Journal of Organometallic Chemistry, 420 (1991) 185–205 Elsevier Sequoia S.A., Lausanne JOM 22090

Déprotonation des allylbenzènes chrometricarbonyle en milieu basique. Influence du système basique et du groupement chrometricarbonyle sur la régiosélectivité de l'addition des dérivés carbonylés et sur la nature des produits isolés

M.-C. Sénéchal-Tocquer, D. Sénéchal, J.-Y. Le Bihan, D. Gentric et B. Caro Laboratoire de Chimie des Organométalliques, URA, CNRS 415, IUT-Lannion, Université de Rennes I, B.P. 150, 22302 Lannion (France)

Abstract

Allylbenzene chromiumtricarbonyl complexes are deprotonated under several basic conditions: ${}^{L}BuOK-THF$, NaH-DMF and phase transfer catalysis. The regionselectivity of the addition of carbonyl compounds on the complexed allylic anions is influenced by the nature of the cations M^+ . With $M^+=K^+$, Na+, N+(${}^{R}Bu$)₄ the reaction of aromatic aldehydes is under thermodynamic control: only the most stable alcohols, dienes or ketones are isolated. With $M^+=K^+$, ketones are formed by an in situ Oppenauer-Woodward oxidation. With $M^+=Li^+$ the reaction is in great part under kinetic control. Benzaldehyde gives rise to a mixture of α and γ alcohols. With acetophenone and diethyl ketone the reaction is regiospecific. Only the linear alcohols are obtained. This result, different from that obtained in non-complexed series under similar conditions, is the consequence of the steric strain of the complexed benzenic nucleus.

Résumé

L'allylbenzène chrometricarbonyle et ses dérivés ont été déprotonés dans des conditions basiques variées: $^1\text{BuOK-THF}$, NaH-DMF et par catalyse par transfert de phase. La régiosélectivité de l'addition des dérivés carbonylés sur les anions allyliques formés dépend de la nature du cation M^+ . Quand $M^+ = K^+$, Na $^+$, N^+ (^nBu)₄ la réaction des aldéhydes aromatiques est sous contrôle thermodynamique: on obtient des produits d'addition linéaires (alcools, diènes ou cétones). Lorsque $M^+ = K^+$, la formation de cétones est due à une oxydation d'Oppenauer-Woodward qui s'effectue in situ. Quand $M^+ = \text{Li}^+$ la réaction est en grande partie sous contrôle cinétique. Le benzaldéhyde conduit à un mélange d'alcools ramifié et linéaire. Avec l'acétophénone et la diéthylcétone, la réaction est régiospécifique: seuls les alcools linéaires sont obtenus. Ce résultat opposé à celui obtenu en série non complexée est la conséquence de l'encombrement stérique du groupement benzène chrometricarbonyle.

Introduction

La métallation directe de l'allylbenzène en milieu basique et la réactivité de l'entité anionique formée (éq. 1) posent des problèmes de réactivité et de régiosélectivité.

Ainsi l'emploi de l'amylsodium dans le pentane [1] ou du butyllithium dans l'éther [2] donne un résultat décevant, parfois entaché par la formation de produits de duplication [2a,2b,2c*]. Cependant, cette dernière base associée au THF [3] et l'amidure de sodium dans l'ammoniac liquide [4] permettent l'obtention de l'anion allylique avec de bons rendements. Quant à l'orientation de l'addition des électrophiles sur cette entité ambidente, elle varie avec la nature du réactif et les conditions basiques et réactionnelles utilisées. On observe, cependant, au-delà de certaines fluctuations, une réactivité très marquée de la position α . Ainsi les aldéhydes [3a], les cétones [3b], les dérivés halogénés, donnent, en majorité, des produits de condensation ramifiés (réactivité du carbone α) [2c*]. Cette régiosélectivité a été interprétée comme étant la conséquence d'une densité électronique plus importante au niveau du carbone α [3b,5*]. Seules les cétones stériquement très encombrées (diisopropylcétone, benzophénone) réagissent uniquement avec le carbone y [2a,3a,3b]. Dans les autres cas, l'obtention unique d'alcools linéaires, plus stables, nécessite un chauffage prolongé du milieu réactionnel. Ce résultat montre le caractère faiblement réversible de l'addition des aldéhydes et des cétones aliphatiques [3a,3b].

Dans ce mémoire, nous décrivons la réactivité en milieu basique de divers allylbenzènes chrometricarbonyle vis-à-vis de dérivés carbonylés [7]. Si l'influence positive du groupement chrometricarbonyle sur la déprotonation des hydrogènes benzyliques est un fait bien établi [8], sa capacité à induire par effet stérique ou électronique une régiosélectivité particulière en série allylique n'a pas été testée [9].

Résultats

Les résultats reportés aux Tableaux 1-4 montrent que les condensations entre l'allylbenzène chrometricarbonyle et divers dérivés carbonylés (oxalate d'éthyle, aldéhydes, cétones) peuvent être réalisées dans des conditions basiques très variées. On peut constater que la nature du milieu basique et les conditions réactionnelles utilisées jouent non seulement un rôle sur la régiosélectivité mais également sur la nature des produits isolés. Par souci de clarté, nous décrirons les résultats obtenus base par base.

'BuOK-THF (Tableau 1)

Il est possible avec ce système basique, en opérant en excès d'électrophile (2.5 équivalents) d'obtenir des produits de condensation en 20 min à température ambiante (environ 20 ° C). L'emploi d'un équivalent de dérivé carbonylé diminue quelque peu le rendement.

^{*} Les numéros de référence pourvus d'un astérisque réfèrent aux notes explicatives dans la liste bibliographique.

Cette méthode est cependant limitée aux dérivés carbonylés non énolisables. La diéthylcétone, l'acétone, l'acétaldéhyde ne donnent pas de réaction dans ces conditions.

La réaction est régiospécifique: quels que soient les dérivés allyliques et carbonylés étudiés, tous les produits obtenus correspondent à une réactivité unique du carbone γ . Ce résultat apparaît particulièrement remarquable, si on le compare avec l'orientation obtenue en série non complexée, pour des aldéhydes aliphatiques d'encombrement stérique comparable opposés à des anions allyliques, associés à des métaux différents (dérivés lithiés ou zinciques) [3a].

