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The electron-rich aminoacetylenes Et,NC,;R (2a—c, R = SPh,
PPh,, and Ph, respectively) react smoothly with [n2-bis(tert-
butylsulfonyl)acetylene](carbonyl)(n®-cyclopentadienyl)co-
balt (1) to form the donor-acceptor stabilized (n*-cyclobuta-
diene)cobalt complexes 3a—c in good yields. However, treat-
ment of the electron-poor borylacetylenes 2d-f with the co-
balt complex 1 does not lead to the expected (n*-cyclobutadi-
ene)cobalt complexes. Analogously, the reaction of bis(1-

phenylethynyl)sulfide (2g) with two equivalents of 1 gives
rise to the sulfur-bridged bis[n*-(cyclobutadiene)cobalt] com-
plex 3g. The new cobalt complexes were characterized by
NMR spectroscopy, mass spectrometry, and by X-ray struc-
ture analysis for 3a, which reveals almost equal C-C bond
lengths within the cyclobutadiene ring.

(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim,
Germany, 2005)

Introduction

Di(carbonyl)(n’-cyclopentadienyl)cobalt [CpCo(CO),] is
a very convenient and efficient reagent for the di- and tri-
merization of alkynes.['! The CpCo-supported oligomeriza-
tion of unsymmetrical alkynes generally leads to isomers,
which is one of the major disadvantages of that reaction.
This might be overcome if oligomerization could be carried
out in a stepwise fashion. Lee and Brintzinger!®! have been
able to demonstrate by means of IR spectroscopy that, on
irradiation of [CpCo(CO),] in the presence of diphenylace-
tylene, a new complex with only one CO ligand must be
present. In order to contribute to the clarification of the
mechanism of dimerization and trimerization of alkynes,
Krebs et al.># reported the first generation of a mono(al-
kyne)cobalt complex by reacting the highly strained alkyne
3,3,6,6-tetramethyl-1-thiacycloheptynel® with [CpCo(CO)s,].
More recently, Gleiter et al.’l have synthesized the
mono(alkyne)cobalt complex 1 by the replacement of one
of the carbonyl groups in di(carbonyl)(n>-cyclopentadienyl)
cobalt with bis(zert-butylsulfonyl)acetylene,l) which was
found to be a strong electrophile. In the course of their
study, a large number of electron-rich, chalcogen-substi-
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tuted acetylenes as well as alkyl- and aryl-substituted acety-
lenes were allowed to react with 1 to form a new class of
stable (cyclobutadiene)cobalt complexes.l”? They found that
the more electron-rich acetylenes react faster with 1 under
mild conditions, whereas carbon-substituted acetylenes re-
quire heating to initiate the reactions. We have studied elec-
tron-poor borylacetylenes with respect to oligomerization
and therefore tested the possibility whether electron-poor
acetylenes can react with 1 under drastic conditions.
Furthermore, we were interested to find out whether other
heteroatom-substituted acetylenes (such as nitrogen and
phosphorus) are also able to act in the same way as chal-
cogen-substituted alkynes. In this paper, we will address the
scope and limitations of the replacement of the CO group
in 1 by the triple bonds of the electron-rich and -poor acety-
lenes.

Results and Discussion

Treatment of Cobalt Complex 1 with Electron-Rich and
-Poor Acetylenes

The reactions between the cobalt complex 1 and the elec-
tron-rich aminoacetylenes 2a—c were carried out in toluene
at room temperature to afford the (n*-cyclobutadiene)co-
balt complexes 3a-c¢, respectively, in good yields
(Scheme 1). On the other hand, reactions of the cobalt com-
plex 1 with the “push-pull” 1-boryl-2-aminoacetylene 2d as
well as electron-poor borylacetylenes 2e and 2f in refluxing
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toluene were unsuccessful, and only the starting materials
were recovered from the reaction mixtures. This indicates
that electron-poor borylacetylenes have no tendency to re-
act with the powerful electrophile 1, even when applying
drastic reaction conditions.
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Scheme 1.

