF (at 0 °C). Fast evolution of Cl<sub>2</sub> was accompanied by simultaneous conversion of the *R*-NiF<sub>3</sub> to a yellow green solid (NiF<sub>2</sub> by XRPP).

**H-NiF<sub>3</sub>.** LiCl (46.2 mg; 1.09 mmol) in the side arm of a T-reactor was transferred in aHF ( $\sim 2$  mL) to *H*-NiF<sub>3</sub> (112.7 mg; 0.974 mmol) in the main tube and the mixture stirred at  $\sim 20$  °C. Cl<sub>2</sub> gas was rapidly evolved and the nearly black NiF<sub>3</sub> quickly changed to a yellow green solid. The latter was recovered by decantation of the aHF solution into the other tube and was washed several times by back-distillation of the aHF in the usual manner. Removal of aHF and Cl<sub>2</sub> under dynamic vacuum at  $\sim 20$  °C left the yellow green product (XRPP showed NiF<sub>2</sub>, 100.8 mg; 1.04 mmol) in the main tube and in the other a colorless solid, XRPP of which showed LiHF<sub>2</sub> with some LiF (48.3 mg; required for 1.09 mmol of LiHF<sub>2</sub> = 50.1 mg).

**O.** Oxidation of  $C_3F_6$  by *R*-NiF<sub>3</sub>. *R*-NiF<sub>3</sub> exposed to  $C_3F_6$  (less than half the molarity of the trifluoride) at 20 °C rapidly interacted in an exothermal reaction in which the black trifluoride was rapidly reduced to a tan solid (NiF<sub>2</sub> present by XRPP). IR spectra showed the gaseous product to be perfluoropropane,  $C_3F_8$  with only a trace of CF<sub>4</sub> present. A similar quantitative conversion of  $C_3F_6$  to  $C_3F_8$  also occurred with the *R*-NiF<sub>3</sub> suspended in aHF but in this instance CF<sub>4</sub> was not observed.

Acknowledgment. The work carried out at Berkeley was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division, of the U.S. Department of Energy under Contract Number DE-AC-03-76SF00098. Additional support was provided by the U.S.-Slovene Joint Fund for Scientific and Technological Cooperation, in association with the National Science Foundation under grant number JF947. In addition the work done in Liubliana was supported by the Ministry of Science and Technology of the Republic of Slovenia. L.C. is grateful to NPSC for a fellowship. B.Ž. thanks the Miller Institute, UC Berkeley for the Visiting Professorship, Spring Semester 1993, during which tenure, some of the experimental work was carried out. The authors are grateful to Professors J. Goodenough, G. Ferey, P. Hagenmüller, and A. Tressaud for helpful guidance in the interpretation of the magnetic data for R-, H-, and P-NiF<sub>3</sub>.

JA951805N