Il apparaît également que la nature des produits isolés dépend en partie de la substitution du cycle benzénique complexé. Si l'action de l'oxalate d'éthyle conduit aux diénols attendus 1, 2, 3 (Tableau 1), celle des aldéhydes aromatiques (benzaldéhyde, furfural) permet d'observer une réaction inédite des produits primaires d'addition en cétones, fonction de la présence d'un groupement méthoxy en ortho ou en para. Ainsi avec l'allylbenzène ou le safrole chrometricarbonyle, on isole en majorité ou uniquement les diènes d'addition 4, 11 et 8 accompagnés d'une faible quantité des cétones 5 et 12. La présence en para d'un groupement méthoxy (estragole chrometricarbonyle) rend majoritaire la formation des cétones 7 et 14. Cette tendance, bien que moins marquée, existe avec l'ortho-méthoxyallylbenzène chrometricarbonyle (obtention du diène 9 et de la cétone 10). Nous avons constaté, pour les deux cas où la formation de cétone est la plus favorable (para- et ortho-méthoxyallylbenzène chrometricarbonyle), que l'emploi d'un équivalent d'aldéhyde ne permet pas d'observer cette évolution. Dans ces conditions seuls les dérivés diéniques 6 et 9 sont isolés. Une autre influence d'un groupement méthoxy en para est de défavoriser la formation de diène. Ainsi la benzophénone donne avec l'estragole chrometricarbonyle uniquement l'alcool 17. et un mélange d'alcool 16 et de diène 15 avec l'allylbenzène chrometricarbonyle. Finalement, notons que les propénylbenzènes chrometricarbonyle correspondants donnent des résultats identiques malgré la moins grande acidité des hydrogènes du groupement méthyle.

NaH-DMF (Tableau 2)

Nous avons limité l'emploi de ce système basique à l'action du benzaldéhyde sur l'allylbenzène et l'estragole chrometricarbonyle. La réactivité apparaît globalement identique au système basique précédent. La réaction requiert un excès d'aldéhyde. Nous avons vérifié que les cétones et les aldéhydes énolisables ne réagissent pas. En 30 min, à température ambiante, on obtient uniquement des produits d'addition linéaires.

Contrairement au système basique précédent les produits d'addition n'évoluent pas vers la formation de cétone même pour l'estragole chrometricarbonyle. Cependant, comme précédemment, on observe avec ce composé une diminution de la déshydratation et il est possible d'isoler l'alcool 19, à côté d'une faible proportion de diène 6.

Catalyse par transfert de phase $(N^+(^nBu)_4 HSO_4^-, NaOH/toluène-eau)$ (Tableau 3)

Malgré l'essor de la catalyse par transfert de phase, ce système basique n'a pas

Tableau 1
Addition de dérivés carboxylés — Système basique: 'BuOK-THF °

	(CO ₂ Et) ₂	С)-сно	О-сно	
>	(6) $0H$ $(1,75%)$	(G) (4, 51%)	(11,63%)	
		(G) (S, < 5%)	(12 hc, = 20%)	(16, 61%)
(a)	MeO_G OH	MeO_(G)	MeO (G) (13, 27%)	Mec—(g)
		MeO-(G)	MeO (@) (14, 47%)	(17, 38%)

du furfural, est difficilement isolée par cristallisation fractionnée. C L'action du furaldéhyde-3 donne le diène correspondant (Rdt. 45%). ^d L'emploi d'un équivalent de benzaldéhyde ne permet pas d'observer la formation de cétone. Seul le diène 6 est isolé (Rdt. 55%). ^e Les condensations ont été effectuées sur un mélange contenant les deux isomères. ^f L'emploi d'un équivalent ne permet pas des spectres de ces composés n'est pas à 60 MHz interprétable au premier ordre. Le diène 4 est identique au produit obtenu en condensant en milieu basique le toluène chrometricarbonyle au cinnamaldéhyde trans [11]. On peut donc penser que la stéréochimie est trans trans, et étendre cette attribution aux autres diènes du Tableau 1. Finalement, les diènols 1, 2 et 3 ont une stéréochimie E (voir Tableau 1) Z (voir J.-Y. Le Bihan et al., Tetrahedron, 44 (1988) 3365). Ce rendement constitue une évaluation; la cétone 12, en mélange avec un alcool diénique, résultat d'une double condensation a Temps de réaction 20 min, température ambiante ~ 20° C. On utilise un excès de 2.5 équivalents de dérivés carbonylés. Il est possible, à partir des considérations RMN développées dans la référence 3b, d'attribuer aux alcools 16 et 17 et aux cétones 5, 7, 10, 12 et 14 obtenus lors de ces réactions la stéréochimie trans; comme il est noté dans la référence 3b pour les isomères trans, la partie éthylénique d'observer la formation de cétone. Seul le diène 2 est isolé (Rdt. 44%).

(10, 43%)

Tableau 2 Addition du benzaldéhyde — Système basiqaue: NaH-DMF ^a

été utilisé pour réaliser des réactions d'aldolisation en série de l'allylbenzène [10*]. Nous avons donc appliqué cette méthode aux dérivés complexés de l'allylbenzène chrometricarbonyle.

Dans ces conditions basiques, l'allylbenzène, l'estragole et le safrole chrometricarbonyle conduisent à température ambiante, avec divers benzaldéhydes uniquement aux alcools d'addition linéaires 19-23 avec des rendements moyens. La réaction requiert un excès d'aldéhyde et ne semble plus évoluer au bout de 4 h. Les aldéhydes et les cétones énolisables ne donnent pas de réaction. Avec la diéthylcétone, il semble que la réaction de crotonisation s'effectue au détriment de la condensation. Finalement, notons que le propénylbenzène chrometricarbonyle est inactif vis-à-vis du benzaldéhyde dans ces conditions.

BuLi-THF (Tableau 4)

Pour comparer nos résultats avec ceux de la littérature [3a,3b], l'anion de l'allylbenzène chrometricarbonyle a été formé par l'action du butyllithium dans le THF puis piégé par le benzaldéhyde. Dans ces conditions, la réaction de condensation n'est plus régiospécifique. Elle conduit à un mélange d'alcool ramifié 24 et linéaire 20 dont les proportions relatives varient en fonction de la température.

Contrairement aux systèmes basiques évoqués précédemment, il est possible de condenser des cétones énolisables. Ainsi l'action de la diéthylcétone et de l'acétophénone donne uniquement les alcools linéaires 25 et 26. Cette régiospécificité se distingue totalement de l'orientation observée dans les mêmes conditions en série non complexée [3b] (Tableau 4).

Notons finalement que l'acétone, beaucoup plus énolisable que les deux cétones précédentes, ne donne pas de réaction.

^a Temps de réaction 30 min; température ambiante ~ 20 ° C seuls les diastéréoisomères *trans trans* sont isolés (voir Tableau 1, note a). ^b La réduction de la cétone 7 par NaBH₄ (solvant méthanol-eau) conduit à l'alcool 19. ^c Seul le diastéréoisomère *trans* est isolé [3b].

Addition de divers benzaldéhydes — Catalyse par transfert de phase: N⁺("Bu)₄HSO₄-/NaOH, eau/toluène " Tablean 3

CH ₃	О)—сно				de CH ₃	## *	(23, 63%)
МеО	(O)→CHO				OMe	HE A	(22, 47%)
	О)—сно	(20, 53%)	Meo (G)	(19, 34%)		HO N	(21, 67%)
			Meo (G)				

^a Temps de réaction 4 h; température ambiante. Seuls les diastéréoisomères trans sont isolés [3b].