The cobalt complexes were isolated by column
chromatography on silica gel and characterized by 'H and
13C NMR spectroscopy, mass spectrometry, and by X-ray
structure analysis for 3a. The 'H NMR spectra of 3a—¢
show two singlets in the region ¢ = 1.2-1.5 ppm for the
tert-butyl groups in addition to the Cp resonance (6 = 5.0—
5.3 ppm). In general, the characteristic feature of the '3C
NMR spectra is the chemical shift of the cyclobutadiene
ring atoms, which have values of between 6 = 75 and
85 ppm.[7471 However, compounds 3a,b exhibit low-field
resonances (0 = 55-75 ppm) for the cyclobutadiene ring
atoms. In the '*C NMR spectra of 3a—c, the signals for
CsHs (0 = 82-84 ppm) were detected along with the aryl
carbon atoms (6 = 125.0-138.9 ppm). EI-MS data con-
firmed the formation of complexes 3a—c by the appearance
of the molecular-ion peaks with the expected isotopic
pattern.

The molecular structure of the mononuclear (cyclobuta-
diene)cobalt complex 3a is shown in Figure 1. In the solid-
state, 3a crystallizes with toluene. The conformation is
highly influenced by the bulky ferz-butylsulfonyl groups,
which point away from the metal center, as does the phenyl
group bound to the sulfur atom. This behavior allows an
almost parallel orientation of the Cs; and C,4 rings. The
space group (P2,/c) of complex 3a clearly indicates the pres-
ence of a racemic mixture.

Sulfur-Bridged Dinuclear Cobalt Complex 3g

The sulfur-bridged bis[(n*-cyclobutadiene)cobalt] com-
plex 3g was prepared in moderate yield by treating (PhC,),-
S (2g) with two equivalents of 1 (Scheme 2). No evidence
for the mononuclear cobalt complex was found.

This reaction reveals an interesting route to a sulfur-
bridged bis[(n*-cyclobutadiene)cobalt] complex, which is
important especially because the introduction of a hetero-
atom between two metal-stabilized cyclobutadiene rings is
still difficult. The method used by Wadepohl et al.¥] leads
to the mononuclear (n*-cyclobutadiene)cobalt complex
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Figure 1. Molecular structure of 3a in the solid state; hydrogen
atoms have been omitted for the sake of clarity. Selected bond
lengths [A] and bond angles [°]: C6-S1 1.769(5), C7-S2 1.755(5),
C6-C7 1.494(6), C7-C8 1.484(7), C8-C9 1.459(7), C6-C9 1.476(7),
C8-NI1 1.360(6), C9-S3 1.741(5); C9-C6-C7 88.8(4), C8-C7-C6
89.8(4), C9-C8-C7 89.9(4), C8-C9-C6 91.5(4).
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Scheme 2.

from the reaction of two equivalents of (Me;SiC,),S with
[CpCo(CO),].

The brown oil 3g was purified by column chromatog-
raphy on silica gel and characterized by 'H and '*C NMR
spectroscopy as well as by mass spectrometry. The 'H
NMR spectrum of 3g shows the expected multiplets (5 =
6.9-7.1 ppm) for the aryl hydrogens in addition to two sing-
lets (0 = 1.19 and 1.27 ppm) for the tert-butyl groups and
the Cp resonance (6 = 5.01 ppm). In the '3C NMR spec-
trum, the signals (0 = 58.6-75.2 ppm) for the cyclobutadi-
ene ring are found along with the Cp resonance at ¢ =
83.5 ppm. The molecular-ion peak of 3g was detected with
the correct isotopic distribution in the mass spectrum.
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Conclusions

We have shown that the electron-rich aminoacetylenes
2a—c react smoothly (as do the chalcogen-substituted acety-
lenes) with complex 1 to form CpCo-stabilized n*-cyclobu-
tadiene complexes 3a-—c, respectively However, the CO
group in the mono(alkyne)cobalt complex 1 cannot be re-
placed by the “push-pull” borylacetylene 2d or by the elec-
tron-poor borylacetylenes 2e and 2f. This result may be ex-
plained by considering the electronic nature of complex 1.
The electron-poor bis(tert-butylsulfonyl)acetylene in 1 re-
duces the back bonding between the Co atom and the CO
ligand, which means that CO is easily replaced by the elec-
tron-rich acetylenes 2a—c; the electron-poor monoborylace-
tylenes 2d—f have weaker donor capabilities and thus do not
react with 1. Interestingly, the sulfur-bridged bis[(n*-cyclo-
butadiene)cobalt] complex 3g can be prepared by treating
complex 1 with (PhC,),S (2g). The cobalt complexes 3a—¢
and 3g are stable at room temperature and resistant to light,
oxygen, and moisture.