Tableau 4

Addition du benzaldéhyde, de la diéthylcétone et de l'acétophénone — Système basique BuLi-THF

Discussion

Réactivité

Les résultats décrits (Tableaux 1-4) montrent qu'il est possible de condenser rapidement à température ambiante, dans des conditions basiques d'emploi inédit en série allylique, les allylbenzènes chrometricarbonyle avec divers dérivés carbonylés. Le succès obtenu avec 'BuOK dans le THF pouvait être prévu dans la mesure où nous avons montré précédemment que ce système basique permettait la condensation de l'oxalate d'éthyle [11] et des aldéhydes aromatiques [12] avec des carbures benzéniques complexés dont les hydrogènes benzyliques possèdent un caractère acide moins prononcé. Cependant, malgré cet aspect favorable, l'anion allylique benzènechrometricarbonyle ne semble pas se former quantitativement dans ce milieu. La condensation des dérivés carbonylés, s'effectuant par déplacement d'équilibre, requiert pour plus d'efficacité un excès de réactif (Tableau 1). Les résultats obtenus avec NaH dans le DMF (Tableau 2) se distinguent des précédents dans la mesure où la condensation du benzaldéhyde, utilisé en fort excès avec le méta-méthoxytoluènechrometricarbonyle, n'est que partielle dans ce milieu (rendement en éthylénique 7%). De même, ce complexe est totalement inactif vis-à-vis de ce même aldéhyde dans les conditions de la catalyse par transfert de phase. D'autre part, nous avons pu montrer que la moins grande efficacité de cette méthode de condensation (Tableau 3) était due à l'isomérisation

[&]quot; Mélange de deux diastéréoisomères. ^b Temps de réaction 20 min. ^c Temps de réaction 20 min; température -5°C. ^d Température -5°C. ^e Seul le diastéréoisomère trans est isolé [3b].

des allylbenzènes chrometricarbonyle en propénylbenzènes correspondants, composés inertes dans les conditions de la catalyse par transfert de phase.

Cependant, la limitation de loin la plus contraignante à l'emploi des trois systèmes basiques décrits ('BuOK-THF, NaH-DMF, catalyse par transfert de phase) réside dans l'absence de réactivité des aldéhydes et des cétones énolisables. Ces dérivés, dans ces conditions, transfèrent un proton vers l'anion allylique complexé [13] (éq. 2).

La moins grande basicité des entités allyliques lithiées [14] explique le succès partiel enregistré pour ces condensations lorsque le butyllithium est employé comme base.

Régiosélectivité

L'étude de la régiosélectivité de l'addition d'électrophiles sur les systèmes allyliques a fait l'objet d'un nombre important de travaux:

Sous contrôle cinétique, plusieurs facteurs pouvant induire une régiosélectivité ont été mis en évidence.

Parmi ceux-ci, citons:

- (i) la nature de l'association métal-dérivé allylique [15,16] voir ci-dessus;
- (ii) la différence de densité électronique ou des valeurs des coefficients des orbitales atomiques de la HO des carbones α et γ [17,18];
- (iii) la différence d'encombrement stérique des positions α et γ [17a,18].

D'autre part, lorsque la réaction de condensation est aisément réversible [19], la régiosélectivité est déterminée par la différence de stabilité des deux isomères pouvant se former (contrôle thermodynamique). On observe la formation majoritaire de produits linéaires beaucoup plus stables (réactivité du carbone γ).

En série de l'allylbenzène, le caractère faiblement réversible de l'addition des aldéhydes et des cétones aliphatiques ayant été constaté, deux facteurs principaux ont été mis en avant pour rendre compte, sous contrôle cinétique, de la régiosélectivité observée: la densité électronique supérieure du carbone α et l'encombrement stérique du noyau benzénique [3b]. La prise en compte de ces deux facteurs antagonistes permet de rationaliser les résultats. Les aldéhydes et les cétones, de faible encombrement stérique, donnent majoritairement des alcools

ramifiés (attaque au niveau du carbone α). La diisopropylcétone, la benzophénone au site réactif plus encombré donne une addition opposée (attaque au niveau du carbone γ):

Tanaka et al. [2c] ont montré que la même tendance (attaque majoritaire en α) se retrouve pour les dérivés halogénés; la présence en position para du noyau benzénique d'un chlore accroît la proportion d'alkylation en position α . Cet effet de substituant qui accroît la différence de densité électronique entre les carbones α et γ est confirmée par une étude théorique [2c].

Si l'on retient l'analyse précédente, la complexation devrait par son effet attracteur d'électron favoriser l'obtention de composés ramifiés (attaque en α) mais défavoriser cette même réactivité par l'accroissement de l'encombrement stérique qu'elle implique.

Une étude RMN ¹H et ¹³C réalisée sur des dérivés allyliques complexés I $(M^+=Li^+, Na^+)$ (Schéma 1), ainsi qu'une étude théorique [20] confirme la réalité du premier effet. Quelque soit le cation, la complexation tend à diminuer la densité électronique globale du système allylique par transfert des électrons π . Cette tendance se fait plus particulièrement sentir au niveau du carbone γ qui devient moins nucléophile.

Cependant, avant d'envisager une analyse de nos résultats sur ces bases, il paraissait nécessaire de contrôler le degré de réversibilité des réactions de condensation envisagées ici. En effet, malgré le renforcement de l'encombrement stérique par la complexation, la régiospécificité de l'addition des aldéhydes aromatiques sur

les allylbenzènes chrometricarbonyle, sous l'action de 'BuOK, de NaH ou du système basique hétérogène (Tableaux 1-3), paraissait difficilement interprétable dans le cadre unique d'un contrôle cinétique, une régiosélectivité opposée étant observée en série non complexée avec des aldéhydes d'encombrement stérique comparable [3a].

L'accroissement progressif de la proportion d'alcool linéaire en fonction de la température (de -70 à 20 °C) (Tableau 4) constaté pour la réaction entre le benzaldéhyde et l'anion allylique benzènechrometricarbonyle lithié I généré par le butyllithium dans le THF (Schéma 1, M⁺ = Li⁺) montre clairement un renforcement notable mais partiel (même à 20 °C) en 20 min de la réversibilité (contrôle thermodynamique partiel).

Lorsque 'BuOK est employé comme base (solvant THF), cette même réaction est totalement réversible. Ainsi à 20 °C l'alcool ramifié 24 (Schéma 1) mis en solution dans le THF en présence de 'BuOK est totalement transformé en 20 min en un mélange d'allyl et de propénylbenzène chrometricarbonyle (rendement 30%) et en diène 4 (rendement 20%). L'alcool linéaire 20 (Schéma 1) beaucoup plus stable, traité par la même base, dans les mêmes conditions, donne partiellement le diène 4 (rendement 2.5%) et un mélange d'allylbenzène et de propénylbenzène (rendement 8.5%). Ce même alcool est, à -5 °C en 20 min, inactif vis-à-vis du butyllithium. De même l'alcool ramifié 24, traité à température ambiante dans les conditions de la catalyse par transfert de phase, est en grande partie transformé en 3 h en un mélange de propénylbenzène chrometricarbonyle, de benzaldéhyde et d'alcool linéaire 20.

Plusieurs facteurs peuvent favoriser la rétroaddition (transformation de l'alcool 24 en diène 4):

- (i) la nature aromatique des aldéhydes [19a];
- (ii) le renforcement de l'encombrement stérique dû à la complexation qui déstabilise l'alcoolate de potassium 24' (Schéma 1);
- (iii) la stabilisation de l'anion allylique par la complexation;
- (iv) la nature de l'association oxygène-cation au niveau de l'alcoolate 24'.

Il apparaît ici que ce dernier facteur joue un rôle déterminant. Ainsi à 20 ° C la facilité de la transformation totale en 20 min de l'alcoolate de potassium 24' comparé à la plus faible réactivité du dérivé analogue lithié est la conséquence d'une différence d'association entre l'oxygène négatif et les deux cations métalliques (OK plus dissocié que OLi, caractère ionique plus important pour OK). Le caractère très dissociant du DMF et la nature ionique de l'association R-O-N+(nBu)4 sont également responsables de l'obtention unique d'alcools linéaires sous contrôle thermodynamique lorsque NaH et NaOH sont utilisés comme base [19a].

Ces conclusions peuvent être étendues à toutes les réactions entre les allylbenzènes chrometricarbonyle et les aldéhydes aromatiques décrites dans ce travail. Par contre, pour l'action de l'oxalate d'éthyle, on ne peut exclure que l'obtention unique des diénols linéaires 1,2 et 3 (Tableau 1) soit la conséquence de l'existence d'une interaction stéréoélectronique importante entre le noyau benzénique complexé et l'oxalate d'éthyle dans l'état de transition partiellement déconjugué correspondant à la réactivité du carbone α (contrôle cinétique):

Etat de transition stériquement défavorisé

Etat de transition stériquement favorisé

$$C_{2}H_{5}COC_{2}H_{5}$$

$$C_{2}H_{5}COC_{2}H_{5}$$

$$C_{2}H_{5}COC_{2}H_{5}$$

$$C_{2}H_{5}COC_{2}H_{5}$$

$$C_{2}H_{5}COC_{2}H_{5}$$

$$C_{2}H_{5}COC_{2}H_{5}$$

$$C_{2}H_{5}COC_{2}H_{5}$$

$$C_{2}H_{5}COC_{2}H_{5}$$

$$C_{2}H_{5}COC_{2}H_{5}$$

$$C_{3}H_{5}COC_{2}H_{5}$$

$$C_{4}H_{5}COC_{4}H_{5}$$

$$C_{5}H_{5}COC_{4}H_{5}$$

$$C_{7}H_{5}COC_{4}H_{5}$$

$$C_{7}H_{5}COC_{4}H_{5}$$

$$C_{7}H_{5}COC_{4}H_{5}$$

$$C_{7}H_{5}COC_{4}H_{5}$$

$$C_{8}H_{5}COC_{4}H_{5}$$

Schéma 2

Cette analyse peut être étendue à l'action de la benzophénone (Tableau 1).

L'influence de l'accroissement de l'encombrement stérique de la position α dû à la complexation peut être mise en évidence en opposant sous contrôle cinétique (BuLi, -5°C, 20 min) l'anion allylique I (M = Li) (Schéma 2) à la diéthylcétone et à l'acétophénone. Avec ces deux cétones, on isole uniquement les alcools linéaires 25 et 26 (Tableau 4). Pour vérifier le caractère de non réversibilité de ce résultat, nous avons avec l'acétophénone réduit le temps de réaction à 2 min sans observer de modification.

Si l'on compare les résultats obtenus, sous contrôle cinétique, avec le benzaldéhyde (BuLi, $-70\,^{\circ}$ C) [21*] et l'acétophénone, on constate que la substitution d'un hydrogène par un méthyle inverse la régiosélectivité (PhCHO alcool ramifié: 79%, alcool linéaire 21%; PhCOCH₃: 0%, 100%). En série non complexée l'effet d'une telle substitution apparaît plus atténué [3a,b,22] montrant ainsi une exaltation de l'encombrement stérique due à la complexation.

Cette tendance est clairement confirmée par le résultat reporté en série non complexée pour l'action de la diéthylcétone [3b]. Dans des conditions basiques analogues (BuLi, THF), mais avec un temps de réaction et une température pourtant plus favorables à une réversibilité (2 h, 20 °C), l'anion allylique non complexé donne l'alcool ramifié en plus grande proportion (anion allylique libre: 63% d'alcool ramifié, 37% d'alcool linéaire; anion allylique complexé: 0%, 100%). Signalons finalement que l'importance de l'effet stérique du groupement phénylchrometricarbonyle ressort d'une étude portant sur l'alkylation de l'allylbenzène chrometricarbonyle en milieu basique [23].

En conclusion, sous contrôle cinétique, il apparaît pour l'action du benzaldéhyde que l'effet électronique attracteur du groupement phénylchrometricarbonyle gouverne, malgré l'effet stérique opposé, la régiosélectivité. Ce dernier effet l'emporte pour l'addition des cétones d'encombrement stérique moyen étudiées dans le présent travail.

Formation de cétones par oxydation d'Oppenauer

L'association base-solvant ^tBuOK-THF permet l'observation d'une transformation des alcoolates de potassium linéaires en cétones correspondantes (Tableau 1, Schéma 1). Observable avec le furfural-2 et le benzaldéhyde, la formation de cétone nécessite l'emploi d'un excès d'aldéhyde (2.5 équivalents) et est favorisée par la présence au niveau du cycle benzénique complexé d'un groupement méthoxy donneur d'électrons, en *ortho* ou en *para*. Aucune formation de cétone n'est décelable avec un équivalent d'aldéhyde.

Cette constatation implique:

- (i) que l'addition de l'aldéhyde sur le système allylique est plus rapide que les évolutions ultérieures des alcoolates de potassium linéaires;
- (ii) que la formation de cétone s'effectue par un transfert d'hydrure mettant en œuvre l'aldéhyde présent en excès. Un groupement méthoxy en position *ortho* ou *para*, dont l'influence pourrait être relayée par la double liaison, favorise ce processus en limitant la formation de diène et en exaltant le transfert d'hydrure.

Notons que nous avons déjà mis en évidence ce type d'évolution assimilable à une oxydation d'Oppenauer lors d'une étude portant, dans des conditions basiques identiques, sur l'addition en position benzylique d'aldéhydes aromatiques avec des carbures benzéniques complexés. Les résultats constatés ici confirment nos observations antérieures [12].

Conclusion

La condensation de divers allylbenzènes chrometricarbonyle avec des dérivés carbonylés non énolisables a été effectuée dans des conditions basiques inédites en série allylique.

L'emploi de ces systèmes déprotonants permet la synthèse régiospécifique, sous contrôle thermodynamique, de produits de condensation linéaires, dans des conditions expérimentales facilement réalisables.