Experimental Section

General: All reactions were performed under nitrogen using stan-
dard Schlenk techniques. Solvents were dried with the appropriate
drying agents and distilled under nitrogen. Glassware was dried
with a heat gun under high vacuum. 'H, "B, and '*C NMR:
Bruker AC 200 spectrometer; 'H and '*C spectra were referenced
to (CH3),4Si. IR spectra were recorded on a Bruker IFS 28 FT spec-
trometer. Mass spectra were obtained on a Finnigan MAT 8230
plus spectrometer using the EI technique. Elemental analyses were
carried out by the Mikroanalytisches Laboratorium der Universitét
Heidelberg. Melting points (uncorrected) were obtained on a Biichi
apparatus, using capillaries which were filled under nitrogen and
sealed. Complex (1),”7 2-(diethylamino)-1-phenylthioacetylene
(2a),['% 2-(diethylamino)-1-(diphenylphosphanyl)acetylene (2b),!'"]
2-(diethylamino)-1-phenylacetylene  (2¢),l'?!  1-(diethylamino)-2-
bis(diethylaminoboryl)acetylene,!'3] 1-catecholboryl-2-phenylacety-
lene,['?l' 1-dithiocatecholboryl-2-phenylacetylene,['?! and (PhC,),S
(2g)!'Y were prepared according to literature procedures.

General Procedure for the Synthesis of 3a—c and 3g: The mono(al-
kyne)cobalt complex 1 was dissolved in 30 mL of toluene and the
appropriate acetylene was added. The reaction mixture was stirred
for 2 d at room temperature. After completion of the reaction, the
solvent was removed to dryness and the crude product was purified
by column chromatography on silica gel (THF/toluene, 2:1). Cobalt
complex 3a was recrystallized from a solution of toluene at —20 °C.

[n*-1,2-Bis(tert-butylsulfonyl)-4-(diethylamino)-3-phenylthiocyclobu-
tadiene](n’>-cyclopentadienyl)cobalt (3a): Starting material: 0.25 g
(1.21 mmol) of 2a, 0.50g (1.21 mmol) of 1. Yield: 0.55¢g
(0.92 mmol; 76%), orange solid, m.p. 132-133°C. 'H NMR
(200.1 MHz, CDCls): 6 = 1.03 (t, 6 H, CH,CH;), 1.38, 1.47 [2s,
2x9 H, C(CH;);], 3.1, 3.4 (2m, 2x2 H, CH,CH3), 5.21 (s, 5 H,
Cp), 7.0-7.3 (m, 5 H, SPh) ppm. 3C NMR (50.3 MHz, CDCls): 6
=11.05 (CH,CHs), 24.32, 24.89 [C(CH3)5], 42.25 (CH,CH3), 61.77,
62.62 [C(CH;)3], 54.90, 58.34, 65.79, 74.87 (Curing), 83.24 (Cp-C),
125.1, 125.4, 128.9, 138.9 (SPh) ppm. MS (70 eV, EI): m/z (%) =
595 (30) [M™], 475 (20) [M™* — SO,Bu], 353 (45) [M* — 2S0,7Bu],
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124 (15) [CpCo]. MS (70 eV, HR-EI): m/z (%) = 595.1277 (95) [M*;
12C271H3814N1604325359COC 5951295], Ammu = —1.8.

[n*-1,2-Bis(zert-butylsulfonyl)-4-diethylamino-3-diphenylphospanyl-
cyclobutadiene](n’-cyclopentadienyl)cobalt (3b): Starting material:
0.34 g (1.21 mmol) of 2b, 0.50 g (1.21 mmol) of 1. Yield: 0.48 g
(0.71 mmol; 58%), orange oil. '"H NMR (200.1 MHz, CDCl5): 6 =
0.85 (t, 6 H, CH,CH;), 1.45, 1.49 [2s, 2X9 H, C(CH,);], 3.0, 3.3
(2m, 2x2 H, CH,CH3), 5.03 (s, 5 H, Cp), 7.2-7.7 (m, 10 H, PPh,)
ppm. 3C NMR (50.3 MHz, CDCl5): 6 = 11.87 (CH,CHj), 24.32,
24.89 [C(CH,);], 44.02 (CH,CH3), 61.77, 62.64 [C(CH3);], 65.84,
67.24, 69.79, 72.85 (Caring), 84.03 (Cp-C), 125.0, 128.1, 129.3, 135.2
(PPh,) ppm. MS (70 eV, EI): m/z (%) = 671 (5) [M™*], 550 (60) [M* —
SO,1Bu], 429 (50) [M™ — 2S0,rBu], 124 (5) [CpCo]. MS (70 eV,
HR-EI): m/z (%) = 671.1688 (51) [M*; '2Cs3'Hys'4N100,31P32-
S,%Co: 671.1704]; Ammu = —1.6.