Lorsque la réaction est sous contrôle cinétique, nous avons montré que la complexation, en augmentant l'encombrement stérique du noyau benzénique, permet également l'obtention aisée d'alcools linéaires avec des cétones énolisables d'encombrement stérique moyen.

Partie expérimentale

Tous les produits décrits ici ont été caractérisés par leurs spectres RMN ¹H réalisés avec un spectrographe Varian EM 360 (60 MHz) ou avec un spectrographe JEOL FX100 (100 MHz), en solution dans CDCl₃, par leurs spectres IR réalisés avec un spectrographe IR Perkin-Elmer 1320 ou Perkin-Elmer 1340 et leurs spectres de masse (Centre de Mesures Physiques de Rennes). Les points de fusion ont été mesurés à l'aide d'un appareil de Tottoli (Buchi 150).

Le THF utilisé comme solvant a été distillé sur sodium en présence de benzophénone. Le t-butylate de potassium, la solution de butyllithium et l'hydrure de sodium sont des produits commerciaux.

Les dérivés complexés de l'allylbenzène sont obtenus par condensation directe des composés benzéniques commerciaux (allylbenzène, estragole, safrole) avec du chrome hexacarbonyle dans un mélange de THF et d'éther dibutylique [24]. Les rendements sont compris entre 70 et 90%.

La méthylation de l'ortho-hydroxyallylbenzène par le sulfate de méthyle (base ^tBuOK – solvant THF) suivie de l'action du chromehexacarbonyle conduit à un mélange de propényl et d'allylbenzène chrometricarbonyle ortho-méthoxylé (Rdt. 60%). Les condensations ont donc été effectuées sur ce mélange.

Les propénylbenzènes chrometricarbonyle utilisés sont obtenus en isomérisant les allylbenzènes correspondants par 'BuOK dans le THF.

Mode opératoire général

Condensation des aldéhydes, de l'oxalate d'éthyle et de la benzophénone avec les allylbenzènes chrometricarbonyle: système basique 'BuOK-THF. Dans un réacteur maintenu sous azote, contenant 15 ml de THF, on introduit 6.25×10^{-3} mol d'aldéhyde ou d'oxalate d'éthyle ou de benzophénone $(2.5 \times 10^{-3}$ mol si l'on n'opère pas en excès) et 2.5×10^{-3} mol de complexe. Sous agitation, on ajoute alors 5×10^{-3} mol de 'BuOK. Le mélange initialement jaune devient rouge sombre. L'agitation est maintenue pendant 20 min. La solution est alors hydrolysée, extraite à l'éther. Après séchage de la phase étherée sur MgSO₄ et évaporation du solvant, on purifie ou on sépare les produits obtenus par chromatographie sur plaques de gel de silice (solvant éther-éther de pétrole). Les rendements des produits isolés figurent au Tableau 1.

Condensation du benzaldéhyde avec l'allylbenzène chrometricarbonyle et l'estragole chrometricarbonyle: système basique NaH-DMF. Dans un réacteur maintenu sous azote contenant 15 ml de DMF, on introduit successivement 6.25×10^{-3} mol de benzaldéhyde et 2.5×10^{-3} mol de complexe. On ajoute alors sous agitation 5×10^{-3} mol de NaH (suspension dans l'huile 50% en poids). Le mélange initialement jaune devient rouge sombre. L'agitation est maintenue pendant 30 min. On ajoute alors avec précaution de l'alcool à 95 °C, puis de l'eau. On extrait à l'éther. Après séchage de la solution éthérée par MgSO₄, on évapore le solvant et on purifie ou on sépare les produits obtenus par chromatographie sur plaques de gel de silice (solvant éther-éther de pétrole). Les rendements des produits isolés figurent au Tableau 2.

Condensation des aldéhydes avec les allylbenzènes chrometricarbonyle: catalyse par transfert de phase. Dans un milieu composé de 8 ml de toluène et de 5 g de soude dans 10 ml d'eau, on verse 6.25×10^{-3} mol d'aldéhyde. On ajoute ensuite 0.25×10^{-3} mol de sel de transfert (hydrogénosulfate de tétrabutylammonium). On additionne alors goutte à goutte une solution de 2.5×10^{-3} mol de complexe dans 8 ml de toluène. On maintient une très forte agitation pendant 4 h. Après hydrolyse, on extrait à l'éther puis on sèche la solution éthérée par MgSO₄. On évapore le solvant et on sépare les produits par chromatographie sur plaques de gel de silice (solvant éther-éther de pétrole). Les rendements des produits isolés figurent au Tableau 3.

Tableau 5 Caractéristiques des alcools et des énols

IR ν (cm ⁻¹)			RMN ¹ H (réf. TMS) δ (ppm)	(S) δ (bbm)		Spectre de masse	masse		Point
(C=0) C=0-	[]	ی کا	C ₆ H ₅ Cr	C ₆ H ₅	Autres	Masse théorique	Masse trouvée	m/e (intensité relative)	de fusion (°C)
1970 1680 1900	199	l _g	5.5 (m, 5H)		7.13 (dd, 1H, CH = J 16, J 10 Hz) (E, Z) 6.4–6.1 (m, 2H, CH=) 6.4–6.1 (m, 1H, OH) 4.4 (q, 2H, COOCH ₂ CH ₃) 1.37 (t, 3H, COOCH ₂ CH ₃)	354.0195	354.0220	354 (M ⁺ , 23); 270 (M ⁺ – 3CO, 28); 52 (Cr ⁺ , 80); 28 (CO ⁺ , 100).	118
1980 166 1880	168	1680	5.7 (d, 2H) 5.13 (d, 2H)		6.96 (dd, 1H, CH=J 16, J 10 Hz) (E, Z) 6.43-6 (m, 2H, CH=) 6.43-6 (m, 1H, OH) 4.3 (q, 2H, COOCH ₂ CH ₃) 3.7 (s, 3H, OCH ₄) 1.33 (t, 3H, COOCH ₂ CH ₃)	384.0311	384.0315	384 (M ⁺ , 20); 300 (M ⁺ –3CO, 37); 52 (Cr ⁺ , 43); 28 (CO ⁺ , 100).	128
1890 1680	38	0	6.46–5.9 (m, 1H) 5.5 (d, 1H) 5.06 (d, 1H)		7 (dd, 1H, CH=J 16, J 11 Hz) (E, Z) 6.46-5.9 (m, 2H, CH=) 6.46-5.9 (m, 1H, OH) 5.77 (s, 2H, OCH ₂ O) 4.33 (d, 2H, COOCH ₂ CH ₃) 1.3 (t, 3H, COOCH ₂ CH ₃)	398.0094	398.0069	398.0069 398 (M ⁺ , 2); 314 (M ⁺ – 3CO, 3); 52 (Cr ⁺ , 50); 28 (CO ⁺ , 100).	134
1960 1880 1860	i		5.3 (m, 5H)	7.33 (m, 10H)	6.03 (m, 2H, CH=) 3.03 (d, 2H, CH ₂) 2.6 (s, 1H, OH)	436.07666 436.0763		436 (M ⁺ , 5); 105 (PhCO ⁺ , 100); 52 (Cr ⁺ , 59); 28 (CO ⁺ , 42).	170

Tableau 5 (continued)

	IR $\nu(\text{cm}^{-1})$	n-1)		RMN ¹ H (réf.	TMS) & (ppn	(u	Spectre de masse	nasse		Point
	НО	(O C O)	C=O-	C ₆ H ₅ Gr C ₆ H ₅	C ₆ H ₅	Autres	Masse théorique	Masse trouvée	m/e (intensité relative)	de fusion (°C)
11	3520	1945 1880 1850		5.47 (d, 2H) 5.1 (d, 2H)	7.33 (m, 10H)	6.17–5.8 (m, 2H, CH=) 3.67 (s, 3H, OCH ₃) 3.16 (d, 2H, CH ₂) 2.53 (s, 1H, OH)	466.08723	466.0875	466 (M ⁺ , 2); 105 (PhCO ⁺ , 100); 52 (Cr ⁺ , 12); 28 (CO ⁺ , 18).	144
19	3610 3350	1950		5.53 (d, 2H) 5.1 (d, 2H)	7.27 (m, 5H)	5.87 (m, 2H, CH=) 4.7 (m, 1H, CHOH) 3.63 (s, 3H, OCH ₃) 2.53 (m, 2H, CH ₂) 2.53 (m, 1H, OH)	390.0559	390.0547	390 (M ⁺ , 4); 306 (M ⁺ – 3CO, 18); 147 (CH ₃ OPhCH=CHCH ₂ ⁺ , 52); 52 (Cr ⁺ , 31); 28 (CO ⁺ , 100).	135
20	3550 3400	1970 1890		5.3 (s, 5H)	7.3 (m, 5H)	6.0 (m, 2H, CH=) 4.7 (t, 1H, CHOH) 2.6 (m, 2H, CH ₂) 2.3 (s, 1H, OH)	360.0454	360.0465	360 (M ⁺ , 1) 276 (M ⁺ –3CO, 11); 117 (PhCH=CHCH ₂ ⁺ , 70); 52 (Cr ⁺ , 40) 28 (CO ⁺ , 100).	102
21	3535 3420	1960 1885 1860		6.46–5.7 (m, 2HJ.43 5.37 (d, 1H) (s, 5]	H 7. 43 (s, 5H)	6.46–5.7 (m, 2H, OCH ₂ O) 404.0352 6.46–5.7 (m, 2H, CH=) 5.07–4.65 (m, 1H, CHOH) 3.15–2.85 (m, 1H, OH) 2.82–2.43 (m, 2H, CH ₂)) 404.0352	404.0346	404 (M^+ , 0.5) 320 (M^+ – 3CO, 3). 162 (M^+) 28 (CO +, 22)	73
23	3535 3420	1960 1890 1840		6.37–5.57 (m, 2H)7–6.8 5.07 (d, 1H) (m, 4H)	2HJ7-6.8 (m, 4H)	6.37-5.57 (m, 2H, OCH ₂ O¥34.0458 6.37-5.57 (m, 2H, CH=) 4.98-4.75 (m, 1H, CHOH) 3.92 (s, 3H, OCH ₃) 2.87-2.53 (m, 2H, CH ₂) 2.43-2.23 (m, 1H, OH))	434.0457	434 (M^+ , 0.5); 350 (M^+ – 3CO, 4); 162 (M^+ – 3CO, 4); 52 (M^+ , 3); 28 (M^+ – 3CO, 4);	110

huile	102		73	82
418.0509 418 (M^+ , 6); 334 (M^+ – 3CO, 28); 162 (M^+ – 3CH=CHCH ₂ , 100); 52 (M^+ , 42); 28 (M^+ – 38).	$360.0465 360 \ (M^+, 3); \ 276 \ (M^+ - 3CO, 21);$	118 (PhCHCH=CH ₂ + H ⁺ , 100); 52 (Cr ⁺ , 94); 28 (CO ⁺ , 86).	340.0767 340 (M ⁺ , 6); 256 (M ⁺ – 3CO, 13); 52 (Cr ⁺ , 43); 28 (CO ⁺ , 100).	374.0633 374 (M ⁺ , 4); 290 (M ⁺ – 3CO, 19); 52 (Cr ⁺ , 35); 28 (CO ⁺ , 100).
418.0509	360.0465		340.0767	
418.0508	360.0454		340.0767	374.0610
5.42 (m, 2H) 7.98-6.8 6.52-5.42 (m, 2H, OCH ₂ O) 418.0508 (d, 1H) (m, 4H) 6.52-5.42 (m, 2H, CH=) 4.98-4.48 (m, 1H, CHOH) 2.98-1.9 (m, 2H, CH ₂) 2.98-1.9 (m, 1H, OH) 2.39-1.9 (m, 1H, OH)	6.33-5.63 (m, 1H, CH=)	5.46-4.67 (m, 2H, CH=) 5.46-4.67 (m, 1HCHOH) 3.3 (m, 1H, CHC=) 2.7 (s, 1H, OH)	6.3-6 (m, 2H, CH=) 2.3 (d, 2H, CH ₂) 1.7-1.2 (m, 4H, CH ₂ CH ₃) 1.7-1.2 (m, 1H, OH) 0.3 (t, 6H, CH ₂ CH ₃)	6 (m, 2H, CH=) 2.7 (d, 2H, CH ₂) 2.4 (s, 1H, OH) 1.6 (s, 3H, CH ₃)
7.98-6.8 (m, 4H)	7.3	(m, 5H)		7.4 (m, 5H)
6.52-5.42 (m, 2H) 5.15 (d, 1H)	5.46-4.67 (m, 5H) 7.3		5.5-5 (m, 5H)	5.3 (m, 5H)
1950 1870	1970	1880	1955 1900 1865	1955 1890 1870
3570	3580	3410	3500	3320
23	2		25	79