[n*-1,2-Bis(tert-butylsulfonyl)-4-diethylamino-3-phenylcyclobutadi-
ene](n>-cyclopentadienyl)cobalt (3¢): Starting material: 0.062 g
(0.035 mmol) of 2¢, 0.15g (0.035mmol) of 1. Yield: 0.16¢g
(0.028 mmol; 80%), orange solid, m.p. 127-128 °C. '"H NMR
(200.1 MHz, CDCly): 6 = 0.95 (t, 6 H, CH,CH;), 1.18, 1.45 [2s,
2x9 H, C(CHz)3], 2.9, 3.2 [2m, 2%x2 H, CH,CHs;], 5.35 (s, 5 H,
Cp), 7.2, 7.6 (2m, 5 H, Ph) ppm. *C NMR (50.3 MHz, CDCls): 6
=11.33 (CH,CH3;), 24.43, 24.85 [C(CH3)3], 43.62 (CH,CHj;), 61.57,
62.17 [C(CH,3);), 82.70 (Cp-C), 127.5, 128.2, 129.0, 132.48 (Ph)
ppm; Cyupine not found. MS (70 eV, EI): m/z (%) = 563 (10) [M™],
442 (25) [M* — SO,tBu]. MS (70 eV, HR-EI): m/z (%) = 563.1584
(68) [M*; 12C,;'H35'°043?S,°°Co:  563.1574]; Ammu = 1.0.
C57H33C00,4S, (563.66): caled. C 57.53, H 6.80, N 2.48; found C
57.65, H 6.88, N 2.54.

Bis|(n*-cyclobutadiene)]cobalt Complex 3g: Starting material: 0.25 g
(1.06 mmol) of (PhC,),S (2g), 0.89 g (2.12 mmol) of 1. Yield: 0.47 g
(0.46 mmol; 43%), brown oil. '"H NMR (200.1 MHz, CDCl5): 6 =
1.19, 1.27 [2s, 2x 18 H, C(CH3)3], 5.01 (s, 10 H, Cp), 7.0-7.3 (m,
10 H, C¢Hs) ppm. '3C NMR (50.3 MHz, CDCl5): 6 = 24.62, 25.19
[C(CH3)3], 62.07, 62.92 [C(CH3);], 55.20, 58.64, 66.09, 75.17

Table 1. Crystal data and structure refinement for 3a.

C27H38CONO4S3'C7H8

Empirical formula

Formula mass 687.83

Crystal system monoclinic
Space group P2\/c

a[A] 14.7043(8)

b [A] 8.9725(5)

c[A] 26.3058(6)

a [°] 90

LI°] 99.080(2)
AV 90

Volume [A?] 3427.1(3)

Z 4

Dcalcd. [g Cm73] 1.33

4 [mm] 0.72

F(000) 1456

Crystal size [mm)] 0.30%0.08 x0.04
Omax(®) 215

Index ranges —15/15, -9/9, -27/27
Reflections collected 20502
Reflections independent (R;,() 3940 (0.1512)
Reflections observed [I > 20([)] 2243

Parameters 397

Goodness-of-fit on F? 0.99

R, [I > 26(D)] 0.048
WR, [I > 20(1)] 0.071

T [K] 200(2)
Residual electron density [e A3 0.38/-0.35
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(Caring). 83.54 (Cp-C), 125.5, 125.7, 129.3, 135.4 (Ph) ppm. MS
(70 eV, EI): ml= (%) = 1014 (10) [M*], 941 (15) [M* — /BuO]. MS
(70 eV, HR-EI): m/= (%) = 1014.1307 (100) [M*; 12C,'Hse 605
S5 Co,: 1014.1243]; Ammu = 6.4.

X-ray Crystal Structure Determination of 3a: Crystal data and de-
tails of the structure determination are listed in Table 1. Reflections
were collected with a Bruker-AXS SMART 1000 diffractometer
(Mo-K,, radiation, 2 = 0.71073 A, graphite monochromator, -
scan). An empirical absorption correction was applied. The struc-
ture was solved by direct methods and refined by least-squares
methods based on F? with all measured reflections (SHELXTL
5.1).151 All non-hydrogen atoms were refined anisotropically.
CCDC-268675 (for 3a) contains the supplementary crystallo-
graphic data for this paper. These data can be obtained free of
charge from The Cambridge Crystallographic Data Center via
www.ccde.cam.ac.uk/data_request/cif.
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