Tableau 6 Caractéristiques des cétones

	IR v(c	IR ν (cm ⁻¹)	1	RMN ¹ H (réf TMS) δ (ppm)		entra p	Spectre de masse	masse		Point
	OF)		C,H,Cr	C ₆ H ₅	H _B H _C	Autres	Masse Masse théorique trouvée		m / e (intensité relative)	de fusion (°C)
w	5 1680	1960	5.38 (m, 5H)	8.2-7.8 (m, 2H) 7.73-7.03 (m, 3H)		6.73–6.13 (m, 2H, CH=) 358.0297 3.93 (d, 2H, CH ₂)		358.0276	358.0276 358 (M ⁺ , 14); 274 (M ⁺ – 3CO, 76); 146 105 (PhCO ⁺ , 100); 52 (Cr ⁺ , 94); 28 (CO ⁺ , 71).	146
7	7 1680	1960 1860	5.67 (d, 2H) 5.13 (d, 2H)	8.05-7.83 (m, 2H) 7.6-7.33 (m, 3H)		6.5-6.1 (m, 2H, CH=) 3.7 (d, 2H, CH ₂) 3.68 (s, 3H, OCH ₃)	388.0403	388.0402	388.0402 388 (M ⁺ , 10); 304 (M ⁺ – 3CO, 75); 134 52 (Cr ⁺ , 100); 28 (CO ⁺ , 98).	134
10	10 1690	1960 1885 1840	6.05 (d, 1H) 5.80-4.85 (m, 3H)	8.4–7.85 (m, 2H) 7.85–7.25 (m, 3H)		7.1-6.7 (m, 2H, CH=) 3.95 (d, 2H, CH ₂) 3.80 (s, 3H, OCH ₃)	388.0403	388.0402	388.0403 388.0402 388 (M^+ , 2); 304 (M^+ – 3CO, 10); 105 (PhCO $^+$ = 0, 100); 52 (Cr $^+$, 8); 28 (CO $^+$, 36).	87
12	12 1675	1960	5.4 (m, 5H)		7.63 (s, large, 1H, H _A) 7.23 (d, 1H, H _B) 6.57 (m, 1H, H _C)	6.46–6.17 (m, 2H, CH=) 348.0090 3.83 (d, 2H, CH ₂)	348.0090	348.0073	348.0073 348 (M ⁺ , 3); 264 (M ⁺ – 3CO, 12); 52 (Cr ⁺ , 13); 28 (CO ⁺ , 100).	110
4	14 1680	1970	5.73 (d, 2H) 5.2 (d, 2H)		7.7 (s, large, 1H, H _A) 7.35 (d, 1H, H _B) 6.67 (m, 1H, H _C)	6.43–6.06 (m, 2H, CH=) 3.75 (d, 2H, CH ₂) 3.73 (s, 3H, OCH ₃)	378.0195	378.0199	6.43–6.06 (m, 2H, CH=) 378.0195 378.0199 378 (M ⁺ , 12); 294 (M ⁺ –3CO, 46); 115 3.75 (d, 2H, CH ₂) 52 (Cr ⁺ , 35); 28 (CO ⁺ , 100). 3.73 (s, 3H, OCH ₃)	115

Tableau 7. Caractéristiques des diènes.

	IR (cm^{-1})	RMN ¹ H (réf. TMS) δ (ppm)	. TMS) δ (pp	(mr		Spectre de masse	masse		Point
	ν(C <u>=</u> O)	(C,H,Cr)	C ₆ H ₅	H _B H _B	Autres	Masse théorique	Masse trouvée	m / e (intensité relative)	fusion (°C)
4	1960 1885	5.57-5.1 (m, 5H)	7.51-7.03 (m, 5H)		6.96-6.77 (m, 3H, CH=) 6.33-5.97 (m, 1H, CH=)	342.0346	342.0333	342 (M ⁺ , 10); 258 (M ⁺ – 3CO, 84); 52 (Cr ⁺ , 100); 28 (CO ⁺ , 50).	105
9	1970 1880	5.72 (d, 2H) 5.17 (d, 2H)	7.57-7.13 (m, 5H)		6.97–6.5 (m, 3H, CH=) 6.37–6 (m, 1H, CH=) 3.74 (s, 3H, OCH ₃)	372.0454	372.0469	372 (M ⁺ , 17); 288 (M ⁺ – 3CO, 100); 52 (Cr ⁺ , 54); 28 (CO ⁺ , 29).	170
••	1960 1880	6 (s, 1H) 5.9 (d, 1H) 5.08 (d, 1H)	7.7-7.23 (m, 5H)		7.06–6.2 (m, 4H, CH=) 5.76 (s, 2H, OCH ₂ O)	386.0246	386.0237	386 (M ⁺ , 17); 302 (M ⁺ – 3CO, 100); 52 (Cr ⁺ , 64); 28 (CO ⁺ , 38).	142
•	1955 1885 1860	6.05 (d, 1H) 5.75-4.7 (m, 3H)	7.75–7.2 (m, 5H)		7.1–6.7 (m, 4H, CH=) 3.85 (s, 3H, OCH ₃)	372.0454	372.0469	372 (M ⁺ , 4); 288 (M ⁺ – 3CO, 12); 236 (M ⁺ – Cr(CO) ₃ , 100); 52 (Cr ⁺ , 67); 28 (CO ⁺ , 65).	122
=	1960 1870	5.67–5.17 (m, 5H)		7.37 (s _{large} , 1H, H _A) 6.83-6.16 (m, 2H, H _B)	6.83-6.16 (m, 4H, CH=)	332.0141	332.0135	332 (M ⁺ , 40); 248 (M ⁺ – 3CO, 51); 52 (Cr ⁺ , 100); 28 (CO ⁺ , 50).	138
13	1975 1880	5.72 (d, 2H) 5.16 (d, 2H)		7.37 (s _{large} , 1H, H _A) 6.83-6.00 (m, 2H, H _B)	6.83–6.00 (m, 4H, CH=) 3.7 (s, 3H, OCH ₃)	362.0267	362.0246	362 (M ⁺ , 12); 278 (M ⁺ – 3CO, 25); 135 (CH ₃ OPhCO ⁺ , 100); 52 (Cr ⁺ , 24); 28 (CO ⁺ , 59).	137 ;
15	1950 1890 1850	5.33 (m, 5H)	7.57-7.06 (m, 10H)		6.86-6 (m, 3H, CH=)	418.0661	418.067	418 (M ⁺ , 8); 334 (M ⁺ – 3CO, 74); 105 (PhCO ⁺ , 100); 52 (Cr ⁺ , 24); 28 (CO ⁺ , 25).	131
18	1950 1885 1855	6 (d, 1H) 5.55 (d ", 1H) 5.35–4.85 (m, 2H)		7.45 (S _{large} , 1H, H _A) 6.95-6.2 (m, 2H, H _B)	6.95-6.2 (m, 4H, CH=) 3.85 (s, 3H, OCH ₃)	362.0246	362.0241	362 (M ⁺ , 3); 278 (M ⁺ – 3CO, 5); 52 (Cr ⁺ , 66); 28 (CO ⁺ , 100).	160
	,11								

^a Dédoublé.

Condensation du benzaldéhyde, de l'acétophénone et de la diéthylcétone avec l'allylbenzène chrometricarbonyle: système basique BuLi-THF. Dans un réacteur maintenu sous azote, contenant 20 ml de THF, on introduit 4.7×10^{-3} mol d'allylbenzène chrometricarbonyle. La solution est maintenue à la température souhaitée (utilisation d'un mélange de sel et de glace pour une température de -5°C et d'azote liquide pour une température de -70°C). On ajoute alors goutte à goutte 2.2 ml d'une solution de butyllithium 2.5 M dans l'hexane $(5.5 \times 10^{-3}$ mol). La solution initialement jaune vire au rouge sombre. Après une attente de 5 min, on ajoute 9×10^{-3} mol de benzaldéhyde ou de cétone. La solution est laissée sous agitation pendant 20 min (ou 2 min pour l'acétophénone) puis hydrolysée. Après les traitements habituels on sépare ou on purifie les produits obtenus par chromatographie sur plaques de gel de silice (solvant étheréther de pétrole). Les rendements des produits isolés figurent au Tableau 4.

Réaction de l'alcool 24 avec 'BuOK dans le THF (Schéma 1). Dans un réacteur maintenu sous azote, on dissout à température ambiante 2×10^{-3} mol d'alcool 24 dans 15 ml de THF. On ajoute alors 2×10^{-3} mol de 'BuOK. On abandonne la solution sous agitation pendant 20 min puis on hydrolyse. On extrait à l'éther, on sèche sur MgSO₄ et on évapore le solvant. Les produits obtenus sont purifiés par chromatographie sur plaques de gel de silice (solvant éther-éther de pétrole). Le même mode opératoire est appliqué à l'alcool linéaire 20.

Réaction de l'alcool 20 avec le butyllithium dans le THF. Dans un réacteur maintenu sous azote, plongeant dans un mélange de sel et de glace, on dissout 1.6×10^{-3} mol d'alcool 20. On ajoute alors goutte à goutte 0.64 ml d'une solution de butyllithium dans l'hexane $(1.6\times 10^{-3}$ mol). La solution est laissée sous agitation pendant 20 min puis hydrolysée. On extrait à l'éther, on sèche sur MgSO₄ et on évapore le solvant. Après purification par chromatographie sur plaques de gel de silice, on récupère uniquement l'alcool 20 (Rdt. 70%).

Réaction de l'alcool 24 par catalyse par transfert de phase. Dans un milieu composé de 8 ml de toluène et de 5 g de NaOH dans 10 ml d'eau, on ajoute 2.13×10^{-3} mol (770 mg) de l'alcool 24, puis 0.21×10^{-3} mol de sel de transfert (hydrogénosulfate de tétrabutylammonium). On maintient une forte agitation pendant 3 h. Après hydrolyse, extraction à l'éther, séchage sur MgSO₄, évaporation du solvant et séparation par chromatographie sur plaques de gel de silice, on récupère 330 mg d'un mélange de propénylbenzène chrometricarbonyle et de benzaldéhyde (66% et 34%, % obtenu par RMN), 30 mg d'alcool 20 et 180 mg d'alcool 24.

Condensation du benzaldéhyde avec le para-méthoxypropénylbenzène chrometri-carbonyle. Dans un réacteur, maintenu sous azote, contenant 15 ml de THF, on introduit successivement 7.75×10^{-4} mol de complexe, 2.125×10^{-3} mol de benzaldéhyde et 1.55×10^{-3} mol de ¹BuOK. Le mélange est laissé sous agitation à température ambiante pendant 30 min. Après les traitements habituels, on récupère la cétone 7 (Rdt. 56%) et le diène 6 (Rdt. 7%).

Les caractéristiques des produits synthétisés sont regroupées dans les Tableaux 5-7.

Remerciements

Nous remercions Monsieur Jean-Paul Lemasson pour sa collaboration technique.

Bibliographie et notes

- 1 R.Y. Mixer et W.G. Young, J. Am. Chem. Soc., 78 (1956) 3379.
- 2 (a) H.F. Herbrandson et D.S. Mooney, J. Am. Chem. Soc., 79 (1957) 5809; (b) J. Tanaka, M. Nojima et S. Kusabayashi, J. Chem. Soc., Chem. Commun., (1986) 242; (c) Avec le butyllithium, l'ajout de TMEDA ou de HMPT à la solution éthérée favorise la formation et la stabilisation de l'anion: J. Tanaka, M. Nojima et S. Kusabayashi, J. Chem. Soc., Perkin Trans. II, (1987) 673.
- 3 (a) F. Gérard et P. Miginiac, Bull. Soc. Chim. Fr., (1974) 1924; (b) ibid., (1974) 2527.
- 4 (a) T.W. Campbell et W.G. Young, J. Am. Chem. Soc., 69 (1947) 3066; (b) ibid., 71 (1949) 296; (c) W.G. Young, M. Kosmin, R.Y. Mixer et T.W. Campbell, ibid., 74 (1952) 608.
- 5 Cette dissymétrie électronique est confirmée par un calcul théorique [6], mais infirmée par un autre [2c].
- 6 H. Kloosterziel, Recl. Trav. Chim. Pays-Bas, 93 (1974) 215.
- 7 Note préliminaire: D. Gentric, J-Y. Le Bihan, M-C. Sénéchal-Tocquer, D. Sénéchal et B. Caro, Tetrahedron Lett., 27 (1986) 3849.
- 8 G. Jaouen, Pure Appl. Chem., 58 (1986) 597.
- 9 Voir cependant: A. Soladié-Cavallo et D. Farkhany, Tetrahedron Lett., 27 (1986) 1331.
- 10 Une étude de l'isomérisation de l'allylbenzène en propénylbenzène a été réalisée dans ce milieu: M. Halperm, Y. Sansson et R. Rabinovitz, J. Org. Chem., 48 (1983) 1022.
- 11 M-C. Sénéchal-Tocquer, D. Sénéchal, J-Y. Le Bihan, D. Gentric et B. Caro, J. Organomet. Chem., 291 (1985) C5.
- 12 M-C. Sénéchal-Tocquer, D. Sénéchal, J-Y. Le Bihan, D. Gentric et B. Caro, J. Organomet. Chem., 321 (1987) 353.
- 13 J. Brocard, J. Lebibi et D. Couturier, Bull. Soc. Chim. Fr., (1982) 2237.
- 14 M. Schlosser, Angew. Chem., Int. Ed. Engl., 3 (1964) 288.
- 15 Y. Yamamoto, N. Maeda et K. Maruyama, J. Chem. Soc., Chem. Commun., (1983) 742.
- 16 P.M. Atlani, J.F. Biellman, S. Dube et J.J. Vicens, Tetrahedron Lett., 31 (1974) 2665.
- 17 (a) B. Mauze, P. Ongonka et L. Miginiac, J. Organomet. Chem., 264 (1984) 1; (b) W.S. Murphy et S. Wattanasin, Tetrahedron Lett., 20 (1979) 1827.
- 18 D.A. Evans, G.C. Andrews et B. Buckwalter, J. Am. Chem. Soc., 96 (1974).5561.
- 19 Voir par exemple: (a) E. Epifani, S. Florio et G. Ingrosso, Tetrahedron, 44 (1988) 5869; (b) M. Para, R. Mestres, D. Aparicio, N. Durana et G. Rubiales, J. Chem. Soc., Perkin Trans. I, (1989) 327.
- 20 M.J. McGlinchey, résultats non publiés.
- 21 On peut raisonnablement penser que ce résultat est obtenu sous contrôle cinétique.
- 22 T.W. Campbell et W.G. Young, J. Org. Chem., 71 (1949) 296.
- 23 M-C. Sénéchal-Tocquer, résultats non publiés.
- 24 C.A.L. Mahaffy et P.L. Pauson, Inorg. Synth., 19 (1979) 154.